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1 The third proof of Cayley’s formula (using Linear Algebra)

Definition 1.1. A multigraph is a graph, where we allow multiple edges between vertices but do
not allow loops.

For a multigraph G in [n], we define the Laplace matrix Q = (qij)n×n of G as follows:

qij =

{
dG(i), if i = j.

−m, if i 6= j and there are m edges between i and j.

Note that Q is symmetric, and the sum of each row/column is 0.
For example

Q =


6 −3 −1 −2 0
−3 5 0 −1 −1
−1 0 6 −1 −4
−2 −1 −1 5 −1
0 −1 −4 −1 6

 .

For an n× n matrix Q, let Qij be the (n− 1)× (n− 1) matrix obtained from Q by deleting
the ith row and jth column.

Theorem 1.2. For any multigraph G, ST (G) = det(Q11), where Qij is the (n − 1) × (n − 1)
matrix obtained from the Laplace matrix Q of G by deleting the ith row and jth column.

Proof. We prove this by using induction on the number of edges in G. Base case, suppose that
e(G) = 1. Then it holds trivially.

Now we consider a multigraph G and assume this holds for any multigraph with less than
e(G) edges. Take any edge e in G. Define two multigraph as following.

1. G− e = the multigraph obtained from G be deleting the edge e.
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2. G/e = the multigraph obtained from G by contracting the two endpoints x, y of e into a
new vertex z and adding new edges in {zu : xu ∈ E(G)} ∪ {zu : yu ∈ E(G)}.

Let Q′ and Q′′ be the Laplace matrices of G − e and G/e respectively. If in a multigraph G
the vertex number 1 is not incident to any edge, then we have T (G) = 0. The first row of the
Laplace matrix consists only of zeros, the sum of the rows of Q11 is also zero. Thus, det(Q11) = 0.
If the vertex number 1 is incident to at least one edge. More precisely, assume that the edge e
has endpoints 1 and 2. So

Q′ =


5 −2 −1 −2 0
−2 4 0 −1 −1
−1 0 6 −1 −4
−2 −1 −1 5 −1
0 −1 −4 −1 6

 , Q′′ =


5 −1 −3 −1
−1 6 −1 −4
−3 −1 5 −1
−1 −4 −1 6

 .

Let Q11,22 be the matrix obtained from Q by deleting the first two rows and the first two
columns. Then we have

det(Q11) = det((Q′)11) + det(Q11,22). (1.1)

We also see that

Q11,22 = (Q′′)11. (1.2)

By (1.1) and (1.2) we have

det(Q11) = det((Q′)11) + det((Q′′)11). (1.3)

Claim. For any edge e in G, we have

ST (G) = ST (G− e) + ST (G/e). (1.4)

Proof. We divide the spanning trees of G into two classes:
-the 1st class contains those spanning trees of G NOT containing e, which are exactly ST (G−

e).
-the 2nd class contains those spanning trees of G containing e. We can easily see that the

trees in the 2nd class are one-to-one corresponding to the spanning trees of G/e.
This proves (1.4)

By induction, we have ST (G − e) = det(Q′11), ST (G/e) = det((Q′′)11). By (1.3), we have
ST (G) = det(Q11).

Proof of Cayley’s Formula. For Kn, we have

Q =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


n×n

,

which implies that ST (G) = det(Q11) = nn−2.
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2 Intersecting Family

Definition 2.1. A family F ⊂ 2[n] is intersecting if for any A,B ∈ F , we have A
⋂
B 6= ∅.

Fact 2.2. For any intersecting family F ⊂ 2[n], we have |F| ≤ 2n−1.

Proof. Consider all pairs {A,Ac} for all A ⊂ [n]. Note that there are exactly 2n−1 such pairs,
and F can have at most one subset from every pairs. This proves |F| ≤ 2n−1.

Note that this is tight:

• F = {A ⊂ [n] : 1 ∈ A}.

• For n is odd, F = {A ∈ [n] : |A| > n
2 }.

A harder problem: What is the largest intersecting family F ⊂
([n]
k

)
, for fixed k?

Theorem 2.3 (Erdős-Ko-Rado Theorem). For n ≥ 2k, the largest intersecting family F ⊂
([n]
k

)
has size

(
n−1
k−1
)
.

Moreover, if n > 2k, then the largest intersecting family F ⊂
([n]
k

)
must be F = {A ∈

([n]
k

)
:

t ∈ A} for some fixed t ∈ [n].

Proof. Take a cyclic permutation π = (a1, a2, ..., an) of [n]. Note that there are (n − 1)! cyclic
permutations of [n] in total.

Let Fπ = {A ∈ F : A appears as k consecutive numbers in the circuit of π.}

Claim 1. For all cyclic permutation π, assume n ≥ 2k, then |Fπ| ≤ k.

