Combinatorics

Instructor: Jie Ma, Scribed by Tianchi Yang

1 Lecture 3. Inclusion and exclusion

This lecture is devoted to Inclusion-exclusion formula and its applications.
Let €2 be a ground set and let A;, As, ..., A, be subsets of 2. Write A = Q\ A4;. Throughout
this lecture, we use the following notation.

Definition 1.1. Let Ay = 2. For any nonempty subset I C [n], let
A = NierAi.

For any integer k > 0, let

Se= > |Af].
(%)
Now we introduce Inclusion-exclusion formula (in three equivalent forms) and give two proofs
as following.

Theorem 1.2 (Inclusion-exclusion Formula).

n

AU A2 U UA,| =D (-1)FHs,
k=1

= |\ [JAi| =14 nA5n .. nAS =) (-1,
=1 k=0

= |\ JAi|=145nA45n..nAs =Y (-nll4]
i=1 IC[n]

Proof (first). For any subset X C €, we define its characterization function 1x : Q@ — {0,1} by
assigning
1, ze X
Lx(z) =
0, z¢X.
Then > o lx(z) = |X|. Let A= A3 UAyU...UA,. Our key observation is that
(Ta = Ta)(Ta—1a,)--- (Ta—1a,)(x) =0

holds for any x € €. Next we expand this product into a summation of 2" terms as following:

SN J[1a) =0 = 1a@)+ D> ()14 (x) =0

ISl i€l IC[n], 1£0



holds for any x € 2. Summing over all x € §2, this gives that
A+ Y (=)A= o,
IC[n], 1#0

which implies that
|A1 UAdsU...U An| = |A| = Z (_1)‘I|+1‘AI| — Z(_l)k+15ka

IC[n] k=1
I#£0

finishing the proof. 1
Proof (second). 1t suffices to prove that

n

14,0450..04, () = Z(—l)kH Z La,(x)

k=1 re(tmy
holds for all z € Q. Denote by LHS (resp. RHS) the left (resp. right) side of the above equation.
Assume that z is contained in exactly ¢ subsets, say Ai, Ao,---, Ay, If £ = 0, then clearly

LHS =0= RHS, so we are done. So we may assume that £ > 1. In this case, we have LHS =1

and
RHS = 1 — <§> v <§) PSS! <§) .

Note that the above equation holds since Zf:o(—l)i(e) = (1—1)* = 0. This finishes the proof. N

2

Next, we will demonstrate the power of Inclusion-exclusion formula by using it to solve several
problems.

Definition 1.3. Let p(n) be the number of integers m € [n] which are relatively prime® to n.

a1, a2

Theorem 1.4. If we express n = p{*p3* - --py*, where py ---py are distinct primes, then

w=n]la- 1)
pn)=mn 1-——).
P
Proof. Let A; ={m € [n] : p;lm} fori e {1,2,--- ,t}. It implies
o(n) =[{m e [n]:m¢ A foralli € [t]} =|[n]\(A41 UAU---UA)|

By Inclusion-exclusion formula,

p(n) =Y (=114,

IC[t]

where Ay = NicrA; = {m € [n] : ([[;c;pi)Im} and thus |A7| = n/[[;c; pi- We can derive that

o) =S (M - Ha-Ly.a-dy,

I Hig[ Di 4! p2 Dt

as desired. |

'Here, “m is relatively prime to n” means that the greatest common divisor of m and n is 1.



Definition 1.5. A permutation o : [n| — [n] is called a derangment of [n] if o(i) # i for all
i€ [n].

Theorem 1.6. Let D,, be the family of all derangment of [n]. Then

e G Vi
k=0

Proof. Let
= {all permutations o : [n] — [n] such that o(i) = i}.
Then
D, =AiNnASN---NA; and |Af| = (n — |I]).

By Inclusion-exclusion formula, we get

n n n mn. - —1)k
1Dy| = Z<—1>"|AI=Z<—1>’“<k>(”"f)!: D =Y S

IC[n] k=0

as desired. 1

Remark 1.7. We have that
n!
|Dp| — — as n — oc.
e

It is because Z+°° = 1) e~! (by the Taylor series of e = :08 “ﬁ};,

Next we recall the definition of S(n, k) and aim to give a precise formula for it. We know that

(1.) S(n,k) is equal to the number of partitions of [n] into k non-ordered non-empty set.

(2.) S(n,k)k! is equal to the number of surjective functions f : [n] — [k].
Theorem 1.8. We have i
S(n,k) = > (1) <Z>(k — )",
T i=0
Proof. For i € [k], let
A; = {all functions f : [n] — [k]\{i}}.

Then
ATNASN--- N Aj, = {all surjective f : [n] — [k]}.
So
k .
S(n, k)k! = #surjective f : [n] — [k] = Z(—l)’Si,
=0
where

IG(Z)rAI\ = (Ve

Finally, we get



2 Generating functions

Definition 2.1. The (ordinary) generating function for an infinity sequence {ag,a1,---} is a
power series

flz) = Z anz”.

