Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Exponential Generating Function

Recall that the exponential generating function for the sequence $\{a_n\}_{n\geq 0}$ is the power series

$$f(x) = \sum_{n=0}^{+\infty} a_n \cdot \frac{x^n}{n!}.$$

As we shall see, ordinary generation functions can be used to find the number of selections; while exponential generation functions can be used to find the number of arrangements or some combinatorial objects **involving ordering**. We summarize this as the following facts.

Fact 1.1. Given $I_j \subseteq \mathbb{N}^+$ for $j \in [n]$, let $f_j(x) = \sum_{i \in I_j} x^i$. And let $a_k = \sum_{\substack{i_1 + \dots + i_n = k, \\ i_j \in I_j}} 1$. Then

$$\prod_{j=1}^{n} f_j(x) = \sum_{k=0}^{+\infty} a_k x^k.$$

Fact 1.2. Given $I_j \subseteq \mathbb{N}^+$ for $j \in [n]$, let $g_j(x) = \sum_{i \in I_j} \frac{x^i}{i!}$. And let $b_k = \sum_{\substack{i_1 + \dots + i_n = k, \\ i_j \in I_j}} \frac{k!}{i_1!i_2!\dots i_n!}$. Then

$$\prod_{j=1}^{n} g_j(x) = \sum_{k=0}^{+\infty} \frac{b_k}{k!} x^k.$$

Fact 1.3. Let $f(x) = \prod_{j=1}^{n} f_j(x)$. Then

$$[x^{k}]f = \sum_{\substack{i_{1}+\dots+i_{n}=k, \\ i_{j}\geq 0}} \prod_{j=1}^{n} [x^{i_{j}}]f_{j}.$$

Fact 1.4. Let $f(x) = \prod_{j=1}^{n} f_j(x)$ and let $f_j(x) = \sum_{k=0}^{+\infty} \frac{a_k^{(j)}}{k!} x^k$. Then $f(x) = \sum_{k=0}^{+\infty} \frac{A_k}{k!} x^k$.

$$f(x) = \sum_{k=0}^{\infty} \frac{A_k}{k!} x^k.$$

if and only if

$$A_{k} = \sum_{\substack{i_{1}+\dots+i_{n}=k,\\i_{j}\geq 0}} \frac{k!}{i_{1}!i_{2}!\dots i_{n}!} \Big(\prod_{j=1}^{n} a_{i_{j}}^{(j)}\Big).$$

Exercise 1. Find the number a_n of ways to send n students to 4 different classrooms (say R_1 , R_2 , R_3 , R_4) such that each room has at least 1 students.

Solution.

$$a_n = \sum_{\substack{i_1+i_2+i_3+i_4=n,\\i_j \ge 1}} \frac{n!}{i_1!i_2!i_3!i_4!}.$$

Let $I_j = \{1, 2, ...\}$ for $j \in [4]$ and $g_j(x) = \sum_{i \ge 1} \frac{x^i}{i!} = e^x - 1$. By Fact 1.2, we have that

$$g_1g_2g_3g_4 = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n = (e^x - 1)^4 = e^{4x} - 4e^{3x} + 6e^{2x} - 4e^x + 1$$

Thus $a_n = 4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4$ for $n \ge 4$.

Exercise 2. Let a_n be the number of arrangements of type A for a group of n people, and let b_n be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

- Divide the *n* people into 2 groups (say 1^{st} and 2^{nd}).
- Then arrange the 1^{st} group by an arrangement of type A, and arrange the 2^{nd} group by an arrangement of type B.

Let c_n be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the exponential generation function for $\{a_n\}, \{b_n\}, \{c_n\}$ respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

$$c_n = \sum_{\substack{i+j=n,\\i,j\geq 0}} \frac{n!}{i!j!} a_i b_j.$$

Then by Fact 1.4, C(x) = A(x)B(x).

2 Part II Basic of Graphs

In this second part of our course, we will discuss many interesting results in graph theory. We first introduce several basic definitions about graphs.

Definition 2.1. A graph G = (V, E) consists of a vertex set V and an edge set E, where the elements of V are called vertices and the elements of $E \subseteq \binom{V}{2} = \{(x, y) : x, y \in V\}$ are called edges.

• If E contains unordered pairs, then G is an undirected graph, otherwise G is a directed graph.

