
Combinatorics

Instructor: Jie Ma, Scribed by Tianchi Yang

1 Lecture 3. Inclusion and exclusion

This lecture is devoted to Inclusion-exclusion formula and its applications.
Let Ω be a ground set and let A1, A2, ..., An be subsets of Ω. Write Ac

i = Ω\Ai. Throughout
this lecture, we use the following notation.

Definition 1.1. Let A∅ = Ω. For any nonempty subset I ⊆ [n], let

AI = ∩i∈IAi.

For any integer k ≥ 0, let

Sk =
∑

I∈([n]
k )

|AI |.

Now we introduce Inclusion-exclusion formula (in three equivalent forms) and give two proofs
as following.

Theorem 1.2 (Inclusion-exclusion Formula).

|A1 ∪A2 ∪ ... ∪An| =
n∑

k=1

(−1)k+1Sk

⇐⇒

∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ ... ∩Ac
n| =

n∑
k=0

(−1)kSk

⇐⇒

∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ ... ∩Ac
n| =

∑
I⊆[n]

(−1)|I||AI |.

Proof (first). For any subset X ⊆ Ω, we define its characterization function 1X : Ω → {0, 1} by
assigning

1X(x) =

{
1, x ∈ X
0, x /∈ X.

Then
∑

x∈Ω 1X(x) = |X|. Let A = A1 ∪A2 ∪ ... ∪An. Our key observation is that

(1A − 1A1)(1A − 1A2) · · · (1A − 1An)(x) ≡ 0

holds for any x ∈ Ω. Next we expand this product into a summation of 2n terms as following:∑
I⊆[n]

(−1)|I|(
∏
i∈I

1Ai) ≡ 0 ⇐⇒ 1A(x) +
∑

I⊆[n], I 6=∅

(−1)|I|1AI
(x) ≡ 0
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holds for any x ∈ Ω. Summing over all x ∈ Ω, this gives that

|A|+
∑

I⊆[n], I 6=∅

(−1)|I||AI | = 0,

which implies that

|A1 ∪A2 ∪ ... ∪An| = |A| =
∑
I⊆[n]
I 6=∅

(−1)|I|+1|AI | =
n∑

k=1

(−1)k+1Sk,

finishing the proof.

Proof (second). It suffices to prove that

1A1∪A2∪...∪An(x) =

n∑
k=1

(−1)k+1
∑

I∈([n]
k )

1AI
(x)

holds for all x ∈ Ω. Denote by LHS (resp. RHS) the left (resp. right) side of the above equation.
Assume that x is contained in exactly ` subsets, say A1, A2, · · · , A`. If ` = 0, then clearly

LHS = 0 = RHS, so we are done. So we may assume that ` ≥ 1. In this case, we have LHS = 1
and

RHS = `−
(
`

2

)
+

(
`

3

)
+ · · ·+ (−1)`+1

(
`

`

)
= 1.

Note that the above equation holds since
∑`

i=0(−1)i
(
`
i

)
= (1− 1)` = 0. This finishes the proof.

Next, we will demonstrate the power of Inclusion-exclusion formula by using it to solve several
problems.

Definition 1.3. Let ϕ(n) be the number of integers m ∈ [n] which are relatively prime1 to n.

Theorem 1.4. If we express n = pa11 p
a2
2 · · · p

at
t , where p1 · · · pt are distinct primes, then

ϕ(n) = n

t∏
i=1

(1− 1

pi
).

Proof. Let Ai = {m ∈ [n] : pi|m} for i ∈ {1, 2, · · · , t}. It implies

ϕ(n) =
∣∣{m ∈ [n] : m /∈ Ai for all i ∈ [t]}

∣∣ =
∣∣[n]\(A1 ∪A2 ∪ · · · ∪At)

∣∣.
By Inclusion-exclusion formula,

ϕ(n) =
∑
I⊆[t]

(−1)|I||AI |,

where AI = ∩i∈IAi = {m ∈ [n] : (
∏

i∈I pi)|m} and thus |AI | = n/
∏

i∈I pi. We can derive that

ϕ(n) =
∑
I⊆[t]

(−1)|I|
n∏
i∈I pi

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
),

as desired.
1Here, “m is relatively prime to n” means that the greatest common divisor of m and n is 1.
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Definition 1.5. A permutation σ : [n] → [n] is called a derangment of [n] if σ(i) 6= i for all
i ∈ [n].

Theorem 1.6. Let Dn be the family of all derangment of [n]. Then

|Dn| = n!
n∑

k=0

(−1)k

k!
.

Proof. Let
Ai = {all permutations σ : [n]→ [n] such that σ(i) = i}.

Then
Dn = Ac

1 ∩Ac
2 ∩ · · · ∩Ac

n and |AI | = (n− |I|)!.
By Inclusion-exclusion formula, we get

|Dn| =
∑
I⊆[n]

(−1)|I||AI | =
n∑

k=0

(−1)k
(
n

k

)
(n− k)! =

n∑
k=0

(−1)k
n!

k!
= n!

n∑
k=0

(−1)k

k!
,

as desired.

Remark 1.7. We have that

|Dn| →
n!

e
as n→∞.

It is because
∑+∞

k=0
(−1)k

k! = e−1 (by the Taylor series of ex =
∑+∞

k=0
xk

k! ).

Next we recall the definition of S(n, k) and aim to give a precise formula for it. We know that

(1.) S(n, k) is equal to the number of partitions of [n] into k non-ordered non-empty set.

