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1 The Second Proof of Erdos-Ko-Rado Theorem

Definition 1.1. A Kneser graph K(n,k) with n > 2k is a graph with vertex set ([Z]) such that
for any two sets A, B € ([Z]), A is adjacent to B in K(n,k) if and only if AN B = @.

One can easily check that K (5,2) is the Petersen graph.

Definition 1.2. Given a graph G, we let «(G) be the number of vertices in a largest independent
set in G.

We note that any independent set in K (n, k) is an intersecting family in ([Z]). Therefore, we
have the following.

Theorem 1.3 (Erdds-Ko-Rado (Restatement)). For n > 2k, a(K(n,k)) < (Zj)
Definition 1.4. The adjacency matrizc Ag = (aij)nxn of an n-vertex graph G is defined by
{1, ifij € E(G),
aij =

0, otherwise.

Definition 1.5. The eigenvalues \y = Ay = ... > A\, of Ag is called the eigenvalues of G. The
eigenvectors U1, Vs, ..., U of Aq satisfying

Agt; = A\,

|5l = 1,

U; L0;  for any i # j,
are called the orthonormal eigenvectors of G.

Note that Ag is an n x n 0/1 symmetric matrix. Thus all the eigenvalues of G are real
numbers.

Definition 1.6. A graph G is d-regular if all vertices have the same degree d.
Exercise 1.7. If G is d-reqular, then the largest eigenvalue of G is d.

Theorem 1.8 (Hoffman’s Theorem). If an n-vertex graph G is d-reqular with eigenvalues Ay >

A\,
Ao = ... =\, then a(G) < n- N




Proof. Let V(G) = [n]. Let ¥4, ..., U, be the corresponding orthonormal eigenvectors of eigenvalues

A =X > ... > )\, of G. Thus we have
AgU; = A\,
||i]| = 1,

UZJ_U] =< Ui,Uj >=0, Vi 75 7-

Let I be an independent set of G with |I| = a(G). Let 1; € {0,1}" be the vector such that its

jt" coordinate is 1 if j € I, and 0 otherwise. Then we can write

n
1y = E «o;U; for some o; € R.
i=1

Then we have .
’I| =< T[, I[ >=< Z 041'17;', Z ajv_]‘ >= Z a?,
i j i=1
where o; =< f[,l_fi >.
Since G is d-regular, we have that \; = d and @ = (1//n,...,1/y/n)T. So we get
et
1=<17,71 >= .
n
Since I is an independent set in G,
7 AcTr = (Tn)iaii(T1); =0,
0]
where A(G) = (a;j). On the other hand, we also have

7 AT = (3 aut) Ac (D ast) = (D aat) ' (D ayit)

0

Thus we have

I)? I)? I I
H)\1+<|I|—H> An <0, and |1 (HA1+)\n—H>\n> <0,
n n n n
which implies that
-
G)=|I<n- o,
a(G) = 1] < n- 15

. 12 |12 U
S adh etk + (aF a2, T2 ‘n>\1 - <\I\ - ‘rl) .
=1

(1.1)

(1.2)

Theorem 1.9 (see GTM 207, Theorem 9.4.3). The eigenvalues of Kneser graph K(n,k) are:

n—k—
uj = (—1)’ (n - ‘7> of multiplicity (?) - <] f 1)

for every 0 < j < k.



Proof of Theorem 1.3. Consider the eigenvalues of K (n, k), say \; > Ag--- > )\(n), where A\ =
k
(n;k)’ )‘(n) = —(";ﬁfl). By Hoffman’s bound,
k

(i) < () A:&()) -(7) (n;k()?(ig)ﬁ;l) -(121);

as desired. |

2 Partially Ordered Sets (Poset)

Let X be a finite set.

Definition 2.1. R is a relation on X, if R C X x X where X x X denote the Cartesion product
of X, i.e., X x X ={(z1,22) : V1,22 € X}. If (x,y) € R, then we often write xRy.

Definition 2.2. A partially ordered set (poset for short) is an ordered pair (X, R), where X is a
finite set and R is a relation on X such that the following hold:

(1) R is reflective: xRz for any x € X,
(2) R is antisymmetric: if tRy and yRx, then x =y,
(3) R is transitive: if tRy and yRz, then xRz.
Example 2.3. Consider the poset (2["}, C), where “C” denotes the inclusion relationship.

We often use “<” to replace the use of “R”. So poset (X,R) = (X,=<) and zRy =z g y. If
x <y but z # y, then x < y, and we say x is a predecessor/child of y.

