Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Finite Projective Plane (FPP)

Definition 1.1. The incidence graph of a $\operatorname{FPP}(X, \mathcal{L})$ is a bipartite graph G with parts X and \mathcal{L}, where $x \in X$ and $L \in \mathcal{L}$ are adjacent in G if and only if $x \in L$.

Definition 1.2. The dual (\mathcal{L}, \wedge) of a $F F P(X, \mathcal{L})$ is obtained by taking the incidence graph G of (X, \mathcal{L}) and interpreting the points in (X, \mathcal{L}) as the lines in the new FPP and the lines in (X, \mathcal{L}) as the points in the new FPP.

Remark 1.3. For any $x \in X$, let $L_{x}=\{L \in \mathcal{L}: x \in L\}$ be a new line in (\mathcal{L}, \wedge). So $\wedge=\left\{L_{x}\right.$: $x \in X\}$.

Proposition 1.4. The dual (\mathcal{L}, \wedge) of any $\operatorname{FPP}(X, \mathcal{L})$ of order n is also a $F P P$ of order n.
Proof. We point out that $(P 1)$ for (X, \mathcal{L}) gives rise to $(P 2)^{*}$ for (\mathcal{L}, \wedge) and $(P 2)$ for (X, \mathcal{L}) gives rise to $(P 1)^{*}$ for (\mathcal{L}, \wedge).
$(P 1)$: for any $L_{1}, L_{2} \in \mathcal{L}$ satisfying $L_{1} \cap L_{2}=\{x\}$ for some $x \in X$.
$(P 2)$: For any two points $x_{1}, x_{2} \in X$ there exists exactly one subset $L \in \mathcal{L}$ with $\{x 1, x 2\} \subseteq \mathrm{L}$.
$(P 1)^{*}$: For any two points $x_{1}, x_{2} \in X$ there exists exactly one subset $L \in \mathcal{L}$ with $\left\{x_{1}, x_{2}\right\} \subseteq \mathrm{L}$
(P2)*: for any $L_{1}, L_{2} \in \mathcal{L}$ satisfying $L_{1} \cap L_{2}=\{x\}$ for some $x \in X$.
We consider $(P 0)^{*}$ for (\mathcal{L}, \wedge).
$(P 0)^{*}$: there exist four new points in (\mathcal{L}, \wedge) such that any three of them cannot be contained in a new line of (\mathcal{L}, \wedge), i.e., there exist $L_{1}, L_{2}, L_{3}, L_{4} \in \mathcal{L}$ such that no L_{x} contains any three of them if and only if there exist $L_{1}, L_{2}, L_{3}, L_{4} \in \mathcal{L}$ such that No three of them contains a point $x \in X$.

Consider the 4 -set $F=\{a, b, c, d\} \in(X, \mathcal{L})$ satisfying $(P 0)^{*}$. Note that $|F \cap \mathcal{L} \leq 2|$ for any $L \in \mathcal{L}$, So we have four distinct lines $L_{1}=\overline{a b}, L_{2}=\overline{c d}, L_{3}=\overline{a c}, L_{4}=\overline{b d}$.

It is easy to check that these four lines satisfy $(P 0)^{*}$.
Theorem 1.5. A finite projective plane of order n exists whenever a field with n elements exists.
And we know that a field with n elements exists if and only if $n=p^{k}$ for a prime p.
Open Conjecture. A FPP of order n exists if and only if n is a power of a prime.
We know this holds for $n \leq 11$. In particular, FPP of $n=10$ does not exists. It is open for $n=12$.

Next we introduce an application of FPP in Turán numbers. Recall the following result.
Theorem 1.6. Any m-vertex C_{4}-free graph G has $e(G) \leq \frac{m}{4}(1+\sqrt{4 m-3})$.
Theorem 1.7. For infinitely many integers m, there exists a C_{4}-free graph on m vertices with at least $0.35 m^{3 / 2}$.

Proof. Take any $\operatorname{FPP}(X, \mathcal{L})$ of order n, and consider its incidence graph G. Note that G has $m=2\left(n^{2}+n+1\right)$ vertices and

$$
e(G)=\left(n^{2}+n+1\right)(n+1) \geq\left(n^{2}+n+1\right)^{\frac{3}{2}}=\left(\frac{m}{2}\right)^{\frac{3}{2}} \geq 0.35 m^{3 / 2}
$$

It is clear that G is C_{4}-free by the property of FPP.

