Combinatorics

Instructor: Jie Ma, Scribed by Tianchi Yang

1 Lecture 3. Inclusion and exclusion

This lecture is devoted to Inclusion-exclusion formula and its applications.
Let Ω be a ground set and let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of Ω. Write $A_{i}^{c}=\Omega \backslash A_{i}$. Throughout this lecture, we use the following notation.

Definition 1.1. Let $A_{\emptyset}=\Omega$. For any nonempty subset $I \subseteq[n]$, let

$$
A_{I}=\cap_{i \in I} A_{i} .
$$

For any integer $k \geq 0$, let

Now we introduce Inclusion-exclusion formula (in three equivalent forms) and give two proofs as following.

Theorem 1.2 (Inclusion-exclusion Formula).

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k+1} S_{k} \\
\Longleftrightarrow & \left|\Omega \backslash \bigcup_{i=1}^{n} A_{i}\right|=\left|A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n}^{c}\right|=\sum_{k=0}^{n}(-1)^{k} S_{k} \\
\Longleftrightarrow & \left|\Omega \backslash \bigcup_{i=1}^{n} A_{i}\right|=\left|A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n}^{c}\right|=\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right| .
\end{aligned}
$$

Proof (first). For any subset $X \subseteq \Omega$, we define its characterization function $\mathbb{1}_{X}: \Omega \rightarrow\{0,1\}$ by assigning

$$
\mathbb{1}_{X}(x)= \begin{cases}1, & x \in X \\ 0, & x \notin X .\end{cases}
$$

Then $\sum_{x \in \Omega} \mathbb{1}_{X}(x)=|X|$. Let $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. Our key observation is that

$$
\left(\mathbb{1}_{A}-\mathbb{1}_{A_{1}}\right)\left(\mathbb{1}_{A}-\mathbb{1}_{A_{2}}\right) \cdots\left(\mathbb{1}_{A}-\mathbb{1}_{A_{n}}\right)(x) \equiv 0
$$

holds for any $x \in \Omega$. Next we expand this product into a summation of 2^{n} terms as following:

$$
\sum_{I \subseteq[n]}(-1)^{|I|}\left(\prod_{i \in I} \mathbb{1}_{A_{i}}\right) \equiv 0 \Longleftrightarrow \mathbb{1}_{A}(x)+\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|} \mathbb{1}_{A_{I}}(x) \equiv 0
$$

holds for any $x \in \Omega$. Summing over all $x \in \Omega$, this gives that

$$
|A|+\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|}\left|A_{I}\right|=0
$$

which implies that

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=|A|=\sum_{\substack{I \subseteq[n] \\ I \neq \emptyset}}(-1)^{|I|+1}\left|A_{I}\right|=\sum_{k=1}^{n}(-1)^{k+1} S_{k},
$$

finishing the proof.
Proof (second). It suffices to prove that

$$
\mathbb{1}_{A_{1} \cup A_{2} \cup \ldots \cup A_{n}}(x)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{I \in\binom{[n]}{k}} \mathbb{1}_{A_{I}}(x)
$$

holds for all $x \in \Omega$. Denote by LHS (resp. RHS) the left (resp. right) side of the above equation.
Assume that x is contained in exactly ℓ subsets, say $A_{1}, A_{2}, \cdots, A_{\ell}$. If $\ell=0$, then clearly $L H S=0=R H S$, so we are done. So we may assume that $\ell \geq 1$. In this case, we have $L H S=1$ and

$$
R H S=\ell-\binom{\ell}{2}+\binom{\ell}{3}+\cdots+(-1)^{\ell+1}\binom{\ell}{\ell}=1 .
$$

Note that the above equation holds since $\sum_{i=0}^{\ell}(-1)^{i}\binom{\ell}{i}=(1-1)^{\ell}=0$. This finishes the proof.
Next, we will demonstrate the power of Inclusion-exclusion formula by using it to solve several problems.
Definition 1.3. Let $\varphi(n)$ be the number of integers $m \in[n]$ which are relatively prime ${ }^{1}$ to n.
Theorem 1.4. If we express $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}}$, where $p_{1} \cdots p_{t}$ are distinct primes, then

$$
\varphi(n)=n \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right) .
$$

Proof. Let $A_{i}=\left\{m \in[n]: p_{i} \mid m\right\}$ for $i \in\{1,2, \cdots, t\}$. It implies

$$
\varphi(n)=\mid\left\{m \in[n]: m \notin A_{i} \text { for all } i \in[t]\right\}\left|=\left|[n] \backslash\left(A_{1} \cup A_{2} \cup \cdots \cup A_{t}\right)\right| .\right.
$$

By Inclusion-exclusion formula,

$$
\varphi(n)=\sum_{I \subseteq[t]}(-1)^{|I|}\left|A_{I}\right|,
$$

where $A_{I}=\cap_{i \in I} A_{i}=\left\{m \in[n]:\left(\prod_{i \in I} p_{i}\right) \mid m\right\}$ and thus $\left|A_{I}\right|=n / \prod_{i \in I} p_{i}$. We can derive that

$$
\varphi(n)=\sum_{I \subseteq[t]}(-1)^{|I|} \frac{n}{\prod_{i \in I} p_{i}}=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{t}}\right),
$$

as desired.