Proof. Pick A ∈ Fπ, say A = {a1, a2, ..., ak}. We call the edges ana1, akak+1 as the boundary
edges of A, and the edges a1a2, a2a3, ..., ak−1ak as the inner-edges of A. We observe that for any
distinct A,B ∈ Fπ, the boundary-edges of A and B are distinct. For any B ∈ Fπ \ {A}, as
A
⋂
B 6= φ. we see that one of the boundary-edges of B must be an inner-edge of A. But A has

k− 1 inner-edges, so we see that there are at most k− 1 many subsets in Fπ \ {A}. So |Fπ| ≤ k.

Next we do a double-counting. Let N be the number of pairs (π,A), where π is a cyclic
permutation of [n], and A ∈ Fπ. By Claim 1, N =

∑
π |Fπ| ≤ k(n− 1)!. Fix A, how many cyclic

π such that A ∈ Fπ? The answer is k!(n− k)!. So the number of cyclic permutations π such that
π contains the elements of A as k consecutive numbers is k!(n− k)!. So we have

k(n− 1)! ≥ N =
∑
A∈F

k!(n− k)! = |F|k!(n− k)!,

which implies that

|F| ≤ k · (n− 1)!

k!(n− k)!
=

(
n− 1

k − 1

)
.

If n > 2k, for the extremal case F =
(
n−1
k−1
)
, we want to show F must be a star. From the

preview proof, we see that for any cycle permutation π, |Fπ| = k. And we have following claim.

Claim 2. Fix any π = (a0, a1, ..., an−1). If Fπ = {A1, A2, ..., Ak}, then A1 ∩ A2 ∩ ... ∩ Ak = {t}
for some 0 ≤ t ≤ n − 1, where Aj = {aj+r, aj+r+1, ..., aj+r+k−1} for 1 6 j 6 k and for some
0 ≤ r ≤ n− 1 (where the indices are taken under the additive group Zn.) .
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Proof. With loss of generality, suppose that A = {a1, ...ak} ∈ Fπ. From the preview proof, we
know aiai+1 is boundary-edge of some Bi ∈ Fπ where i ∈ [k− 1], and for any distinct A,B ∈ Fπ,
the boundary-edges of A and B are distinct. For any C ∈ F , we color the two boundary-edges
by 1 and 0, respectively, according to the clockwise direction. Since a0a1 has color 1 and akak+1

has color 0. There must exist ` ∈ [k] such that a`−1a` has color 1 and a`a`+1 has color 0. Let
A1 = {a`−k+1, a`−k+2, ..., a`−1, a`} and Ak = {a`, a`+1, ..., a`+k−1}. Since F is intersecting and
n > 2k, there dose not exist j such that aj−1aj has color 0 and ajaj+1 has color 1. Then
a`−1+i, a`+i has color 0 for every i ∈ [k]. This finishes the proof.

Fix π, let Fπ = {A1, A2, ..., Ak} and let A1 ∩A2 ∩ ...∩Ak = {t}. If any element of F contains
t, then F is a star, we are done. So we may assume that there exists A0 ∈ F such that t /∈ A0.

Claim 3. For any B ∈
(A1∪Ak\{t}

k−1
)
, we have B ∪ {t} ∈ F .

Proof of Claim 3. Consider another cycle permutation π
′

with A1, Ak unchanged, but the order
of the integers inside A1 \ {t} and Ak \ {t} are changed.

Since A1, Ak ∈ Fπ′ , by Claim 2 all other k-sets in A1 ∪ Ak formed by k consecutive integers

on π
′

are also in Fπ′ ⊆ F . Repeating using the argument, we prove Claim 3.

Claim 4. The subset A0 ∈ F (with t /∈ A0) satisfies A0 ⊆ A1 ∪Ak \ {t}.

Proof of Claim 4. Otherwise, A0 has at most k − 1 elements in A1 ∪ Ak. Then we have |A1 ∪
Ak − A0| > k (as |A1 ∪ Ak| = 2k − 1). So, we can pick a k-subset B ⊆ A1 ∪ Ak − A0 such that
t ∈ B. By Claim 3, we have B ∈ F . But A0 ∩ B = ∅, contradicting that F is intersecting. This
proves Claim 4.

Claim 5. We have
(
A1∪Ak

k

)
⊆ F .

Proof of Claim 5. Consider any i ∈ A0, let Bi = (A1 ∪ Ak \ A0) ∪ {i}. Since t ∈ Bi, by Claim 3,
we have Bi ∈ F . Repeating the proof of Claim 3, we can obtain that any k-subset of A1 ∪ Ak
containing i belongs to F . In other words, any k-subset B of A1∪Ak must intersect A0, and thus
belongs to F . Then we have

(
A1∪Ak

k

)
⊆ F .

If there exists a k-subset C ∈ F such that B * A1∪Ak, then |A1∪Ak−B| > k. So there exists
D ⊆ A1 ∪ Ak − C with |D| = k. By Claim 5, we have D ∈ F , but C ∩D = ∅, a contradiction.
This proves

(
A1∪Ak

k

)
= F .

Since n > 2k, we see |F| =
(
2k−1
k

)
=
(
2k−1
k−1

)
<
(
n−1
k−1
)

= |F|, a contradiction. This completes
the proof.

4