• In this couse, all graphs are undirected and simple, i.e., it has NO loops or muliple edges.

- We say vertices x and y are adjacent if $(x, y) \in E$, write $x \sim_G y$ or $x \sim y$ or $xy \in E$.
- We say the edge xy is incident to the endpoints x and y.
- Let e(G) be the number of edges in G, i.e., e(G) = |E(G)|.
- The degree of a vertex v in G, denoted by $d_G(v)$, is the number of edges in G incident to v.

• The neighborhood of a vertex v is the set of vertices u that is adjacent to v, i.e., $N_G(v) = \{u \in V(G) : u \sim v\}$. Thus we have $d_G(v) = |N_G(v)|$.

- A graph G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E \cap {V' \choose 2} \Leftrightarrow G' \subseteq G$.
- A subgraph G' = (V', E') of G = (V, E) is induced, if $E' = E \cap {V' \choose 2}$.

Definition 2.2. Two graphs G = (V, E) and G' = (V', E') are isomorphic if there exists a bijection $f: V \to V'$ such that $i \sim_G j$ if and only if $f(i) \sim_{G'} f(j)$.

• A graph on *n* vertices is a complete graph (or a clique), denoted by K_n , if all pairs of vertices are adjacent. So we have $e(K_n) = \binom{n}{2}$.

• A graph on n vertices is called an independent set, denoted by I_n , if it contains no edges at all.

• Given a graph G = (V, E), its complement is a graph $\overline{G} = (V, E^c)$ with $E^c = {V \choose 2} \setminus E$.

• The degree sequence of a graph G = (V, E) is a sequence of degrees of all vertices listed in a non-decreasing order.

• The path P_k of length k-1 is a graph $v_1v_2...v_k$ where $v_i \sim v_{i+1}$ for $i \in [k-1]$. Note that the length of a path P (denoted by |P|) is the number of *edges* in P.

• A cycle C_k of length k is a graph $v_1v_2...v_kv_1$ where $v_i \sim v_{i+1}$ for $i \in [k]$, where $v_{k+1} = v_1$.

• A graph G is planar, if we can draw G on the plane such that its intersects only at their endpoints.

Exercise 3. Show that K_4 is planar but K_5 is not.

The following Handshaking Lemma is the most basic lemma in graph theory.

Lemma 1 (Handshaking Lemma). In any graph G = (V, E),

$$\sum_{v \in V} d_G(v) = 2e(G)$$

Proof. Let $F = \{(e, v) : e \in E(G), v \in V(G) \text{ such that } v \text{ is adjacent to } e\}$. Then

$$\sum_{e \in E(G)} 2 = |F| = \sum_{v \in V} d_G(v).$$

Corollary 1. In any graph G, the number of vertices with odd degree is even.

Proof. Let $O = \{v \in V(G) : d(v) \text{ is odd}\}$ and $\mathcal{E} = \{v \in V(G) : d(v) \text{ is even}\}$. Then by Lemma 1,

$$2e(G) = \sum_{v \in O} d_G(v) + \sum_{v \in \mathcal{E}} d_G(v)$$

Thus we have $\sum_{v \in O} d_G(v)$ is even, moreover we have |O| is even.

Corollary 2. In any graph G, if there exists a vertex with odd degree, then there are at least two vertices with odd degree.

3 Sperner's Lemma

Let us consider the following application of Corollary 2. First we draw a triangle in the plane, with 3 vertices $A_1A_2A_3$. Then we divide this triangle $\triangle = A_1A_2A_3$ into small triangles such that no triangle can have a vertex inside an edge of any other triangle. Then we assign 3 colors (say 1,2,3) to all vertices of these triangles, under the following rules.

- (1) The vertex A_i is assigned by color i for $i \in [3]$.
- (2) All vertices lying on the edge $A_i A_j$ of the large triangle are assigned by the color *i* or *j*.
- (3) All interior vertices are assigned by any color 1,2,3.

Lemma 2 (Sperner's Lemma (a planar version)). For any assignment of colors described as above, there always exists a small triangle whose three vertices are assigned by three colors 1, 2, 3.

Proof. Define an auxiliary graph G as following.

- Its vertices are the faces of small triangles and the outer face. Let z be the vertex representing the outer face.
- Two vertices of G are adjacent, if the two corresponding faces are neighboring faces and the two endpoints of their common edge are colored by 1 and 2.