[^0]Definition 1.5. A permutation $\sigma:[n] \rightarrow[n]$ is called a derangment of $[n]$ if $\sigma(i) \neq i$ for all $i \in[n]$.
Theorem 1.6. Let D_{n} be the family of all derangment of $[n]$. Then

$$
\left|D_{n}\right|=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} .
$$

Proof. Let

$$
A_{i}=\{\text { all permutations } \sigma:[n] \rightarrow[n] \text { such that } \sigma(i)=i\} .
$$

Then

$$
D_{n}=A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{n}^{c} \text { and }\left|A_{I}\right|=(n-|I|)!.
$$

By Inclusion-exclusion formula, we get

$$
\left|D_{n}\right|=\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!},
$$

as desired.
Remark 1.7. We have that

$$
\left|D_{n}\right| \rightarrow \frac{n!}{e} \text { as } n \rightarrow \infty
$$

It is because $\sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!}=e^{-1}$ (by the Taylor series of $e^{x}=\sum_{k=0}^{+\infty} \frac{x^{k}}{k!}$).
Next we recall the definition of $S(n, k)$ and aim to give a precise formula for it. We know that
(1.) $S(n, k)$ is equal to the number of partitions of $[n]$ into k non-ordered non-empty set.
(2.) $S(n, k) k$! is equal to the number of surjective functions $f:[n] \rightarrow[k]$.

Theorem 1.8. We have

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n} .
$$

Proof. For $i \in[k]$, let

$$
A_{i}=\{\text { all functions } f:[n] \rightarrow[k] \backslash\{i\}\} .
$$

Then

$$
A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{k}^{c}=\{\text { all surjective } f:[n] \rightarrow[k]\} .
$$

So

$$
S(n, k) k!=\text { \#surjective } f:[n] \rightarrow[k]=\sum_{i=0}^{k}(-1)^{i} S_{i},
$$

where

$$
S_{i}=\sum_{I \in\binom{[k]}{i}}\left|A_{I}\right|=\binom{k}{i}(k-i)^{n} .
$$

Finally, we get

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n} .
$$

2 Generating functions

Definition 2.1. The (ordinary) generating function for an infinity sequence $\left\{a_{0}, a_{1}, \cdots\right\}$ is a power series

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

We have two ways to view this power series.
(i). When the power series $\sum_{n \geq 0} a_{n} x^{n}$ converges (i.e. there exists a radius $R>0$ of convergence), we view GF as a function of x and we can apply operations of calculus on it (including differentiation and integration). For example, we know that

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

Recall the following sufficient condition on the radius of convergence that if $\left|a_{n}\right| \leq K^{n}$ for some $K>0$, then $\sum_{n \geq 0} a_{n} x^{n}$ converges in the interval $\left(-\frac{1}{K}, \frac{1}{K}\right)$.
(ii). When we are not sure of the convergence, we view the generating function as a formal object with additions and multiplications. Let $a(x)=\sum_{n \geq 0} a_{n} x^{n}$ and $b(x)=\sum_{n \geq 0} b_{n} x^{n}$.
Addition.

$$
a(x)+b(x)=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) x^{n} .
$$

Multiplication. Let $c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}$. Then

$$
a(x) b(x)=\sum_{n \geq 0} c_{n} x^{n} .
$$

Example 2.2. We see $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ holds for all $-1<x<1$. By the point view of (i), its first derivative gives

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n} .
$$

Problem 2.3. Let $a_{0}=1$ and $a_{n}=2 a_{n-1}$ for $n \geq 1$. Find a_{n}.
Solution. Consider the generating function,

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=1+\sum_{n=1}^{\infty} a_{n} x^{n}=1+2 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}=1+2 x f(x)
$$

So $f(x)=\frac{1}{1-2 x}$, which implies that $f(x)=\sum_{n=0}^{+\infty} 2^{n} x^{n}$ and $a_{n}=2^{n}$.

From this problem, we see one of the basic ideas for using generating function: in order to find the general expression of a_{n}, we work on its generating function $f(x)$; once we find the formula of $f(x)$, then we can expand $f(x)$ into a power series and get a_{n} by choosing the coefficient of the right term.

