Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang
2020 Fall, USTC

1 The third proof of Cayley's formula (using Linear Algebra)

Definition 1.1. A multigraph is a graph, where we allow multiple edges between vertices but do not allow loops.

For a multigraph G in $[n]$, we define the Laplace matrix $Q=\left(q_{i j}\right)_{n \times n}$ of G as follows:

$$
q_{i j}= \begin{cases}d_{G}(i), & \text { if } i=j . \\ -m, & \text { if } i \neq j \text { and there are } m \text { edges between } i \text { and } j .\end{cases}
$$

Note that Q is symmetric, and the sum of each row/column is 0 .
For example

$$
Q=\left(\begin{array}{ccccc}
6 & -3 & -1 & -2 & 0 \\
-3 & 5 & 0 & -1 & -1 \\
-1 & 0 & 6 & -1 & -4 \\
-2 & -1 & -1 & 5 & -1 \\
0 & -1 & -4 & -1 & 6
\end{array}\right) .
$$

For an $n \times n$ matrix Q, let $Q_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained from Q by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

Theorem 1.2. For any multigraph $G, S T(G)=\operatorname{det}\left(Q_{11}\right)$, where $Q_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from the Laplace matrix Q of G by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

Proof. We prove this by using induction on the number of edges in G. Base case, suppose that $e(G)=1$. Then it holds trivially.

Now we consider a multigraph G and assume this holds for any multigraph with less than $e(G)$ edges. Take any edge e in G. Define two multigraph as following.

1. $G-e=$ the multigraph obtained from G be deleting the edge e.
2. $G / e=$ the multigraph obtained from G by contracting the two endpoints x, y of e into a new vertex z and adding new edges in $\{z u: x u \in E(G)\} \cup\{z u: y u \in E(G)\}$.

Let Q^{\prime} and $Q^{\prime \prime}$ be the Laplace matrices of $G-e$ and G / e respectively. If in a multigraph G the vertex number 1 is not incident to any edge, then we have $T(G)=0$. The first row of the Laplace matrix consists only of zeros, the sum of the rows of Q_{11} is also zero. Thus, $\operatorname{det}\left(Q_{11}\right)=0$. If the vertex number 1 is incident to at least one edge. More precisely, assume that the edge e has endpoints 1 and 2 . So

$$
Q^{\prime}=\left(\begin{array}{ccccc}
5 & -2 & -1 & -2 & 0 \\
-2 & 4 & 0 & -1 & -1 \\
-1 & 0 & 6 & -1 & -4 \\
-2 & -1 & -1 & 5 & -1 \\
0 & -1 & -4 & -1 & 6
\end{array}\right), Q^{\prime \prime}=\left(\begin{array}{cccc}
5 & -1 & -3 & -1 \\
-1 & 6 & -1 & -4 \\
-3 & -1 & 5 & -1 \\
-1 & -4 & -1 & 6
\end{array}\right)
$$

Let $Q_{11,22}$ be the matrix obtained from Q by deleting the first two rows and the first two columns. Then we have

$$
\begin{equation*}
\operatorname{det}\left(Q_{11}\right)=\operatorname{det}\left(\left(Q^{\prime}\right)_{11}\right)+\operatorname{det}\left(Q_{11,22}\right) \tag{1.1}
\end{equation*}
$$

We also see that

$$
\begin{equation*}
Q_{11,22}=\left(Q^{\prime \prime}\right)_{11} . \tag{1.2}
\end{equation*}
$$

By (1.1) and (1.2) we have

$$
\begin{equation*}
\operatorname{det}\left(Q_{11}\right)=\operatorname{det}\left(\left(Q^{\prime}\right)_{11}\right)+\operatorname{det}\left(\left(Q^{\prime \prime}\right)_{11}\right) . \tag{1.3}
\end{equation*}
$$

Claim. For any edge e in G, we have

$$
\begin{equation*}
S T(G)=S T(G-e)+S T(G / e) . \tag{1.4}
\end{equation*}
$$

Proof. We divide the spanning trees of G into two classes:
-the $1^{\text {st }}$ class contains those spanning trees of G NOT containing e, which are exactly $S T(G-$ e).
-the $2^{\text {nd }}$ class contains those spanning trees of G containing e. We can easily see that the trees in the $2^{\text {nd }}$ class are one-to-one corresponding to the spanning trees of G / e.

This proves (1.4)

By induction, we have $S T(G-e)=\operatorname{det}\left(Q_{11}^{\prime}\right), S T(G / e)=\operatorname{det}\left(\left(Q^{\prime \prime}\right)_{11}\right)$. By (1.3), we have $S T(G)=\operatorname{det}\left(Q_{11}\right)$.

