Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 The third proof of Cayley's formula (using Linear Algebra)

Definition 1.1. A multigraph is a graph, where we allow multiple edges between vertices but do not allow loops.

For a multigraph G in [n], we define the Laplace matrix $Q = (q_{ij})_{n \times n}$ of G as follows:

$$q_{ij} = \begin{cases} d_G(i), & \text{if } i = j. \\ -m, & \text{if } i \neq j \text{ and there are } m \text{ edges between } i \text{ and } j. \end{cases}$$

Note that Q is symmetric, and the sum of each row/column is 0.

For example

For an $n \times n$ matrix Q, let Q_{ij} be the $(n-1) \times (n-1)$ matrix obtained from Q by deleting the i^{th} row and j^{th} column.

Theorem 1.2. For any multigraph G, $ST(G) = det(Q_{11})$, where Q_{ij} is the $(n-1) \times (n-1)$ matrix obtained from the Laplace matrix Q of G by deleting the i^{th} row and j^{th} column.

Proof. We prove this by using induction on the number of edges in G. Base case, suppose that e(G) = 1. Then it holds trivially.

Now we consider a multigraph G and assume this holds for any multigraph with less than e(G) edges. Take any edge e in G. Define two multigraph as following.

1. G - e = the multigraph obtained from G be deleting the edge e.

2. G/e = the multigraph obtained from G by contracting the two endpoints x, y of e into a new vertex z and adding new edges in $\{zu : xu \in E(G)\} \cup \{zu : yu \in E(G)\}$.

Let Q' and Q'' be the Laplace matrices of G - e and G/e respectively. If in a multigraph G the vertex number 1 is not incident to any edge, then we have T(G) = 0. The first row of the Laplace matrix consists only of zeros, the sum of the rows of Q_{11} is also zero. Thus, $det(Q_{11}) = 0$. If the vertex number 1 is incident to at least one edge. More precisely, assume that the edge e has endpoints 1 and 2. So

$$Q' = \begin{pmatrix} 5 & -2 & -1 & -2 & 0 \\ -2 & 4 & 0 & -1 & -1 \\ -1 & 0 & 6 & -1 & -4 \\ -2 & -1 & -1 & 5 & -1 \\ 0 & -1 & -4 & -1 & 6 \end{pmatrix}, Q'' = \begin{pmatrix} 5 & -1 & -3 & -1 \\ -1 & 6 & -1 & -4 \\ -3 & -1 & 5 & -1 \\ -1 & -4 & -1 & 6 \end{pmatrix}.$$

Let $Q_{11,22}$ be the matrix obtained from Q by deleting the first two rows and the first two columns. Then we have

$$det(Q_{11}) = det((Q')_{11}) + det(Q_{11,22}).$$
(1.1)

We also see that

$$Q_{11,22} = (Q'')_{11}. (1.2)$$

By (1.1) and (1.2) we have

$$det(Q_{11}) = det((Q')_{11}) + det((Q'')_{11}).$$
(1.3)

Claim. For any edge e in G, we have

$$ST(G) = ST(G-e) + ST(G/e).$$

$$(1.4)$$

Proof. We divide the spanning trees of G into two classes:

-the 1^{st} class contains those spanning trees of G NOT containing e, which are exactly ST(G-e).

-the 2^{nd} class contains those spanning trees of G containing e. We can easily see that the trees in the 2^{nd} class are one-to-one corresponding to the spanning trees of G/e.

This proves (1.4)

By induction, we have $ST(G - e) = det(Q'_{11})$, $ST(G/e) = det((Q'')_{11})$. By (1.3), we have $ST(G) = det(Q_{11})$.

Proof of Cayley's Formula. For K_n , we have

$$Q = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix}_{n \times n},$$

which implies that $ST(G) = det(Q_{11}) = n^{n-2}$.

2 Intersecting Family

Definition 2.1. A family $\mathcal{F} \subset 2^{[n]}$ is intersecting if for any $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$.

Fact 2.2. For any intersecting family $\mathcal{F} \subset 2^{[n]}$, we have $|\mathcal{F}| \leq 2^{n-1}$.