We have two ways to view this power series.

(i).

(ii).

When the power series ) -, anz" converges (i.e. there exists a radius R > 0 of con-
vergence), we view GF as a function of x and we can apply operations of calculus on it
(including differentiation and integration). For example, we know that

Recall the following sufficient condition on the radius of convergence that if |a,| < K" for

some K > 0, then >, -, a,z™ converges in the interval (— 4, ).

When we are not sure of the convergence, we view the generating function as a formal
object with additions and multiplications. Let a(x) = ), ~jan2™ and b(x) = ), < bpa™.

Addition.
a(z) +b(z) = Z(an + by)z".

n>0

Multiplication. Let ¢, = ;" a;ibp—;. Then

a(z)b(z) = Z e,

n>0

Example 2.2. We see 1% = > 02 o x" holds for all =1 < x < 1. By the point view of (i), its
first derivative gives

T

1 ) 0
T I
n=1 n=0

Problem 2.3. Let ag =1 and ay, = 2an,—1 for n > 1. Find ay,.

Solution. Consider the generating function,

o0 (o) o
f(z) = Z apz” =1+ Z anz” =1+ 22 Z 12"t =1+ 2z f(x).
n=0 n=1 n=1

So f(z) = 1, which implies that f(z) = > 2"2" and a, = 2". ]

From this problem, we see one of the basic ideas for using generating function: in order to find
the general expression of a,, we work on its generating function f(z); once we find the formula
of f(x), then we can expand f(x) into a power series and get a,, by choosing the coefficient of
the right term.



Fact 2.4. For j € [n], let f;(z) := 3 i), z', where I; C Z. Let by, be the number of solutions to
i1 +i2 + ... + i, =k fori; € I;. Then

H fj (LI?) = Z bkxk.
j=1 k=0

Fact 2.5. If f(x) = Hle fi(x) for polynomials fi, ..., fx, then

k
= > T (=V15).

i1+ig++ig=n j=1
where [x™]f is the coefficient of ™ in f.

Problem 2.6. Let A, be the set of strings of length n with entries from the set {a,b,c} and with
no “aa” occuring (in the consecutive positions). Find |Ay,| forn > 1.

Solution. Let a, = |A,|. We first observe that a; = 3,a2 = 8. For n > 3, we will find a, by
recursion as following. If the first string is ‘a’, the second string has two choices, ‘b’ or ‘c’. Then
the last n — 2 strings have a,,_s choices. If the first string is ‘b’ or ‘c’, the last n — 1 strings have
an—1 choices. They are all different. Totally, for n > 3, we have

Ap = 20p-1 + 205_9.
Set ap = 1, then a,, = 2a,,—1 + 2a,_2 holds for n > 2. The generating function of {a,} is
f(z) = Zan$” =ag+ a1z + Z(Qan,l + 2ay,_2)x™ = 1+ 3z + 2z(f(x) — 1) + 222 f (z),
n>0 n>2
which implies that
14+
1@ =5 =

By Partial Fraction Decomposition, we calculate that

f(x)_l—\/ﬁ 1 +1+\/§ 1
CO2v3 V341422 2V3 V3-1-22

which implies that

" 12_x/\§/§\/§1+1 <\/?7_—2H>n+ 1;\/\;3\/31—1 <\/§2—1)n'

Note that a,, must be an integer but its expression is of a combination of irrational terms! Observe
n
) =) . . ..
that ‘ﬁ‘ <1, s0 (\/§+1> — 0 as n — oo. Thus, when n is sufficiently large, this integer a,
1+v3 1 ( 2
2v3 v3-1 \V3-1
integer to that. 1

n
is about the value of the second term ) . Equivalently a,, will be the nearest

Definition 2.7. For any real r and an integer k > 0, let

<7~) (=) (r—k+ 1)

k) k!



Theorem 2.8 (Newton’s Binomial Theorem). For any real number r and z € (—1,1),
= (r
(1+2) = kZ:O <k>xk
Proof. By Taylor series, it is obvious. |

Corollary 2.9. Let r = —n for some integer n > 0. Then

<—n> _ (—n)(—n — 1);€.!.(—n—l<:+1) _ (_1)k<n+:— 1>‘

Therefore

Problem 2.10. Let a, be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills
and 5-Yuan bills. What is the generating function of this sequence {a,}?

Solution. Observe that a, is the number of integer solutions (i1, 1i9,43) to i1 + iz 4 i3 = n, where
iv €I :={0,1,2,...}, ip € Iy :=={0,2,4, ...} and i3 € I3 := {0,5,10,...}. Let f;(z) := ngj ™
for j = 1,2,3. By Fact 2.4, we have

1 1 1
l—2z 1—22 1—25

“+oo
S ™ = fiw) fale) fal) =
n=0