Proof of Cayley's Formula. For K_{n}, we have

$$
Q=\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right)_{n \times n}
$$

which implies that $S T(G)=\operatorname{det}\left(Q_{11}\right)=n^{n-2}$.

2 Intersecting Family

Definition 2.1. A family $\mathcal{F} \subset 2^{[n]}$ is intersecting if for any $A, B \in \mathcal{F}$, we have $A \bigcap B \neq \emptyset$.
Fact 2.2. For any intersecting family $\mathcal{F} \subset 2^{[n]}$, we have $|\mathcal{F}| \leq 2^{n-1}$.
Proof. Consider all pairs $\left\{A, A^{c}\right\}$ for all $A \subset[n]$. Note that there are exactly 2^{n-1} such pairs, and \mathcal{F} can have at most one subset from every pairs. This proves $|\mathcal{F}| \leq 2^{n-1}$.

Note that this is tight:

- $\mathcal{F}=\{A \subset[n]: 1 \in A\}$.
- For n is odd, $\mathcal{F}=\left\{A \in[n]:|A|>\frac{n}{2}\right\}$.

A harder problem: What is the largest intersecting family $\mathcal{F} \subset\binom{[n]}{k}$, for fixed k ?
Theorem 2.3 (Erdős-Ko-Rado Theorem). For $n \geq 2 k$, the largest intersecting family $\mathcal{F} \subset\binom{[n]}{k}$ has size $\binom{n-1}{k-1}$.

Moreover, if $n>2 k$, then the largest intersecting family $\mathcal{F} \subset\binom{[n]}{k}$ must be $\mathcal{F}=\left\{A \in\binom{[n]}{k}\right.$: $t \in A\}$ for some fixed $t \in[n]$.
Proof. Take a cyclic permutation $\pi=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $[n]$. Note that there are $(n-1)$! cyclic permutations of $[n]$ in total.

Let $\mathcal{F}_{\pi}=\{A \in \mathcal{F}: A$ appears as k consecutive numbers in the circuit of π.
Claim 1. For all cyclic permutation π, assume $n \geq 2 k$, then $\left|\mathcal{F}_{\pi}\right| \leq k$.
Proof. Pick $A \in \mathcal{F}_{\pi}$, say $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. We call the edges $a_{n} a_{1}, a_{k} a_{k+1}$ as the boundary edges of A, and the edges $a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{k-1} a_{k}$ as the inner-edges of A. We observe that for any distinct $A, B \in \mathcal{F}_{\pi}$, the boundary-edges of A and B are distinct. For any $B \in \mathcal{F}_{\pi} \backslash\{A\}$, as $A \bigcap B \neq \phi$. we see that one of the boundary-edges of B must be an inner-edge of A. But A has $k-1$ inner-edges, so we see that there are at most $k-1$ many subsets in $\mathcal{F}_{\pi} \backslash\{A\}$. So $\left|\mathcal{F}_{\pi}\right| \leq k$.

Next we do a double-counting. Let N be the number of pairs (π, A), where π is a cyclic permutation of [n], and $A \in \mathcal{F}_{\pi}$. By Claim $1, N=\sum_{\pi}\left|\mathcal{F}_{\pi}\right| \leq k(n-1)$!. Fix A, how many cyclic π such that $A \in \mathcal{F}_{\pi}$? The answer is $k!(n-k)$!. So the number of cyclic permutations π such that π contains the elements of A as k consecutive numbers is $k!(n-k)!$. So we have

$$
k(n-1)!\geq N=\sum_{A \in \mathcal{F}} k!(n-k)!=|\mathcal{F}| k!(n-k)!,
$$

which implies that

$$
|\mathcal{F}| \leq \frac{k \cdot(n-1)!}{k!(n-k)!}=\binom{n-1}{k-1} .
$$

If $n>2 k$, for the extremal case $\mathcal{F}=\binom{n-1}{k-1}$, we want to show \mathcal{F} must be a star. From the preview proof, we see that for any cycle permutation $\pi,\left|\mathcal{F}_{\pi}\right|=k$. And we have following claim.

Claim 2. Fix any $\pi=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. If $\mathcal{F}_{\pi}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, then $A_{1} \cap A_{2} \cap \ldots \cap A_{k}=\{t\}$ for some $0 \leq t \leq n-1$, where $A_{j}=\left\{a_{j+r}, a_{j+r+1}, \ldots, a_{j+r+k-1}\right\}$ for $1 \leqslant j \leqslant k$ and for some $0 \leq r \leq n-1$ (where the indices are taken under the additive group \mathbb{Z}_{n}.).

