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1 The Second Proof of Erdős-Ko-Rado Theorem

Definition 1.1. A Kneser graph K(n, k) with n > 2k is a graph with vertex set
([n]
k

)
such that

for any two sets A,B ∈
([n]
k

)
, A is adjacent to B in K(n, k) if and only if A ∩B = ∅.

One can easily check that K(5, 2) is the Petersen graph.

Definition 1.2. Given a graph G, we let α(G) be the number of vertices in a largest independent
set in G.

We note that any independent set in K(n, k) is an intersecting family in
([n]
k

)
. Therefore, we

have the following.

Theorem 1.3 (Erdős-Ko-Rado (Restatement)). For n ≥ 2k, α(K(n, k)) 6
(
n−1
k−1

)
.

Definition 1.4. The adjacency matrix AG = (aij)n×n of an n-vertex graph G is defined by

aij =

{
1, if ij ∈ E(G),

0, otherwise.

Definition 1.5. The eigenvalues λ1 > λ2 > ... > λn of AG is called the eigenvalues of G. The
eigenvectors ~v1, ~v2, ..., ~vn of AG satisfying

AG~vi = λi~vi,

||~vi|| = 1,

~vi⊥~vj for any i 6= j,

are called the orthonormal eigenvectors of G.

Note that AG is an n × n 0/1 symmetric matrix. Thus all the eigenvalues of G are real
numbers.

Definition 1.6. A graph G is d-regular if all vertices have the same degree d.

Exercise 1.7. If G is d-regular, then the largest eigenvalue of G is d.

Theorem 1.8 (Hoffman’s Theorem). If an n-vertex graph G is d-regular with eigenvalues λ1 >

λ2 > ... > λn, then α(G) 6 n · −λn
λ1 − λn
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Proof. Let V (G) = [n]. Let ~v1, ..., ~vn be the corresponding orthonormal eigenvectors of eigenvalues
λ1 > λ2 > ... > λn of G. Thus we have

AG~vi = λi~vi,

||~vi|| = 1,

~vi⊥~vj ⇔< ~vi, ~vj >= 0, ∀i 6= j.

Let I be an independent set of G with |I| = α(G). Let ~1I ∈ {0, 1}n be the vector such that its
jth coordinate is 1 if j ∈ I, and 0 otherwise. Then we can write

~1I =
n∑

i=1

αi~vi for some αi ∈ R.

Then we have

|I| =< ~1I ,~1I >=<
∑
i

αi~vi,
∑
j

αj ~vj >=

n∑
i=1

α2
i , (1.1)

where αi =< ~1I , ~vi >.
Since G is d-regular, we have that λ1 = d and ~v1 = (1/

√
n, ..., 1/

√
n)T . So we get

α1 =< ~1I , ~v1 >=
|I|√
n
. (1.2)

Since I is an independent set in G,

~1TI AG
~1I =

∑
i,j

(~1I)iaij(~1I)j = 0,

where A(G) = (aij). On the other hand, we also have

0 = ~1TI AG
~1I =

(∑
i

αi~vi
)T
AG

(∑
j

αj~vj
)

=
(∑

i

αi~vi
)T (∑

j

αjλj~vj
)

=

n∑
i=1

α2
iλi ≥ α2

1λ1 + (α2
2 + · · ·+ α2

n)λn
by (1.1) (1.2)

=
|I|2

n
λ1 +

(
|I| − |I|

2

n

)
λn.

Thus we have

|I|2

n
λ1 +

(
|I| − |I|

2

n

)
λn ≤ 0, and |I|

(
|I|
n
λ1 + λn −

|I|
n
λn

)
≤ 0,

which implies that

α(G) = |I| ≤ n · −λn
λ1 − λn

.

Theorem 1.9 (see GTM 207, Theorem 9.4.3). The eigenvalues of Kneser graph K(n, k) are:

uj = (−1)j
(
n− k − j
k − j

)
of multiplicity

(
n

j

)
−
(

n

j − 1

)
for every 0 ≤ j ≤ k.
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Proof of Theorem 1.3. Consider the eigenvalues of K(n, k), say λ1 ≥ λ2 · · · ≥ λ(nk)
, where λ1 =(

n−k
k

)
, λ(nk)

= −
(
n−k−1
k−1

)
. By Hoffman’s bound,

α(K(n, k)) ≤
(
n

k

) −λ(nk)

λ1 − λ(nk)
=

(
n

k

) (
n−k−1
k−1

)(
n−k
k

)
+
(
n−k−1
k−1

) =

(
n− 1

k − 1

)
,

as desired.

2 Partially Ordered Sets (Poset)

Let X be a finite set.

Definition 2.1. R is a relation on X, if R ⊆ X ×X where X ×X denote the Cartesion product
of X, i.e., X ×X = {(x1, x2) : ∀x1, x2 ∈ X}. If (x, y) ∈ R, then we often write xRy.

Definition 2.2. A partially ordered set (poset for short) is an ordered pair (X,R), where X is a
finite set and R is a relation on X such that the following hold:

(1) R is reflective: xRx for any x ∈ X,

(2) R is antisymmetric: if xRy and yRx, then x = y,

(3) R is transitive: if xRy and yRz, then xRz.

Example 2.3. Consider the poset (2[n],⊆), where “⊆” denotes the inclusion relationship.

