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1 Double Counting

The basic setting of the double counting technique is as follows. Suppose that we are given two
finite sets A and B, and a subset S ⊆ A×B. If (a, b) ∈ S, then we say that a and b are incident.
Let Na be the number of elements b ∈ B such that (a, b) ∈ S, and Nb be the number of elements
a ∈ A such that (a, b) ∈ S. Then we have∑

a∈A
Na = |S| =

∑
b∈B

Nb.

Theorem 1.1. Let T (j) be the number of divisions of a positive integer j. Let T (n) = 1
n

∑n
j=1 T (j).

Then we have |T (n)−H(n)| < 1, where H(n) =
∑n

i=1
1
i is the nth Harmonic number.

Proof. Define a table X = (xij) where

xij =

{
1 if i|j
0 otherwise.

Then
n∑
j=1

T (j) =
∑

1≤i≤j≤n
xij =

n∑
i=1

bn
i
c,

which implies that

T (n) =
1

n

n∑
i=1

bn
i
c.

Then we have
|T (n)−H(n)| < 1.

Exercise 1.2. Prove that ∣∣∣∣∣ 1n
n∑
i=1

bn
i
c −

n∑
i=1

1

i

∣∣∣∣∣ < 1.

1.1 Sperner’s Theorem

Definition 1.3. Let F ⊆ 2[n] be a family of subsets of [n]. We say F is independent (or F is an
independent system), if for any two A,B ∈ F , we have A 6⊂ B and B 6⊂ A. In other words, F is
independent if and only if there is no “containment” relationship between any two subsets of F .

Fact 1.4. For a fixed k ∈ [n],
([n]
k

)
is an independent system.
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Theorem 1.5 (Sperner’s Theorem). For any independent system F of [n], we have

|F| ≤
(
n

bn2 c

)
.

First proof of Sperner’s Theorem (Double-Counting). A chain of subsets of [n] is a sequence of
distinct subsets

A1 ⊆ A2 ⊆ A3 ⊆ ... ⊆ Ak.

A maximal chain is a chain with the property that no other subsets of [n] can be inserted into it
to find a longer chain. We have the following observations.

(1). Any maximal chain looks like:

φ ⊆ {x1} ⊆ {x1, x2} ⊆ ... ⊆ {x1, ..., xk} ⊆ ... ⊆ {x1, ..., xn}.

(2). There are exactly n! maximal chains.

This is because any such a maximal chain, say C : φ ⊆ {x1} ⊆ {x1, x2} ⊆ ... ⊆ {x1, x2, ..., xn},
defines a unique permutation:

π : [n]→ [n], π(i) = xi, ∀i ∈ [n].

Now we double count the number of pairs (C, A) satisfying that:

• C is a maximal chain of [n].

• A ∈ C ∩ F .

Recall the rule of double counting given at the beginning that∑
C
NC = the number of pairs (C, A) =

∑
A

NA,

where NC is the number of subsets A ∈ C∩F and NA is the number of maximal chains C contains
A. It is key to observe that

• NC ≤ 1,

• NA = |A|!(n− |A|)!

So we have

n! =
∑
C

1 ≥
∑
C
NC =

∑
A∈F

NA =
∑
A∈F
|A|!(n− |A|)!

=
∑
A∈F

n!(
n
|A|
) ≥∑

A∈F

n!(
n
bn
2
c
) =

n!(
n
bn
2
c
) |F|,

which implies that

|F| ≤
(
n

bn2 c

)
.

This finishes the proof.
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Now we give another proof of Sperner’s Theorem.

Definition 1.6. A chain is symmetric if it consists of subsets of sizes k, k+ 1, ..., bn2 c, ..., n− k−
1, n− k for some k ≥ 0.

For example, when n = 3, {{2}, {2, 3}, {1, 2, 3} is not symmetric. And when n = 4, {φ, {1, 2, 3}}
is not symmetric.

Theorem 1.7. The family 2[n] can be partitioned into a disjoint union of symmetric chains.

Proof of Theorem 1.7. For each A ∈ 2[n], we define a sequence “a1a2...an” consisting of left and
right parentheses by defining

ai =

{
“(”, if i ∈ A
“)”, otherwise

We then define the “partial pairing of parentheses” as following:

(1). First, we pair up all pairs “()” of adjoint parentheses.

(2). Then, we delete these already paired parentheses.

(3). Repeat the above process until nothing can be done.

Note that when this process stops, the remaining unpaired parentheses must look like this:

))))(((((

We say two subsets A,B ∈ 2[n] have the same partial pairing, if the paired parentheses are the
same (even in the same positions).

We can define an equivalence ” ∼ ” on 2[n] by letting A ∼ B if and only if A,B have the same
partial pairing.

Exercise 1.8. Each equivalence class indeed forms a symmetric chain.

Using this fact, now we see that 2[n] can be partitioned into disjoint equivalence classes, which
are disjoint symmetric chains. This fishes the proof.

Theorem 1.7 can rapidly imply Sperner’s Theorem.

Second proof of Sperner’s Theorem. Note that by definition, any symmetric chain contains exact-
ly one subset of size bn2 c. Since there are

(
n
bn
2
c
)

many subsets of size bn2 c, by Theorem 1.7, we see

that any partition of 2[n] into symmetric chains has to consist of exactly
(
n
bn
2
c
)

symmetric chains.