Proof. With loss of generality, suppose that $A=\left\{a_{1}, \ldots a_{k}\right\} \in \mathcal{F}_{\pi}$. From the preview proof, we know $a_{i} a_{i+1}$ is boundary-edge of some $B_{i} \in \mathcal{F}_{\pi}$ where $i \in[k-1]$, and for any distinct $A, B \in \mathcal{F}_{\pi}$, the boundary-edges of A and B are distinct. For any $C \in \mathcal{F}$, we color the two boundary-edges by 1 and 0 , respectively, according to the clockwise direction. Since $a_{0} a_{1}$ has color 1 and $a_{k} a_{k+1}$ has color 0 . There must exist $\ell \in[k]$ such that $a_{\ell-1} a_{\ell}$ has color 1 and $a_{\ell} a_{\ell+1}$ has color 0 . Let $A_{1}=\left\{a_{\ell-k+1}, a_{\ell-k+2}, \ldots, a_{\ell-1}, a_{\ell}\right\}$ and $A_{k}=\left\{a_{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right\}$. Since \mathcal{F} is intersecting and $n>2 k$, there dose not exist j such that $a_{j-1} a_{j}$ has color 0 and $a_{j} a_{j+1}$ has color 1 . Then $a_{\ell-1+i}, a_{\ell+i}$ has color 0 for every $i \in[k]$. This finishes the proof.

Fix π, let $\mathcal{F}_{\pi}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and let $A_{1} \cap A_{2} \cap \ldots \cap A_{k}=\{t\}$. If any element of \mathcal{F} contains t, then \mathcal{F} is a star, we are done. So we may assume that there exists $A_{0} \in \mathcal{F}$ such that $t \notin A_{0}$.

Claim 3. For any $B \in\binom{A_{1} \cup A_{k} \backslash\{t\}}{k-1}$, we have $B \cup\{t\} \in \mathcal{F}$.
Proof of Claim 3. Consider another cycle permutation π^{\prime} with A_{1}, A_{k} unchanged, but the order of the integers inside $A_{1} \backslash\{t\}$ and $A_{k} \backslash\{t\}$ are changed.

Since $A_{1}, A_{k} \in \mathcal{F}_{\pi^{\prime}}$, by Claim 2 all other k-sets in $A_{1} \cup A_{k}$ formed by k consecutive integers on π^{\prime} are also in $\mathcal{F}_{\pi^{\prime}} \subseteq \mathcal{F}$. Repeating using the argument, we prove Claim 3.

Claim 4. The subset $A_{0} \in \mathcal{F}$ (with $t \notin A_{0}$) satisfies $A_{0} \subseteq A_{1} \cup A_{k} \backslash\{t\}$.
Proof of Claim 4. Otherwise, A_{0} has at most $k-1$ elements in $A_{1} \cup A_{k}$. Then we have $\mid A_{1} \cup$ $A_{k}-A_{0} \mid \geqslant k$ (as $\left|A_{1} \cup A_{k}\right|=2 k-1$). So, we can pick a k-subset $B \subseteq A_{1} \cup A_{k}-A_{0}$ such that $t \in B$. By Claim 3, we have $B \in \mathcal{F}$. But $A_{0} \cap B=\emptyset$, contradicting that \mathcal{F} is intersecting. This proves Claim 4.

Claim 5. We have $\binom{A_{1} \cup A_{k}}{k} \subseteq \mathcal{F}$.
Proof of Claim 5. Consider any $i \in A_{0}$, let $B_{i}=\left(A_{1} \cup A_{k} \backslash A_{0}\right) \cup\{i\}$. Since $t \in B_{i}$, by Claim 3, we have $B_{i} \in \mathcal{F}$. Repeating the proof of Claim 3, we can obtain that any k-subset of $A_{1} \cup A_{k}$ containing i belongs to \mathcal{F}. In other words, any k-subset B of $A_{1} \cup A_{k}$ must intersect A_{0}, and thus belongs to \mathcal{F}. Then we have $\binom{A_{1} \cup A_{k}}{k} \subseteq \mathcal{F}$.

If there exists a k-subset $C \in \mathcal{F}$ such that $B \nsubseteq A_{1} \cup A_{k}$, then $\left|A_{1} \cup A_{k}-B\right| \geqslant k$. So there exists $D \subseteq A_{1} \cup A_{k}-C$ with $|D|=k$. By Claim 5, we have $D \in \mathcal{F}$, but $C \cap D=\emptyset$, a contradiction. This proves $\binom{A_{1} \cup A_{k}}{k}=\mathcal{F}$.

Since $n>2 k$, we see $|\mathcal{F}|=\binom{2 k-1}{k}=\binom{2 k-1}{k-1}<\binom{n-1}{k-1}=|\mathcal{F}|$, a contradiction. This completes the proof.