(2.) S(n, k)k! is equal to the number of surjective functions f : [n]→ [k].

Theorem 1.8. We have

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

Proof. For i ∈ [k], let
Ai = {all functions f : [n]→ [k]\{i}}.

Then
Ac

1 ∩Ac
2 ∩ · · · ∩Ac

k = {all surjective f : [n]→ [k]}.
So

S(n, k)k! = #surjective f : [n]→ [k] =
k∑

i=0

(−1)iSi,

where

Si =
∑

I∈([k]i )

|AI | =
(
k

i

)
(k − i)n.

Finally, we get

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.
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2 Generating functions

Definition 2.1. The (ordinary) generating function for an infinity sequence {a0, a1, · · · } is a
power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view this power series.

(i). When the power series
∑

n≥0 anx
n converges (i.e. there exists a radius R > 0 of con-

vergence), we view GF as a function of x and we can apply operations of calculus on it
(including differentiation and integration). For example, we know that

an =
f (n)(0)

n!
.

Recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn for
some K > 0, then

∑
n≥0 anx

n converges in the interval (− 1
K ,

1
K ).

(ii). When we are not sure of the convergence, we view the generating function as a formal
object with additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)xn.

Multiplication. Let cn =
∑n

i=0 aibn−i. Then

a(x)b(x) =
∑
n≥0

cnx
n.

Example 2.2. We see 1
1−x =

∑∞
n=0 x

n holds for all −1 < x < 1. By the point view of (i), its
first derivative gives

1

(1− x)2
=
∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn.

Problem 2.3. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

Solution. Consider the generating function,

f(x) =

∞∑
n=0

anx
n = 1 +

∞∑
n=1

anx
n = 1 + 2x

∞∑
n=1

an−1x
n−1 = 1 + 2xf(x).

So f(x) = 1
1−2x , which implies that f(x) =

∑+∞
n=0 2nxn and an = 2n.

From this problem, we see one of the basic ideas for using generating function: in order to find
the general expression of an, we work on its generating function f(x); once we find the formula
of f(x), then we can expand f(x) into a power series and get an by choosing the coefficient of
the right term.
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Fact 2.4. For j ∈ [n], let fj(x) :=
∑

i∈Ij x
i, where Ij ⊂ Z. Let bk be the number of solutions to

i1 + i2 + ...+ in = k for ij ∈ Ij. Then

n∏
j=1

fj(x) =
∞∑
k=0

bkx
k.

Fact 2.5. If f(x) =
∏k

i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+···+ik=n

k∏
j=1

(
[xij ]fj

)
,

where [xn]f is the coefficient of xn in f .

Problem 2.6. Let An be the set of strings of length n with entries from the set {a, b, c} and with
no “aa” occuring (in the consecutive positions). Find |An| for n ≥ 1.

Solution. Let an = |An|. We first observe that a1 = 3, a2 = 8. For n ≥ 3, we will find an by
recursion as following. If the first string is ‘a’, the second string has two choices, ‘b’ or ‘c’. Then
the last n− 2 strings have an−2 choices. If the first string is ‘b’ or ‘c’, the last n− 1 strings have
an−1 choices. They are all different. Totally, for n ≥ 3, we have

an = 2an−1 + 2an−2.

Set a0 = 1, then an = 2an−1 + 2an−2 holds for n ≥ 2. The generating function of {an} is

f(x) =
∑
n≥0

anx
n = a0 + a1x+

∑
n≥2

(2an−1 + 2an−2)xn = 1 + 3x+ 2x(f(x)− 1) + 2x2f(x),

which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−
√

3

2
√

3

1√
3 + 1 + 2x

+
1 +
√

3

2
√

3

1√
3− 1− 2x

,

which implies that

an =
1−
√

3

2
√

3

1√
3 + 1

(
−2√
3 + 1

)n

+
1 +
√

3

2
√

3

1√
3− 1

(
2√

3− 1

)n

.

Note that an must be an integer but its expression is of a combination of irrational terms! Observe

that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(
−2√
3+1

)n
→ 0 as n → ∞. Thus, when n is sufficiently large, this integer an

is about the value of the second term 1+
√

3
2
√

3
1√
3−1

(
2√
3−1

)n
. Equivalently an will be the nearest

integer to that.

Definition 2.7. For any real r and an integer k ≥ 0, let(
r

k

)
=
r(r − 1)...(r − k + 1)

k!
.
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Theorem 2.8 (Newton’s Binomial Theorem). For any real number r and x ∈ (−1, 1),

(1 + x)r =
∞∑
k=0

(
r

k

)
xk.

Proof. By Taylor series, it is obvious.

Corollary 2.9. Let r = −n for some integer n ≥ 0. Then(
−n
k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k

(
n+ k − 1

k

)
.

Therefore

(1 + x)−n =
∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk.

Problem 2.10. Let an be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills
and 5-Yuan bills. What is the generating function of this sequence {an}?

Solution. Observe that an is the number of integer solutions (i1, i2, i3) to i1 + i2 + i3 = n, where
i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}. Let fj(x) :=

∑
m∈Ij x

m

for j = 1, 2, 3. By Fact 2.4, we have

+∞∑
n=0

anx
n = f1(x)f2(x)f3(x) =

1

1− x
· 1

1− x2
· 1

1− x5
.
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