We consider the degree of any vertex $v \in V(G) \setminus \{z\}$.

- (1) If the face of v has NO two endpoints with color 1 and 2, then $d_G(v) = 0$.
- (2) If the face of v has 2 endpoints with color 1 and 2. Let k be the color of the third endpoint of this face. If $k \in \{1, 2\}$, then $d_G(v) = 2$. Otherwise k = 3, then $d_G(v) = 1$ and this triangle has 3 colors 1,2,3.

Thus we have that $d_G(v)$ is odd if and only if $d_G(v) = 1$, and then the face of v has colors 1,2,3. Now we consider $d_G(z)$ and claim that it must be odd. Indeed, the edge of G incident to z obviously have to go across A_1A_2 . Consider the sequence of the colors of the endpoints on A_1A_2 , from A_1 to A_2 . Then $d_G(z) = \#$ of alternations between 1 and 2 in this sequence, which must be odd. By Corollary 2, since the graph G has a vertex z with odd degree, there must be another vertex $v \in V(G) \setminus \{z\}$ with odd degree. Then d(v) = 1 and the face of v has colors 1,2,3.

Theorem 3.1 (Brouver's Fixed Point Theory in 2-dimension). Every continuous function $f : \triangle \to \triangle$ has a fixed point x, that is, f(x) = x.

Proof. Consider a sequence of refinements of \triangle . Define three auxiliary functions $\beta_i : \triangle \to R$ for $i \in \{1, 2, 3\}$ as following:

For any $a = (x, y) \in \Delta$,

$$\begin{cases} \beta_1(a) &= x, \\ \beta_2(a) &= y, \\ \beta_3(a) &= 1 - x - y. \end{cases}$$

For any continuous $f : \Delta \to \Delta$, define $M_i = \{a \in \Delta : \beta_1(a) \ge \beta_1(f(a))\}$ for $i \in \{1, 2, 3\}$. Then we have the following facts.

- (1) Any point $a \in \triangle$ belongs to at least one M_i .
- (2) If $a \in M_1 \cap M_2 \cap M_3$, then a is a fixed point.

We want to define a coloring $\phi : \triangle \to \{1, 2, 3\}$ such that

- (a) Any $a \in \triangle$ with $\phi(a) = i$ belongs to M_i .
- (b) The coloring ϕ satisfies the conditions of Sperner's Lemma for any subdivision of \triangle .

Next we show such ϕ exists. This is because

- For the point A_i (say i = 1), we have that $A_1 = (1, 0) \in M_1$, so we can let $\phi(A_i) = i$.
- Consider a vertex $a = (x, y) \in A_1A_2$, i.e., x + y = 1. Then $a \in M_1 \cup M_2$, otherwise x + y < 1 which is a contradiction. So we can color a by 1 or 2.

Now we define a sequence $\{\Delta_1, \Delta_2, ...\}$ of subdivisions of Δ such that the maximum diameter of small triangles in Δ_n is going to 0 as $n \to +\infty$. Applying Sperner's Lemma to each Δ_n and the coloring ϕ , we get that there exists a small triangle $A_1^{(n)} A_2^{(n)} A_3^{(n)}$ in Δ_n which has 3 colors 1,2,3.

Consider the sequence $\{A_1^{(n)}\}_{n\geq 1}$. Since everything is bound, there is a subsequence $\{A_1^{(n_k)}\}_{k\geq 1}$ such that $\lim_{k\to+\infty} A_1^{(n_k)} = p \in \Delta$ exists. Since the diameter of $A_1^{(n)}A_2^{(n)}A_3^{(n)}$ is going to be 0 as $n \to +\infty$, we see that $\lim_{k\to+\infty} A_2^{(n_k)} = \lim_{k\to+\infty} A_3^{(n_k)} = p$. Since $\beta_i(A_i^{(n_k)}) \ge \beta_i(f(A_i^{(n_k)}))$ for $i \in [3]$ and f is continuous. We get $\beta_i(p) = \lim_{k\to+\infty} \beta_i(A_i^{(n_k)}) \ge \lim_{k\to+\infty} \beta_i(f(A_i^{(n_k)})) = \beta_i(f(p))$ for $i \in [3]$. This implies that $p \in M_1 \cap M_2 \cap M_3$, so p is a fixed point of f, i.e., f(p) = p.