Fact 2.4. For $j \in[n]$, let $f_{j}(x):=\sum_{i \in I_{j}} x^{i}$, where $I_{j} \subset Z$. Let b_{k} be the number of solutions to $i_{1}+i_{2}+\ldots+i_{n}=k$ for $i_{j} \in I_{j}$. Then

$$
\prod_{j=1}^{n} f_{j}(x)=\sum_{k=0}^{\infty} b_{k} x^{k}
$$

Fact 2.5. If $f(x)=\prod_{i=1}^{k} f_{i}(x)$ for polynomials f_{1}, \ldots, f_{k}, then

$$
\left[x^{n}\right] f=\sum_{i_{1}+i_{2}+\cdots+i_{k}=n} \prod_{j=1}^{k}\left(\left[x^{i_{j}}\right] f_{j}\right),
$$

where $\left[x^{n}\right] f$ is the coefficient of x^{n} in f.
Problem 2.6. Let A_{n} be the set of strings of length n with entries from the set $\{a, b, c\}$ and with no "aa" occuring (in the consecutive positions). Find $\left|A_{n}\right|$ for $n \geq 1$.

Solution. Let $a_{n}=\left|A_{n}\right|$. We first observe that $a_{1}=3, a_{2}=8$. For $n \geq 3$, we will find a_{n} by recursion as following. If the first string is ' a ', the second string has two choices, ' b ' or ' c '. Then the last $n-2$ strings have a_{n-2} choices. If the first string is ' b ' or ' c ', the last $n-1$ strings have a_{n-1} choices. They are all different. Totally, for $n \geq 3$, we have

$$
a_{n}=2 a_{n-1}+2 a_{n-2} .
$$

Set $a_{0}=1$, then $a_{n}=2 a_{n-1}+2 a_{n-2}$ holds for $n \geq 2$. The generating function of $\left\{a_{n}\right\}$ is

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}=a_{0}+a_{1} x+\sum_{n \geq 2}\left(2 a_{n-1}+2 a_{n-2}\right) x^{n}=1+3 x+2 x(f(x)-1)+2 x^{2} f(x),
$$

which implies that

$$
f(x)=\frac{1+x}{1-2 x-2 x^{2}} .
$$

By Partial Fraction Decomposition, we calculate that

$$
f(x)=\frac{1-\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}+1+2 x}+\frac{1+\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}-1-2 x}
$$

which implies that

$$
a_{n}=\frac{1-\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}+1}\left(\frac{-2}{\sqrt{3}+1}\right)^{n}+\frac{1+\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}-1}\left(\frac{2}{\sqrt{3}-1}\right)^{n} .
$$

Note that a_{n} must be an integer but its expression is of a combination of irrational terms! Observe that $\left|\frac{-2}{\sqrt{3}+1}\right|<1$, so $\left(\frac{-2}{\sqrt{3}+1}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, when n is sufficiently large, this integer a_{n} is about the value of the second term $\frac{1+\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}-1}\left(\frac{2}{\sqrt{3}-1}\right)^{n}$. Equivalently a_{n} will be the nearest integer to that.

Definition 2.7. For any real r and an integer $k \geq 0$, let

$$
\binom{r}{k}=\frac{r(r-1) \ldots(r-k+1)}{k!} .
$$

Theorem 2.8 (Newton's Binomial Theorem). For any real number r and $x \in(-1,1)$,

$$
(1+x)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} x^{k}
$$

Proof. By Taylor series, it is obvious.
Corollary 2.9. Let $r=-n$ for some integer $n \geq 0$. Then

$$
\binom{-n}{k}=\frac{(-n)(-n-1) \cdots(-n-k+1)}{k!}=(-1)^{k}\binom{n+k-1}{k} .
$$

Therefore

$$
(1+x)^{-n}=\sum_{k=0}^{\infty}(-1)^{k}\binom{n+k-1}{k} x^{k} .
$$

Problem 2.10. Let a_{n} be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills and 5 -Yuan bills. What is the generating function of this sequence $\left\{a_{n}\right\}$?

Solution. Observe that a_{n} is the number of integer solutions $\left(i_{1}, i_{2}, i_{3}\right)$ to $i_{1}+i_{2}+i_{3}=n$, where $i_{1} \in I_{1}:=\{0,1,2, \ldots\}, i_{2} \in I_{2}:=\{0,2,4, \ldots\}$ and $i_{3} \in I_{3}:=\{0,5,10, \ldots\}$. Let $f_{j}(x):=\sum_{m \in I_{j}} x^{m}$ for $j=1,2,3$. By Fact 2.4, we have

$$
\sum_{n=0}^{+\infty} a_{n} x^{n}=f_{1}(x) f_{2}(x) f_{3}(x)=\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{5}}
$$

[^0]: ${ }^{1}$ Here, " m is relatively prime to n " means that the greatest common divisor of m and n is 1 .

