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1 Exponential Generating Function

Recall that the exponential generating function for the sequence {an}n≥0 is the power series

f(x) =

+∞∑
n=0

an ·
xn

n!
.

As we shall see, ordinary generation functions can be used to find the number of selections;
while exponential generation functions can be used to find the number of arrangements or some
combinatorial objects involving ordering. We summarize this as the following facts.

Fact 1.1. Given Ij ⊆ N+ for j ∈ [n], let fj(x) =
∑
i∈Ij

xi. And let ak =
∑

i1+...+in=k,
ij∈Ij

1. Then

n∏
j=1

fj(x) =

+∞∑
k=0

akx
k.

Fact 1.2. Given Ij ⊆ N+ for j ∈ [n], let gj(x) =
∑
i∈Ij

xi

i! . And let bk =
∑

i1+...+in=k,
ij∈Ij

k!
i1!i2!...in!

. Then

n∏
j=1

gj(x) =
+∞∑
k=0

bk
k!
xk.

Fact 1.3. Let f(x) =
n∏

j=1
fj(x). Then

[xk]f =
∑

i1+...+in=k,
ij≥0

n∏
j=1

[xij ]fj .

Fact 1.4. Let f(x) =
n∏

j=1
fj(x) and let fj(x) =

+∞∑
k=0

a
(j)
k
k! x

k. Then

f(x) =

+∞∑
k=0

Ak

k!
xk.

if and only if

Ak =
∑

i1+...+in=k,
ij≥0

k!

i1!i2!...in!

( n∏
j=1

a
(j)
ij

)
.
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Exercise 1. Find the number an of ways to send n students to 4 different classrooms (say R1,
R2, R3, R4) such that each room has at least 1 students.

Solution.

an =
∑

i1+i2+i3+i4=n,
ij≥1

n!

i1!i2!i3!i4!
.

Let Ij = {1, 2, ...} for j ∈ [4] and gj(x) =
∑
i≥1

xi

i! = ex − 1. By Fact 1.2, we have that

g1g2g3g4 =
+∞∑
n=0

an
n!
xn = (ex − 1)4 = e4x − 4e3x + 6e2x − 4ex + 1.

Thus an = 4n − 4 · 3n + 6 · 2n − 4 for n ≥ 4.

Exercise 2. Let an be the number of arrangements of type A for a group of n people, and let bn
be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

• Divide the n people into 2 groups (say 1st and 2nd).

• Then arrange the 1st group by an arrangement of type A, and arrange the 2nd group by an
arrangement of type B.

Let cn be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the
exponential generation function for {an}, {bn}, {cn} respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

cn =
∑

i+j=n,
i,j≥0

n!

i!j!
aibj .

Then by Fact 1.4, C(x) = A(x)B(x).

2 Part II Basic of Graphs

In this second part of our course, we will discuss many interesting results in graph theory. We
first introduce several basic definitions about graphs.

Definition 2.1. A graph G = (V,E) consists of a vertex set V and an edge set E, where the
elements of V are called vertices and the elements of E ⊆

(
V
2

)
= {(x, y) : x, y ∈ V } are called

edges.

• If E contains unordered pairs, then G is an undirected graph, otherwise G is a directed
graph.

• In this couse, all graphs are undirected and simple, i.e., it has NO loops or muliple edges.
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• We say vertices x and y are adjacent if (x, y) ∈ E, write x ∼G y or x ∼ y or xy ∈ E.

• We say the edge xy is incident to the endpoints x and y.

• Let e(G) be the number of edges in G, i.e., e(G) = |E(G)|.

• The degree of a vertex v in G, denoted by dG(v), is the number of edges in G incident to v.

• The neighborhood of a vertex v is the set of vertices u that is adjacent to v, i.e., NG(v) =
{u ∈ V (G) : u ∼ v}. Thus we have dG(v) = |NG(v)|.

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩
(
V ′

2

)
⇔ G′ ⊆ G.

• A subgraph G′ = (V ′, E′) of G = (V,E) is induced, if E′ = E ∩
(
V ′

2

)
.

Definition 2.2. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a
bijection f : V → V ′ such that i ∼G j if and only if f(i) ∼G′ f(j).

• A graph on n vertices is a complete graph (or a clique), denoted by Kn, if all pairs of vertices
are adjacent. So we have e(Kn) =

(
n
2

)
.

• A graph on n vertices is called an independent set, denoted by In, if it contains no edges at
all.

• Given a graph G = (V,E), its complement is a graph G = (V,Ec) with Ec =
(
V
2

)
\E.

• The degree sequence of a graph G = (V,E) is a sequence of degrees of all vertices listed in
a non-decreasing order.

• The path Pk of length k − 1 is a graph v1v2...vk where vi ∼ vi+1 for i ∈ [k − 1]. Note that
the length of a path P (denoted by |P |) is the number of edges in P.

• A cycle Ck of length k is a graph v1v2...vkv1 where vi ∼ vi+1 for i ∈ [k], where vk+1 = v1.

• A graph G is planar, if we can draw G on the plane such that its intersects only at their
endpoints.

Exercise 3. Show that K4 is planar but K5 is not.

The following Handshaking Lemma is the most basic lemma in graph theory.

Lemma 1 (Handshaking Lemma). In any graph G = (V,E),∑
v∈V

dG(v) = 2e(G).