We often use “4” to replace the use of “R”. So poset (X,R) = (X,4) and xRy = x 4 y. If
x 4 y but x 6= y, then x ≺ y, and we say x is a predecessor/child of y.

Definition 2.4. Let (X,4) be a poset. We say an element x is an immediate predecessor of y, if

(1) x ≺ y,

(2) there is no element t ∈ X such that x ≺ t ≺ y.

In this case, we write x� y.

Fact 2.5. For x, y ∈ (X,4), x ≺ y if and only if there exist z1, z2, ..., zk ∈ X such that x� z1 �
z2 � ...� zk � y. (Note that here k can be 0, i.e., x� y.)

Proof. (⇐) This direction is trivial, by transitive property.
(⇒) Let x ≺ y. Let Mxy = {t ∈ X : x ≺ t ≺ y}. We prove by induction on |Mxy|.
Base case is clear, if |Mxy| = 0, then x� y. Now we may assume Mxy 6= ∅ and the statement

holds for any u ≺ v with |Muv| < n. Suppose x ≺ y with |Mxy| = n > 1. Pick any t ∈ Mxy

and consider Mxt and Mty. Clearly Mxt (Mxy and Mty (Mxy (because of transitive property).
By induction on Mxt and Mty, there exist x1, x2, ..., xm ∈ X and y1, y2, ..., yl ∈ X such that
x�x1�x2� ...�xm� t and t� y1� y2� ...� yl� y. Thus, x�x1�x2�xm� t� y1� ...� yl� y
and we are done.

Now we can express a poset in a diagram.
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Definition 2.6. The Hassa diagram of a poset (X,4) is a drawing in the plane such that

(1) each element of X is drawn as a nod in the plane,

(2) each pair x� y is connected by a line segment,

(3) if x� y, then the nod x must appear lower in the plane then the nod y.

The fact that x ≺ y if and only if x � x1 � x2 � ... � xk � y now can be restated as follows:
x ≺ y if and only if we can find a path in the Hassa diagram from nod x to nod y, strictly from
bottom to top.

Definition 2.7. Let (X1,41) and (X2,42) be two posets. A mapping f : X1 → X2 is called an
embedding of (X1,41) in (X2,42) if

(1) f is injective,

(2) f(x) 42 f(y) if and only if x 41 y.

Theorem 2.8. For every poset (X,4) there exists an embedding of (X,4) in BX = (2X ,⊆).

Proof. Consider the mapping f : X → 2X by letting f(x) = {y ∈ X : y 4 x} for any x ∈ X. It
suffices to verify that f is an embedding of (X,4) in (2X ,⊆).

Firstly, f is injective. If f(x) = f(y) for x, y ∈ X, then x ∈ f(x) = f(y) and x 4 y. Similarly
we have y 4 x. So x = y.

Secondly, f(x) ⊆ f(y) if and only if x 4 y. To see this, if x 4 y, then clearly f(x) ⊆ f(y).
Now suppose f(x) ⊆ f(y). Since x ∈ f(x) ⊆ f(y), we have x 4 y. This shows that f indeed is an
embedding.

Definition 2.9. Let P = (X,4) be a poset.

(1) For distinct x, y ∈ X, if x ≺ y or y ≺ x, then we say that x, y are comparable; otherwise,
x, y are incomparable.

(2) The set A ⊆ X is an antichain of P , if any two elements in A are incomparable. Let α(P )
be the maximum size of an antichain of P

(3) The set B ⊆ X is a chain of P , if any two elements of B are comparable. Let ω(P ) be the
maximum size of a chain of P

Consider the Hassa diagram, ω(P ) means the maximum number of vertices in a path (from
bottom to top) in this diagram. So ω(P ) is also called the height of P and α(P ) is called the
width of P .

Definition 2.10. An element x ∈ X is minimal in P = (X,4), if x has no predecessor in P .

Fact 2.11. The set of all minimal elements of P = (X,4) forms an antichain of P .

Theorem 2.12. For any poset P = (X,4), α(P ) · ω(P ) ≥ |X|.
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Proof. We inductively define a sequence of posets Pi = (Xi,�) and a sequence of sets Mi ⊂ Pi,
such that each Mi is the set of minimal elements of Pi, and Xi = X −

∑i−1
j=0Mj , where M0 = ∅.

First, set P1 = P = (X,4), X1 = X and M1 = ∅. Assume posets Pi = (Xi,4) and Mi−1 are
defined for all 1 6 i 6 k. LetMi = { all minimal elements of Pi} and letXi+1 = X−M1

⋃
...
⋃
Mi.

Then let Pi+1 be the subposet of P restricted on Xi+1. We keep doing this until X`+1 = ∅. By
Fact 2.11, each Mi is an antichain of Pi. Since Pi is the restricted subposet of P on Xi, Mi is also
an antichain of P. So

|Mi| ≤ α(P ).

It suffices to find a chain x1 ≺ x2 ≺ ... ≺ x` in P, such that xi ∈ Pi = (Xi,4) for i ∈ [`].
Indeed, if this holds, then

X = M1

⋃
M2

⋃
...
⋃
M` and |X| =

∑̀
i=1

|Mi| ≤ α(P ) · ` ≤ α(P ) · ω(P ).

In fact, by the definition of Mi, we can claim something stronger holds: For any x ∈Mi (2 ≤ i <
`), there exists y ∈Mi, such that y ≺ x. This completes the proof.
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