Definition 2.4. Let (X, <) be a poset. We say an element x is an immediate predecessor of y, if
(1) z <y,
(2) there is no element t € X such that v <t < y.

In this case, we write x <y.

Fact 2.5. For x,y € (X, =), <y if and only if there exist z1,zo, ..., 2z, € X such that x < z; <
29 < ... <z <y. (Note that here k can be 0, i.e., x <y.)

Proof. (<) This direction is trivial, by transitive property.

(=) Let x <y. Let My, ={t € X : 2 <t <y}. We prove by induction on |My,].

Base case is clear, if [My,| = 0, then 2 <y. Now we may assume M, # () and the statement
holds for any u < v with |My,| < n. Suppose & < y with |M,y| = n > 1. Pick any t € M,
and consider My, and My,. Clearly My, C My, and My, C M,, (because of transitive property).
By induction on M,; and My,, there exist x1,x2,...,2,m € X and y1,¥2,...,y € X such that
r<dxy<dre<d..<lxp<tand t<y; <yo ...y <y. Thus, r <z <Az <Xy, <ty < ... Ay <y
and we are done. |

Now we can express a poset in a diagram.



Definition 2.6. The Hassa diagram of a poset (X, <) is a drawing in the plane such that
(1) each element of X is drawn as a nod in the plane,
(2) each pair x <y is connected by a line segment,
(3) if vy, then the nod x must appear lower in the plane then the nod y.

The fact that < y if and only if z <21 <22 < ... <z <y now can be restated as follows:
x < y if and only if we can find a path in the Hassa diagram from nod z to nod y, strictly from
bottom to top.

Definition 2.7. Let (X1,<1) and (X2,<2) be two posets. A mapping f : X1 — Xy is called an
embedding of (X1,=<1) in (X2, <2) if

(1) f is injective,
(2) f(z) <2 f(y) if and only if z <1 y.
Theorem 2.8. For every poset (X, <) there exists an embedding of (X, <) in Bx = (2%, Q).

Proof. Consider the mapping f : X — 2% by letting f(z) = {y € X : y <z} forany z € X. It
suffices to verify that f is an embedding of (X, <) in (2%, C).

Firstly, f is injective. If f(x) = f(y) for z,y € X, then z € f(x) = f(y) and x < y. Similarly
we have y < z. Soz = y.

Secondly, f(z) C f(y) if and only if z < y. To see this, if x < y, then clearly f(z) C f(y).
Now suppose f(z) C f(y). Since x € f(x) C f(y), we have x < y. This shows that f indeed is an
embedding. |

Definition 2.9. Let P = (X, <) be a poset.

(1) For distinct z,y € X, if x <y ory < x, then we say that x,y are comparable; otherwise,
x,y are incomparable.

(2) The set A C X is an antichain of P, if any two elements in A are incomparable. Let a(P)
be the mazximum size of an antichain of P

(8) The set B C X is a chain of P, if any two elements of B are comparable. Let w(P) be the
maximum size of a chain of P

Consider the Hassa diagram, w(P) means the maximum number of vertices in a path (from
bottom to top) in this diagram. So w(P) is also called the height of P and «(P) is called the
width of P.

Definition 2.10. An element x € X is minimal in P = (X, <), if © has no predecessor in P.
Fact 2.11. The set of all minimal elements of P = (X, X) forms an antichain of P.

Theorem 2.12. For any poset P = (X, <), a(P) -w(P) > | X]|.



Proof. We inductively define a sequence of posets P; = (X;, <) and a sequence of sets M; C P;,
such that each M; is the set of minimal elements of P;, and X; = X — Z;;%) M, where My = (.

First, set P, = P = (X, <), X; = X and M; = (). Assume posets P; = (X;, <) and M;_; are
defined for all 1 < i < k. Let M; = { all minimal elements of P;} and let X;41 = X—M; ... U M,;.
Then let P;y1 be the subposet of P restricted on X;11. We keep doing this until X, = (). By
Fact 2.11, each M; is an antichain of P;. Since P; is the restricted subposet of P on X;, M; is also
an antichain of P. So

|M;| < a(P).

It suffices to find a chain 21 < x2 < ... < xp in P, such that z; € P, = (X, <) for i € [{].
Indeed, if this holds, then

¢
X=MmJM|]..|JM; and [X|=> [M;| < a(P)-£< o(P)-w(P).
=1

In fact, by the definition of M;, we can claim something stronger holds: For any z € M; (2 <i <
?), there exists y € M;, such that y < z. This completes the proof. |