Proof. Let F = {(e, v) : e ∈ E(G), v ∈ V (G) such that v is adjacent to e}. Then∑
e∈E(G)

2 = |F | =
∑
v∈V

dG(v).

Corollary 1. In any graph G, the number of vertices with odd degree is even.
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Proof. Let O = {v ∈ V (G) : d(v) is odd} and E = {v ∈ V (G) : d(v) is even}. Then by Lemma 1,

2e(G) =
∑
v∈O

dG(v) +
∑
v∈E

dG(v).

Thus we have
∑

v∈O dG(v) is even, moreover we have |O| is even.

Corollary 2. In any graph G, if there exists a vertex with odd degree, then there are at least two
vertices with odd degree.

3 Sperner’s Lemma

Let us consider the following application of Corollary 2. First we draw a triangle in the plane,
with 3 vertices A1A2A3. Then we divide this triangle 4 = A1A2A3 into small triangles such that
no triangle can have a vertex inside an edge of any other triangle. Then we assign 3 colors (say
1,2,3) to all vertices of these triangles, under the following rules.

(1) The vertex Ai is assigned by color i for i ∈ [3].

(2) All vertices lying on the edge AiAj of the large triangle are assigned by the color i or j.

(3) All interior vertices are assigned by any color 1,2,3.

Lemma 2 (Sperner’s Lemma (a planar version)). For any assignment of colors described as
above, there always exists a small triangle whose three vertices are assigned by three colors 1, 2, 3.

Proof. Define an auxiliary graph G as following.

• Its vertices are the faces of small triangles and the outer face. Let z be the vertex repre-
senting the outer face.

• Two vertices of G are adjacent, if the two corresponding faces are neighboring faces and the
two endpoints of their common edge are colored by 1 and 2.

We consider the degree of any vertex v ∈ V (G)\{z}.

(1) If the face of v has NO two endpoints with color 1 and 2, then dG(v) = 0.

(2) If the face of v has 2 endpoints with color 1 and 2. Let k be the color of the third endpoint
of this face. If k ∈ {1, 2}, then dG(v) = 2. Otherwise k = 3, then dG(v) = 1 and this
triangle has 3 colors 1,2,3.

Thus we have that dG(v) is odd if and only if dG(v) = 1, and then the face of v has colors
1,2,3. Now we consider dG(z) and claim that it must be odd. Indeed, the edge of G incident to z
obviously have to go across A1A2. Consider the sequence of the colors of the endpoints on A1A2,
from A1 to A2. Then dG(z) = # of alternations between 1 and 2 in this sequence, which must be
odd. By Corollary 2, since the graph G has a vertex z with odd degree, there must be another
vertex v ∈ V (G)\{z} with odd degree. Then d(v) = 1 and the face of v has colors 1,2,3.

Theorem 3.1 (Brouver’s Fixed Point Theory in 2-dimension). Every continuous function f :
4→ 4 has a fixed point x, that is, f(x) = x.
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Proof. Consider a sequence of refinements of 4. Define three auxiliary functions βi : 4→ R for
i ∈ {1, 2, 3} as following:

For any a = (x, y) ∈ 4, 
β1(a) = x,
β2(a) = y,
β3(a) = 1− x− y.

For any continuous f : 4 → 4, define Mi = {a ∈ 4 : β1(a) > β1(f(a))} for i ∈ {1, 2, 3}.
Then we have the following facts.

(1) Any point a ∈ 4 belongs to at least one Mi.

(2) If a ∈M1 ∩M2 ∩M3, then a is a fixed point.

We want to define a coloring φ : 4→ {1, 2, 3} such that

(a) Any a ∈ 4 with φ(a) = i belongs to Mi.

(b) The coloring φ satisfies the conditions of Sperner’s Lemma for any subdivision of 4.

Next we show such φ exists. This is because

• For the point Ai (say i = 1), we have that A1 = (1, 0) ∈M1, so we can let φ(Ai) = i.

• Consider a vertex a = (x, y) ∈ A1A2, i.e., x+y = 1. Then a ∈M1∪M2, otherwise x+y < 1
which is a contradiction. So we can color a by 1 or 2.

Now we define a sequence {41,42, ...} of subdivisions of 4 such that the maximum diameter of
small triangles in 4n is going to 0 as n→ +∞. Applying Sperner’s Lemma to each 4n and the

coloring φ, we get that there exists a small triangle A
(n)
1 A

(n)
2 A

(n)
3 in 4n which has 3 colors 1,2,3.

Consider the sequence {A(n)
1 }n≥1. Since everything is bound, there is a subsequence {A(nk)

1 }k≥1
such that lim

k→+∞
A

(nk)
1 = p ∈ 4 exists. Since the diameter of A

(n)
1 A

(n)
2 A

(n)
3 is going to be 0 as

n → +∞, we see that lim
k→+∞

A
(nk)
2 = lim

k→+∞
A

(nk)
3 = p. Since βi(A

(nk)
i ) > βi(f(A

(nk)
i )) for i ∈ [3]

and f is continuous. We get βi(p) = lim
k→+∞

βi(A
(nk)
i ) ≥ lim

k→+∞
βi(f(A

(nk)
i )) = βi(f(p)) for i ∈ [3].

This implies that p ∈M1 ∩M2 ∩M3, so p is a fixed point of f , i.e., f(p) = p.
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