Proof. Consider all pairs $\{A, A^c\}$ for all $A \subset [n]$. Note that there are exactly 2^{n-1} such pairs, and \mathcal{F} can have at most one subset from every pairs. This proves $|\mathcal{F}| \leq 2^{n-1}$.

Note that this is tight:

- $\mathcal{F} = \{A \subset [n] : 1 \in A\}.$
- For n is odd, $\mathcal{F} = \{A \in [n] : |A| > \frac{n}{2}\}.$

A harder problem: What is the largest intersecting family $\mathcal{F} \subset {\binom{[n]}{k}}$, for fixed k?

Theorem 2.3 (Erdős-Ko-Rado Theorem). For $n \ge 2k$, the largest intersecting family $\mathcal{F} \subset {\binom{[n]}{k}}$ has size $\binom{n-1}{k-1}$.

Moreover, if n > 2k, then the largest intersecting family $\mathcal{F} \subset {\binom{[n]}{k}}$ must be $\mathcal{F} = \{A \in {\binom{[n]}{k}} : t \in A\}$ for some fixed $t \in [n]$.

Proof. Take a cyclic permutation $\pi = (a_1, a_2, ..., a_n)$ of [n]. Note that there are (n - 1)! cyclic permutations of [n] in total.

Let $\mathcal{F}_{\pi} = \{A \in \mathcal{F}: A \text{ appears as } k \text{ consecutive numbers in the circuit of } \pi.\}$

Claim 1. For all cyclic permutation π , assume $n \ge 2k$, then $|\mathcal{F}_{\pi}| \le k$.

Proof. Pick $A \in \mathcal{F}_{\pi}$, say $A = \{a_1, a_2, ..., a_k\}$. We call the edges $a_n a_1, a_k a_{k+1}$ as the boundary edges of A, and the edges $a_1 a_2, a_2 a_3, ..., a_{k-1} a_k$ as the inner-edges of A. We observe that for any distinct $A, B \in \mathcal{F}_{\pi}$, the boundary-edges of A and B are distinct. For any $B \in \mathcal{F}_{\pi} \setminus \{A\}$, as $A \cap B \neq \phi$, we see that one of the boundary-edges of B must be an inner-edge of A. But A has k-1 inner-edges, so we see that there are at most k-1 many subsets in $\mathcal{F}_{\pi} \setminus \{A\}$. So $|\mathcal{F}_{\pi}| \leq k$.

Next we do a double-counting. Let N be the number of pairs (π, A) , where π is a cyclic permutation of [n], and $A \in \mathcal{F}_{\pi}$. By Claim 1, $N = \sum_{\pi} |\mathcal{F}_{\pi}| \leq k(n-1)!$. Fix A, how many cyclic π such that $A \in \mathcal{F}_{\pi}$? The answer is k!(n-k)!. So the number of cyclic permutations π such that π contains the elements of A as k consecutive numbers is k!(n-k)!. So we have

$$k(n-1)! \ge N = \sum_{A \in \mathcal{F}} k!(n-k)! = |\mathcal{F}|k!(n-k)!,$$

which implies that

$$|\mathcal{F}| \le \frac{k \cdot (n-1)!}{k!(n-k)!} = \binom{n-1}{k-1}.$$

If n > 2k, for the extremal case $\mathcal{F} = \binom{n-1}{k-1}$, we want to show \mathcal{F} must be a star. From the preview proof, we see that for any cycle permutation π , $|\mathcal{F}_{\pi}| = k$. And we have following claim.

Claim 2. Fix any $\pi = (a_0, a_1, ..., a_{n-1})$. If $\mathcal{F}_{\pi} = \{A_1, A_2, ..., A_k\}$, then $A_1 \cap A_2 \cap ... \cap A_k = \{t\}$ for some $0 \leq t \leq n-1$, where $A_j = \{a_{j+r}, a_{j+r+1}, ..., a_{j+r+k-1}\}$ for $1 \leq j \leq k$ and for some $0 \leq r \leq n-1$ (where the indices are taken under the additive group \mathbb{Z}_n .)

