Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Integer partitions

How many ways are there to write a natural number n as a sum of several natural numbers? The total number of ordered partitions of n is $\sum_{1 \leq k \leq n}\binom{n-1}{k-1}=2^{n-1}$. Here "ordered partition" means that we will view $1+1+2,1+2+1$ as two different partitions of 4 .

We then consider the unordered partitions. For instance, we will view $1+2+3$ and $3+2+1$ of 6 as the same one.

Let p_{n} be the number of unordered partitions of n. So $p_{1}=1, p_{2}=2, p_{3}=3$ and $p_{4}=5$. We have the following theorem.

Theorem 1.1. The generating function $P(x)$ of $\left\{p_{n}\right\}_{n \geq 0}$ is an infinite product of polynomials

$$
P(x)=\prod_{k=1}^{+\infty} \frac{1}{1-x^{k}}
$$

Proof. Let n_{j} be the number of the j 's in such a partition of n. Then it holds that

$$
\sum_{j \geq 1} j \cdot n_{j}=n .
$$

If we use i_{j} to express the contribution of the addends equal to j in a partition of n (i.e., $i_{j}=j \cdot n_{j}$), then

$$
\sum_{j \geq 1} i_{j}=n, \quad \text { where } \quad i_{j} \in\{0, j, 2 j, 3 j, \ldots\} .
$$

Note that in the above summation, j can run from 1 to infinity, or run from 1 to n. So by the fact we discussed earlier, p_{n} is the coefficient of x^{n} in the product

$$
P(x)=\left(1+x+x^{2}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right) \ldots\left(1+x^{n}+x^{2 n}+\ldots\right) \ldots=\prod_{k=1}^{+\infty} \frac{1}{1-x^{k}}
$$

This finishes the proof of this theorem.

2 The Catalan number

First let us recall the definition of $\binom{r}{k}$ for real numbers r and positive integers k, and the Newton's binomial Theorem. We obtained that

$$
\binom{\frac{1}{2}}{k}=\frac{(-1)^{k-1} 2}{4^{k}} \cdot \frac{(2 k-2)!}{k!(k-1)!} .
$$

Let n-gon be a polygon with n corners, labelled as corner 1 , corner $2, \ldots$, corner n.

Definition 2.1. A triangulation of the n-gon is a way to add lines between corners to make triangles such that these lines do not cross inside of the polygon.

Then we have the following theorem.
Theorem 2.2. The total number of triangulations of the $(k+2)$-gon is $\frac{1}{k+1}\binom{2 k}{k}$, which is also called the $k^{\text {th }}$ Catalan number.
Proof. Let b_{n-1} be the number of triangulations of the n-gon, for $n \geq 3$. It is not hard to see that $b_{2}=1, b_{3}=2, b_{4}=5$. We want to find a general formula of b_{n}.

Consider the triangle T in a triangulation of n-gon which contains corners 1 and 2 . The triangle T should contain a third corner, say i, where $3 \leq i \leq n$. We have the following two cases.

Case 1. If $i=3$ or n, the triangle T divides the n-gon into the triangle T itself plus a $(n-1)$-gon, which results in b_{n-2} triangulations of n-gon.

Case 2. For $4 \leq i \leq n-1$, the triangle T divides the n-gon into three regions: a $(n-i+2)$-gon, triangle T and a $(i-1)$-gon, therefore it results in $b_{i-2} \times b_{n-i+1}$ many triangulations of n-gon.

Therefore, combining Cases 1 and 2, we get that

$$
b_{n-1}=b_{n-2}+\sum_{i=4}^{n-1} b_{i-2} b_{n-i+1}+b_{n-2}=b_{n-2}+\sum_{j=2}^{n-3} b_{j} b_{n-j-1}+b_{n-2}
$$

By letting $b_{0}=0$ and $b_{1}=1$, we get

$$
b_{n-1}=\sum_{j=0}^{n-1} b_{j} b_{n-1-j} \quad \text { for } \quad n \geq 3 \quad \text { or } \quad b_{k}=\sum_{j=0}^{k} b_{j} b_{k-j} \quad \text { for } \quad k \geq 2
$$

