Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Finite Projective Plane (FPP)

Definition 1.1. The incidence graph of a FPP (X, \mathcal{L}) is a bipartite graph G with parts X and \mathcal{L} , where $x \in X$ and $L \in \mathcal{L}$ are adjacent in G if and only if $x \in L$.

Definition 1.2. The dual (\mathcal{L}, \wedge) of a FFP (X, \mathcal{L}) is obtained by taking the incidence graph G of (X, \mathcal{L}) and interpreting the points in (X, \mathcal{L}) as the lines in the new FPP and the lines in (X, \mathcal{L}) as the points in the new FPP.

Remark 1.3. For any $x \in X$, let $L_x = \{L \in \mathcal{L} : x \in L\}$ be a new line in (\mathcal{L}, \wedge) . So $\wedge = \{L_x : x \in X\}$.

Proposition 1.4. The dual (\mathcal{L}, \wedge) of any FPP (X, \mathcal{L}) of order n is also a FPP of order n.

Proof. We point out that (P1) for (X, \mathcal{L}) gives rise to (P2)^{*} for (\mathcal{L}, \wedge) and (P2) for (X, \mathcal{L}) gives rise to $(P1)^*$ for (\mathcal{L}, \wedge) .

(P1): for any $L_1, L_2 \in \mathcal{L}$ satisfying $L_1 \cap L_2 = \{x\}$ for some $x \in X$.

(P2): For any two points $x_1, x_2 \in X$ there exists exactly one subset $L \in \mathcal{L}$ with $\{x_1, x_2\} \subseteq L$.

 $(P1)^*$: For any two points $x_1, x_2 \in X$ there exists exactly one subset $L \in \mathcal{L}$ with $\{x_1, x_2\} \subseteq L$ $(P2)^*$: for any $L_1, L_2 \in \mathcal{L}$ satisfying $L_1 \cap L_2 = \{x\}$ for some $x \in X$.

 $(I \ Z)$. Ior any $D_1, D_2 \in \mathcal{L}$ satisfying $D_1 \cap D_2 = \{x\}$ for some $x \in \mathcal{I}$

We consider $(P0)^*$ for (\mathcal{L}, \wedge) .

 $(P0)^*$: there exist four new points in (\mathcal{L}, \wedge) such that any three of them cannot be contained in a new line of (\mathcal{L}, \wedge) , i.e., there exist $L_1, L_2, L_3, L_4 \in \mathcal{L}$ such that no L_x contains any three of them if and only if there exist $L_1, L_2, L_3, L_4 \in \mathcal{L}$ such that No three of them contains a point $x \in X$.

Consider the 4-set $F = \{a, b, c, d\} \in (X, \mathcal{L})$ satisfying $(P0)^*$. Note that $|F \cap \mathcal{L} \leq 2|$ for any $L \in \mathcal{L}$, So we have four distinct lines $L_1 = \overline{ab}, L_2 = \overline{cd}, L_3 = \overline{ac}, L_4 = \overline{bd}$.

It is easy to check that these four lines satisfy $(P0)^*$.

Theorem 1.5. A finite projective plane of order n exists whenever a field with n elements exists.

And we know that a field with n elements exists if and only if $n = p^k$ for a prime p.

Open Conjecture. A FPP of order n exists if and only if n is a power of a prime.

We know this holds for $n \leq 11$. In particular, FPP of n = 10 does not exist. It is open for n = 12.

Next we introduce an application of FPP in Turán numbers. Recall the following result.

Theorem 1.6. Any *m*-vertex C_4 -free graph G has $e(G) \leq \frac{m}{4}(1 + \sqrt{4m-3})$.

Theorem 1.7. For infinitely many integers m, there exists a C_4 -free graph on m vertices with at least $0.35m^{3/2}$.

Proof. Take any FPP (X, \mathcal{L}) of order n, and consider its incidence graph G. Note that G has $m = 2(n^2 + n + 1)$ vertices and

$$e(G) = (n^2 + n + 1)(n + 1) \ge (n^2 + n + 1)^{\frac{3}{2}} = (\frac{m}{2})^{\frac{3}{2}} \ge 0.35m^{3/2}.$$

It is clear that G is C_4 -free by the property of FPP.