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1 The third proof of Cayley’s formula (using Linear Algebra)

Definition 1.1. A multigraph is a graph, where we allow multiple edges between vertices but do
not allow loops.

For a multigraph G in [n], we define the Laplace matrix @ = (gij)nxn of G as follows:

da(i), ifi=j.
qij_{G” J

—m, if ¢ # j and there are m edges between ¢ and j.

Note that @ is symmetric, and the sum of each row/column is 0.
For example

2 — 4 5

6 -3 -1 -2 0
-3 5 0 -1 -1
o= -1 0 6 -1 —4
-2 -1 -1 5 -1
0 -1 -4 -1 6
For an n x n matrix @, let Q;; be the (n — 1) x (n — 1) matrix obtained from @ by deleting

the i*" row and j** column.

Theorem 1.2. For any multigraph G, ST(G) = det(Q11), where Q;; is the (n — 1) x (n — 1)
matriz obtained from the Laplace matriz Q of G by deleting the it" row and j* column.

Proof. We prove this by using induction on the number of edges in G. Base case, suppose that
e(G) = 1. Then it holds trivially.

Now we consider a multigraph G and assume this holds for any multigraph with less than
e(G) edges. Take any edge e in G. Define two multigraph as following.

1. G — e = the multigraph obtained from G be deleting the edge e.



2. G/e = the multigraph obtained from G by contracting the two endpoints z,y of e into a
new vertex z and adding new edges in {zu : zu € E(G)} U{zu: yu € E(G)}.

Let Q" and Q" be the Laplace matrices of G — e and G/e respectively. If in a multigraph G
the vertex number 1 is not incident to any edge, then we have T(G) = 0. The first row of the
Laplace matrix consists only of zeros, the sum of the rows of @17 is also zero. Thus, det(Q11) = 0.
If the vertex number 1 is incident to at least one edge. More precisely, assume that the edge e
has endpoints 1 and 2. So

5 -2 -1 -2 0
-2 4 0 -1 -1

Q=] -1 0 6 -1 —4 |,Q"=
-2 -1 -1 5 -1
0 -1 —4 -1 6

5 -1 =3 -1
-1 6 -1 -4
-3 -1 5 -1
-1 -4 -1 6

Let Q11,22 be the matrix obtained from @ by deleting the first two rows and the first two
columns. Then we have

det(Q11) = det((Q")11) + det(Qn1,22)- (1.1)
We also see that
Q11,22 = (@)1 (1.2)
By (1.1) and (1.2) we have
det(Qu1) = det((Q')11) + det((Q")11). (1.3)

Claim. For any edge e in GG, we have
ST(G) = ST(G —e) + ST(G/e). (1.4)

Proof. We divide the spanning trees of GG into two classes:
-the 1! class contains those spanning trees of G NOT containing e, which are exactly ST(G —
e).
-the 2" class contains those spanning trees of G containing e. We can easily see that the
trees in the 2"? class are one-to-one corresponding to the spanning trees of G'/e.
This proves (1.4)
|

By induction, we have ST(G — e) = det(Q};), ST(G/e) = det((Q")11). By (1.3), we have
ST(G) = det(Qn).

|
Proof of Cayley’s Formula. For K,, we have
n—1 -1 -1
-1 n-1 -1
Q= | ,
-1 -1 n—1
nxn
which implies that ST(G) = det(Q11) = n" 2. ]



2 Intersecting Family

Definition 2.1. A family F C 2" is intersecting if for any A, B € F, we have A(\B # 0.
Fact 2.2. For any intersecting family F C 2", we have |F| < 271

Proof. Consider all pairs {4, A} for all A C [n]. Note that there are exactly 2"~! such pairs,
and F can have at most one subset from every pairs. This proves |F| < 271, 1

Note that this is tight:

o F={AC|n]:1€ A}

e For nisodd, F = {A € [n]:|A] > 5}

A harder problem: What is the largest intersecting family F C ([Z]), for fixed k7

Theorem 2.3 (Erdés-Ko-Rado Theorem). For n > 2k, the largest intersecting family F C ([Z])
has size (Zj)

Moreover, if n > 2k, then the largest intersecting family F C ([Z]) must be F = {A € ([Z]) :
t € A} for some fized t € [n].

Proof. Take a cyclic permutation m = (a1, ag, ...,a,) of [n]. Note that there are (n — 1)! cyclic
permutations of [n] in total.
Let Fr = {A € F: A appears as k consecutive numbers in the circuit of 7.}

Claim 1. For all cyclic permutation 7, assume n > 2k, then |F;| < k.