Let $f(x)=\sum_{k \geq 0} b_{k} x^{k}$. Note that $f^{2}(x)=\sum_{k \geq 0}\left(\sum_{j=0}^{k} b_{j} b_{k-j}\right) x^{k}$. Therefore

$$
f(x)=x+\sum_{k \geq 2} b_{k} x^{k}=x+\sum_{k \geq 2}\left(\sum_{j=0}^{k} b_{j} b_{k-j}\right) x^{k}=x+\sum_{k \geq 0}\left(\sum_{j=0}^{k} b_{j} b_{k-j}\right) x^{k}=x+f^{2}(x)
$$

Solving $f^{2}(x)-f(x)+x=0$, we get that $f(x)=\frac{1+\sqrt{1-4 x}}{2}$ or $\frac{1-\sqrt{1-4 x}}{2}$. But notice that $f(0)=0$, so it has to be the case that

$$
f(x)=\frac{1-\sqrt{1-4 x}}{2}
$$

Next, we apply the Newton's binomial theorem to get that

$$
f(x)=\frac{1}{2}-\frac{1}{2} \sum_{k \geq 0}\binom{\frac{1}{2}}{k}(-4 x)^{k}=\sum_{k \geq 1} \frac{(-1)^{k+1} 4^{k}}{2}\binom{\frac{1}{2}}{k} x^{k}
$$

After plugging the obtained expression of $\binom{\frac{1}{2}}{k}=\frac{(-1)^{k-1} 2}{4^{k}} \cdot \frac{(2 k-2)!}{k!(k-1)!}$, we get that

$$
f(x)=\sum_{k \geq 1} \frac{(2 k-2)!}{k!(k-1)!} x^{k}=\sum_{k \geq 1} \frac{1}{k}\binom{2 k-2}{k-1} x^{k}
$$

Note that $f(x)$ is the generating function of $\left\{b_{k}\right\}$, therefore

$$
b_{k}=\frac{1}{k}\binom{2 k-2}{k-1}
$$

This finishes the proof.

3 Random walks

Consider a real axis with integer points $(0, \pm 1, \pm 2, \pm 3, \cdots)$ marked. A frog leaps among the integer points according to the following rules:
(1). At beginning, it sits at 1 .
(2). In each coming step, the frog leaps either by distance 2 to the right (from i to $i+2$), or by distance 1 to the left (from i to $i-1$), each of which is randomly chosen with probability $\frac{1}{2}$ independently of each other.

Problem 3.1. What is the probability that the frog can reach " 0 "?
Solution. In each step, we use "+" or "-" to indicate the choice of the frog that is either to leap right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where each entry is in $\{+,-\}$.

Let A be the event that the frog reaches 0 . Let A_{i} be the event that the frog reaches 0 at the $i^{\text {th }}$ step for the first time. So $A=\cup_{i=1}^{+\infty} A_{i}$ is a disjoint union. So $P(A)=\sum_{i=1}^{+\infty} P\left(A_{i}\right)$.

To compute $P\left(A_{i}\right)$, we can define a_{i} to be the number of trajectories (or vectors) of the first i steps such that the frog starts at 1 and reaches 0 at the $i^{\text {th }}$ step for the first time. So

$$
P\left(A_{i}\right)=\frac{a_{i}}{2^{i}} .
$$

Then,

$$
P(A)=\sum_{i=1}^{+\infty} \frac{a_{i}}{2^{i}}
$$

Let $f(x)=\sum_{i=0}^{+\infty} a_{i} x^{i}$ be the generating function of $\left\{a_{i}\right\}_{i \geq 0}$, where $a_{0}:=0$. Thus,

$$
P(A)=\sum_{i=1}^{+\infty} \frac{a_{i}}{2^{i}}=f\left(\frac{1}{2}\right)
$$

We then turn to find the expression of $f(x)$.
Let b_{i} be the number of trajectories of the first i steps such that the frog starts at " 2 " and reaches " 0 " at the $i^{\text {th }}$ step for the first time.