Proof. With loss of generality, suppose that $A = \{a_1, ..., a_k\} \in \mathcal{F}_{\pi}$. From the preview proof, we know $a_i a_{i+1}$ is boundary-edge of some $B_i \in \mathcal{F}_{\pi}$ where $i \in [k-1]$, and for any distinct $A, B \in \mathcal{F}_{\pi}$, the boundary-edges of A and B are distinct. For any $C \in \mathcal{F}$, we color the two boundary-edges by 1 and 0, respectively, according to the clockwise direction. Since $a_0 a_1$ has color 1 and $a_k a_{k+1}$ has color 0. There must exist $\ell \in [k]$ such that $a_{\ell-1}a_{\ell}$ has color 1 and $a_{\ell}a_{\ell+1}$ has color 0. Let $A_1 = \{a_{\ell-k+1}, a_{\ell-k+2}, ..., a_{\ell-1}, a_{\ell}\}$ and $A_k = \{a_{\ell}, a_{\ell+1}, ..., a_{\ell+k-1}\}$. Since \mathcal{F} is intersecting and n > 2k, there dose not exist j such that $a_{j-1}a_j$ has color 0 and $a_j a_{j+1}$ has color 1. Then $a_{\ell-1+i}, a_{\ell+i}$ has color 0 for every $i \in [k]$. This finishes the proof.

Fix π , let $\mathcal{F}_{\pi} = \{A_1, A_2, ..., A_k\}$ and let $A_1 \cap A_2 \cap ... \cap A_k = \{t\}$. If any element of \mathcal{F} contains t, then \mathcal{F} is a star, we are done. So we may assume that there exists $A_0 \in \mathcal{F}$ such that $t \notin A_0$.

Claim 3. For any $B \in \binom{A_1 \cup A_k \setminus \{t\}}{k-1}$, we have $B \cup \{t\} \in \mathcal{F}$.

Proof of Claim 3. Consider another cycle permutation π' with A_1, A_k unchanged, but the order of the integers inside $A_1 \setminus \{t\}$ and $A_k \setminus \{t\}$ are changed.

Since $A_1, A_k \in \mathcal{F}_{\pi'}$, by Claim 2 all other k-sets in $A_1 \cup A_k$ formed by k consecutive integers on π' are also in $\mathcal{F}_{\pi'} \subseteq \mathcal{F}$. Repeating using the argument, we prove Claim 3.

Claim 4. The subset $A_0 \in \mathcal{F}$ (with $t \notin A_0$) satisfies $A_0 \subseteq A_1 \cup A_k \setminus \{t\}$.

Proof of Claim 4. Otherwise, A_0 has at most k - 1 elements in $A_1 \cup A_k$. Then we have $|A_1 \cup A_k - A_0| \ge k$ (as $|A_1 \cup A_k| = 2k - 1$). So, we can pick a k-subset $B \subseteq A_1 \cup A_k - A_0$ such that $t \in B$. By Claim 3, we have $B \in \mathcal{F}$. But $A_0 \cap B = \emptyset$, contradicting that \mathcal{F} is intersecting. This proves Claim 4.

Claim 5. We have $\binom{A_1 \cup A_k}{k} \subseteq \mathcal{F}$.

Proof of Claim 5. Consider any $i \in A_0$, let $B_i = (A_1 \cup A_k \setminus A_0) \cup \{i\}$. Since $t \in B_i$, by Claim 3, we have $B_i \in \mathcal{F}$. Repeating the proof of Claim 3, we can obtain that any k-subset of $A_1 \cup A_k$ containing i belongs to \mathcal{F} . In other words, any k-subset B of $A_1 \cup A_k$ must intersect A_0 , and thus belongs to \mathcal{F} . Then we have $\binom{A_1 \cup A_k}{k} \subseteq \mathcal{F}$.

If there exists a k-subset $C \in \mathcal{F}$ such that $B \nsubseteq A_1 \cup A_k$, then $|A_1 \cup A_k - B| \ge k$. So there exists $D \subseteq A_1 \cup A_k - C$ with |D| = k. By Claim 5, we have $D \in \mathcal{F}$, but $C \cap D = \emptyset$, a contradiction. This proves $\binom{A_1 \cup A_k}{k} = \mathcal{F}$.

Since n > 2k, we see $|\mathcal{F}| = \binom{2k-1}{k} = \binom{2k-1}{k-1} < \binom{n-1}{k-1} = |\mathcal{F}|$, a contradiction. This completes the proof.