Proof. Pick A € Fr, say A = {a1,az,...,ar}. We call the edges a,a1,arar+1 as the boundary
edges of A, and the edges ajas, asas, ..., ar_1ay as the inner-edges of A. We observe that for any
distinct A, B € F;, the boundary-edges of A and B are distinct. For any B € F; \ {4}, as
AN B # ¢. we see that one of the boundary-edges of B must be an inner-edge of A. But A has
k — 1 inner-edges, so we see that there are at most k£ — 1 many subsets in F \ {A}. So |Fx| < k.

|

Next we do a double-counting. Let N be the number of pairs (m, A), where 7 is a cyclic
permutation of [n], and A € Fr. By Claim 1, N = ) |F;| < k(n — 1)!. Fix A, how many cyclic
7 such that A € F;? The answer is k!(n — k)!. So the number of cyclic permutations 7 such that
7 contains the elements of A as k consecutive numbers is k!(n — k)!. So we have

k(n—1)!> N =Y kl(n—k)! = |Flk!(n - k),
AeF

kE-(n—1)! (n-1
Fl = kl(n —k)! (k—1>'
n—1

If n > 2k, for the extremal case F = (k—l)’ we want to show F must be a star. From the
preview proof, we see that for any cycle permutation 7, |F;| = k. And we have following claim.

which implies that

Claim 2. Fix any m = (ag,a1,...,an—1). If Fr = {A1, Ag, ..., Ax}, then Ay N AsN...N A = {t}
for some 0 <t < n — 1, where A; = {aj1r,@j4r41, ..., @jrpk—1} for 1 < j < k and for some
0 <7 <n—1 (where the indices are taken under the additive group Z,.) .



Proof. With loss of generality, suppose that A = {a1,...ap} € Fr. From the preview proof, we
know a;a; 1 is boundary-edge of some B; € F, where i € [k — 1], and for any distinct A, B € Fr,
the boundary-edges of A and B are distinct. For any C' € F, we color the two boundary-edges
by 1 and 0, respectively, according to the clockwise direction. Since aga; has color 1 and agagy1
has color 0. There must exist ¢ € [k] such that ay—ja, has color 1 and asasy; has color 0. Let
Ay = {ar—k+1, 0r—k+2, -.yap—1,a¢} and Ay = {ag,ap41,...,a015—1}. Since F is intersecting and
n > 2k, there dose not exist j such that a;_1a; has color 0 and aja;11 has color 1. Then
ay—1+i, ag+; has color 0 for every i € [k]. This finishes the proof. |

Fix 7, let Fr = {A1, Ag, ..., Ax} and let A; N AyN...N A = {t}. If any element of F contains
t, then F is a star, we are done. So we may assume that there exists Ag € F such that t ¢ Ap.

Claim 3. For any B € (Aluk{kl\{t}), we have BU {t} € F.

Proof of Claim 3. Consider another cycle permutation 7« with Ay, Ay unchanged, but the order
of the integers inside A; \ {t} and Ay \ {t} are changed.

Since Ay, Ay € F_s, by Claim 2 all other k-sets in A; U Ay formed by k consecutive integers
on 7 are also in F. € F. Repeating using the argument, we prove Claim 3. |

Claim 4. The subset Ay € F (with ¢ ¢ Ap) satisfies Ag C A1 U Ay \ {t}.

Proof of Claim 4. Otherwise, Ay has at most k — 1 elements in A; U Ag. Then we have |A; U
A — Aol = k (as |41 U Ag| = 2k — 1). So, we can pick a k-subset B C Ay U A, — Ap such that
t € B. By Claim 3, we have B € F. But Ay N B = (), contradicting that F is intersecting. This
proves Claim 4. |

Claim 5. We have (1104) C F.

Proof of Claim 5. Consider any i € A, let B; = (A1 U A; \ Ag) U {i}. Since t € B;, by Claim 3,
we have B; € F. Repeating the proof of Claim 3, we can obtain that any k-subset of A1 U Ay
containing ¢ belongs to F. In other words, any k-subset B of A; U Ay must intersect Ag, and thus
belongs to F. Then we have (AIL,;A’“) C F. |

If there exists a k-subset C' € F such that B ¢ Ay UA, then |[A1UA,—B| > k. So there exists
D C A; U Ay — C with |D| = k. By Claim 5, we have D € F, but C N D = (), a contradiction.
This proves (AliA’“) =F.
Since n > 2k, we see |F| = (%k_l) = (Qkk__ll) < (Zj) = |F|, a contradiction. This completes
the proof.
|