Let c_{i} be the number of trajectories of the first i steps such that the frog starts at " 3 " and reaches " 0 " at the $i^{\text {th }}$ step for the first time.

First we express b_{i} in terms of $\left\{a_{j}\right\}_{j \geq 1}$. Since the frog only can leap to left by distance 1 , if the frog can successfully jump from " i " to " 0 " in i steps, then this frog must reach " 1 " first. Let j be the number of steps by which the frog reaches " 1 " for the first time. So there are a_{j} trajectories from " 2 " to " 1 " at the $j^{\text {th }}$ step for the first time.in the remaining $i-j$ steps the frog must jump from " 1 " to " 0 " and reach " 0 " at the coming $(i-j)^{\text {th }}$ step for the first time, so there are a_{i-j} trajectories that the frog can finish in exactly $i-j$ steps. In total,

$$
b_{i}=\sum_{j=1}^{i-1} a_{j} a_{i-j}
$$

As $a_{j}=0$,

$$
\begin{aligned}
b_{i} & =\sum_{j=0}^{i} a_{j} a_{i-j} . \\
\Rightarrow \sum_{i \geq 0} b_{i} x^{i} & =\left(\sum_{i \geq 0} a_{i} x^{i}\right)^{2}=f^{2}(x) .
\end{aligned}
$$

Similarly, if we count the number c_{i} of trajectories from 3 to 0 , we can obtain that

$$
\begin{gathered}
c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j} . \\
\Rightarrow \sum_{i \geq 0} c_{i} x^{i}=\left(\sum_{i \geq 0} b_{i} x^{i}\right)\left(\sum_{i \geq 0} a_{i} x^{i}\right)=f^{3}(x) .
\end{gathered}
$$

Let us consider a_{i} from another point of view. After the first step, either the frog reaches " 0 " directly (if it leaps to left, so $a_{1}=1$), or it leaps to " 3 ". In the latter case, the frog needs to jump from " 3 " to " 0 " using $i-1$ steps. Thus for $i \geq 2, a_{i}=c_{i-1}$.

Combining the above facts, we have

$$
f(x)=\sum_{i=0}^{+\infty} a_{i} x^{i}=x+\sum_{i \geq 2} a_{i} x^{i}=x+\sum_{i \geq 2} c_{i-1} x^{i}=x+x\left(\sum_{j=0}^{+\infty} c_{j} x^{j}\right)=x+x \cdot f^{3}(x) .
$$

Let $a:=P(A)=f(1 / 2)$. Then $a=\frac{1}{2}+\frac{a^{3}}{2}$, i.e., $(a-1)\left(a^{2}+a-1\right)=0$, implying that

$$
a=1, \frac{\sqrt{5}-1}{2}, \text { or } \frac{-\sqrt{5}-1}{1} .
$$

Since $P(A) \in[0,1]$, we see $P(A)=1$ or $\frac{\sqrt{5}-1}{2}$.
Note that $f(x)=x+x f^{3}(x)$. Consider the inverse function of $f(x)$, that is, $g(x):=\frac{x}{1+x^{3}}$. Consider the figure of $g(x)$. We find that $g(x)$ is increasing around $\frac{\sqrt{5}-1}{2}$ but decreasing around 1. Since $f(x)=\sum a_{i} x^{i}$ is increasing, $g(x)$ also increases. Thus it doesn't make sense for $g(x)$ being around $x=1$. This explains that $P(A)=\frac{\sqrt{5}-1}{2}$.

4 Exponential Generating Functions

Let $\mathbb{N}, \mathbb{N}_{e}$ and \mathbb{N}_{o} be the sets of non-negative integers, non-negative even integers and non-negative odd integers, respectively.

Given n sets I_{j} of non-negative integers for $j \in[n]$, let $f_{j}(x)=\sum_{i \in I_{j}} x^{i}$. Let a_{k} be the number of integers solutions to $i_{1}+i_{2}+\ldots+i_{n}=k$, where $i_{j} \in I_{j}$. Then $\prod_{j=1}^{n} f_{j}(x)$ is the ordinary generating function of $\left\{a_{k}\right\}_{k \geq 0}$.