Each symmetric chain can contain at most one subset from |F and thus we see |F| ≤
(
n
bn
2
c
)
.
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1.2 Littlewood-Offord Problem

Theorem 1.9. Fix a vector ~a = (a1, a2, ..., an) with each |ai| ≥ 1. Let S = {~ε = (ε1, ε2, ..., εn) :
εi ∈ {1,−1} and ~ε · ~a ∈ (−1, 1)}, then |S| ≤

(
n
bn
2
c
)
.

Remark: Note that this is tight for many vectors ~a.

Proof. For any ~ε ∈ S, define A~ε = {i ∈ [n] : aiεi > 0}. Let F = {A~ε : ~ε ∈ S}. Then we have

|S| = |F|.

Now we claim that F is an independent system. Suppose for a contradiction that there exist
A~ε1 , A~ε2 ∈ F with A~ε1 ⊆ A~ε2 . That also says,{

~ε1 · ~a ∈ (−1, 1)
~ε2 · ~a ∈ (−1, 1)

which imply that
|ε1 · ~a− ε2 · ~a| < 2.

By definition, we have

~ε1 · ~a =
∑
i∈A~ε1

|ai| −
∑
i/∈A~ε1

|ai| = 2
∑
i∈A~ε1

|ai| −
n∑
i=1

|ai|.

Since A~ε1 ⊆ A~ε2 , we also have that

~ε2 · ~a− ~ε1 · ~a = 2(
∑
i∈A~ε2

|ai| −
∑
j∈A~ε1

|aj |) ≥ 2|aj | ≥ 2, for some j ∈ A~ε2 \A~ε1 ,

a contradiction. By Sperner’s Theorem, we have |S| = |F| ≤
(
n
bn
2
c
)
. This finishes the proof

1.3 Turán Type Problem

Definition 1.10. A graph G is bipartite if its vertex set can be partitioned into two parts (say A
and B) such that each edge joints one vertex in A and another in B.

This is equivalent to say that V (G) can be partitioned into two independent subsets. And
we say (A,B) is a bipartition of G. For example, all even cycles C2k are bipartite, while all odd
cycles C2k+1 are not.

Definition 1.11. Let Ka,b be the complete bipartite graph with two parts of sizes a and b. This
is a bipartite graph with edge set {(i, j) : i ∈ A, j ∈ B} where |A| = a and |B| = b.

Definition 1.12. Given a graph H, we say a graph G is H-free is G dose not contain a copy of
H as its subgraph.

For example, Ka,b is K3-free.

Definition 1.13. For fixed graph H, let the Turán number of H, denoted by ex(n,H), be the
maximum number of edges in an n-vertex H-free graph G.
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Theorem 1.14. ex(n,C4) 6
n

4
(1 +

√
4n− 3).

Proof. Let G be a C4-free graph with n vertices. We need to show that e(G) 6
n

4
(1 +

√
4n− 3).

Consider S = {({u1, u2}, w) : u1wu2 is a path of length 2 in G}. Since G is C4-free, for fixed
{u1, u2}, there is at most one vertex w such that ({u1, u2}, w) ∈ S. So we have

|S| =
∑
{u1,u2}

the number of ({u1, u2}, w) ∈ S 6
∑
{u1,u2}

1 =

(
n

2

)
.

On the other hand, fixed a vertex w, the number of {u1, u2} such that ({u1, u2}, w) ∈ S exactly
equals

(
d(w)
2

)
, which implies that

|S| =
∑

w∈V (G)

(
d(w)

2

)
=

1

2

∑
w∈V (G)

d2(w)− e(G).

Putting the above together, we have(
n

2

)
≥ |S| = 1

2

∑
w∈V (G)

d2(w)− e(G).

Using Cauchy-Schwarz inequality, we have

n2 − n
2

≥ n

2

∑
w∈V (G)

d2(w)

n
− e(G) ≥ n

2

∑
w∈V (G)

(
d(w)

n

)2

− e(G),

which implies that
2e2(G)

n
− e(G) ≤ n2 − n

2
.

Solving it, we can derive easily that e(G) ≤ n
4 (1 +

√
4n− 3).

Exercise 1.15. Prove that ex(n,C4) <
n
4 (1 +

√
4n− 3).

Corollary 1.16. We have ex(n,C4) 6 (12 + o(n))n
3
2 , where o(n)→ 0 as n→∞.

Theorem 1.17 (Mantal’s Thm). ex(n,K3) = bn2

4 c.

Proof. We first consider the lower bound ex(n,K3) > bn2

4 c as the complete bipartite graph

Kbn
2
c,dn

2
e is K3-free and has bn2

4 c edges.

Next, we show ex(n,K3) 6 bn2

4 c. We prove by induction on n that any n-vertex K3-free

graph G has at most n2

4 edges. First it holds trivially when n ∈ {1, 2}. Now we assume that any
K3-free graph H with less than n vertices has at most |V (H)|2/4 edges. Let G be K3-free with
n vertices. Take any edge of G, say xy ∈ E(G). Since G is K3-free, we say NG(x) ∩NG(y) = ∅,
implies that |d(x)|+ |d(y)| 6 n.

Let H be a graph obtained from G by deleting vertex x and y. Note that H is also K3-free

and has n− 2 vertices. By induction, e(H) 6 (n−2)2
4 . Thus we have that

e(G) = e(H) + |d(x)|+ |d(y)| − 1 6
(n− 2)2

4
+ n− 1 =

n2

4
.

This finishes the proof.
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Exercise 1.18. The unique n-vertex K3-graph which attains the maximum number of edges
ex(n,K3) is the complete bipartite graph Kbn

2
c,dn

2
e.

6