Problem 4.1. Let S_{n} be the number of selections of n letters chosen from an unlimited supply of a 's, b 's and c's such that both of the numbers of a's and b's are even.

Solution. We can write S_{n} as

$$
S_{n}=\sum_{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N}_{e}, e_{3} \in \mathbb{N}} 1 .
$$

Using the previous fact, we see that $S_{n}=\left[x^{n}\right] f$, where

$$
f(x)=\left(\sum_{i \in \mathbb{N}_{e}} x^{i}\right)^{2}\left(\sum_{j \in \mathbb{N}} x^{j}\right)=\left(\frac{1}{1-x^{2}}\right)^{2} \cdot \frac{1}{1-x} .
$$

Problem 4.2. Let T_{n} be the number of arrangements (or words) of n letters chosen from an unlimited supply of a 's, b's and c's such that both of the numbers of a 's and b's are even. What is the value of T_{n} ?

Solution. To solve this, we define a new kind of generating functions.
Definition 4.3. The exponential generating function for the sequence $\left\{a_{n}\right\}_{n \geq 0}$ is the power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cdot \frac{x^{n}}{n!} .
$$

Then we have the following fact.
Fact 4.4. If we have n letters including x 's, y b's and z c's (i.e. $x+y+z=n$), then we can form $\frac{n!}{x!y!z!}$ distinct words using them.

Therefore, a selection (say $x a$'s, $y b$'s and $z c$'s) can contribute $\frac{n!}{x!y!z!}$ arrangements to T_{n}. This implies that

$$
T_{n}=\sum_{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N}_{e}, e_{3} \in \mathbb{N}} \frac{n!}{e_{1}!e_{2}!e_{3}!} .
$$

Similar to defining the above $f(x)$ for S_{n}, we define the following for T_{n}. Let

$$
g(x):=\left(\sum_{i \in \mathbb{N}_{e}} \frac{x^{i}}{i!}\right)^{2}\left(\sum_{j \in \mathbb{N}} \frac{x^{j}}{j!}\right) .
$$

Claim. We have

$$
\left[x^{n}\right] g=\frac{T_{n}}{n!} .
$$

Proof. To see this, we expand $g(x)$. Then the term x^{n} in $g(x)$ becomes

$$
\sum_{\substack{e_{1}+e_{2}+e_{3}=n, n_{1} \\ e_{1}, e_{2} \in \mathbb{N e}_{e}, e_{3} \in \mathbb{N}}} \frac{x^{e_{1}}}{e_{1}!} \cdot \frac{x^{e_{2}}}{e_{2}!} \cdot \frac{x^{e_{3}}}{e_{3}!}=\left(\sum_{\substack{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N} c_{e}, e_{3} \in \mathbb{N}}} \frac{n!}{e_{1}!e_{2}!e_{3}!}\right) \frac{x^{n}}{n!}=T_{n} \cdot \frac{x^{n}}{n!} .
$$

So $\left[x^{n}\right] g=\frac{T_{n}}{n!}$, i.e., $g(x)$ is the exponential generating function of $\left\{T_{n}\right\}$. This finishes the proof of Claim.

Using Taylor series: $e^{x}=\sum_{j \geq 0} \frac{x^{j}}{j!}$ and $e^{-x}=\sum_{j \geq 0}(-1)^{j} \frac{x^{j}}{j!}$, we have

$$
\frac{e^{x}+e^{-x}}{2}=\sum_{j \in \mathbb{N}_{e}} \frac{x^{j}}{j!} \quad \text { and } \quad \frac{e^{x}-e^{-x}}{2}=\sum_{j \in \mathbb{N}_{o}} \frac{x^{j}}{j!}
$$

By the previous fact, we get

$$
g(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2} \cdot e^{x}=\frac{e^{3 x}+2 e^{x}+e^{-x}}{4}=\sum_{n \geq 0}\left(\frac{3^{n}+2+(-1)^{n}}{4}\right) \cdot \frac{x^{n}}{n!}
$$

Therefore, we get that

$$
T_{n}=\frac{3^{n}+2+(-1)^{n}}{4}
$$

