Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang
2020 Fall, USTC

1 The Second Proof of Erdős-Ko-Rado Theorem

Definition 1.1. A Kneser graph $K(n, k)$ with $n \geqslant 2 k$ is a graph with vertex set $\binom{[n]}{k}$ such that for any two sets $A, B \in\binom{[n]}{k}, A$ is adjacent to B in $K(n, k)$ if and only if $A \cap B=\varnothing$.

One can easily check that $K(5,2)$ is the Petersen graph.
Definition 1.2. Given a graph G, we let $\alpha(G)$ be the number of vertices in a largest independent set in G.

We note that any independent set in $K(n, k)$ is an intersecting family in $\binom{[n]}{k}$. Therefore, we have the following.

Theorem 1.3 (Erdős-Ko-Rado (Restatement)). For $n \geq 2 k, \alpha(K(n, k)) \leqslant\binom{ n-1}{k-1}$.
Definition 1.4. The adjacency matrix $A_{G}=\left(a_{i j}\right)_{n \times n}$ of an n-vertex graph G is defined by

$$
a_{i j}= \begin{cases}1, & \text { if } i j \in E(G), \\ 0, & \text { otherwise } .\end{cases}
$$

Definition 1.5. The eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ of A_{G} is called the eigenvalues of G. The eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of A_{G} satisfying

$$
\left\{\begin{array}{l}
A_{G} \vec{v}_{i}=\lambda_{i} \vec{v}_{i}, \\
\left\|\vec{v}_{i}\right\|=1, \\
\vec{v}_{i} \perp \vec{v}_{j} \text { for any } i \neq j,
\end{array}\right.
$$

are called the orthonormal eigenvectors of G.
Note that A_{G} is an $n \times n 0 / 1$ symmetric matrix. Thus all the eigenvalues of G are real numbers.

Definition 1.6. A graph G is d-regular if all vertices have the same degree d.
Exercise 1.7. If G is d-regular, then the largest eigenvalue of G is d.
Theorem 1.8 (Hoffman's Theorem). If an n-vertex graph G is d-regular with eigenvalues $\lambda_{1} \geqslant$ $\lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$, then $\alpha(G) \leqslant n \cdot \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$

Proof. Let $V(G)=[n]$. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be the corresponding orthonormal eigenvectors of eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ of G. Thus we have

$$
\left\{\begin{array}{l}
A_{G} \vec{v}_{i}=\lambda_{i} \vec{v}_{i}, \\
\left\|\vec{v}_{i}\right\|=1, \\
\vec{v}_{i} \perp \vec{v}_{j} \Leftrightarrow<\vec{v}_{i}, \vec{v}_{j}>=0, \forall i \neq j .
\end{array}\right.
$$

Let I be an independent set of G with $|I|=\alpha(G)$. Let $\overrightarrow{1}_{I} \in\{0,1\}^{n}$ be the vector such that its $j^{\text {th }}$ coordinate is 1 if $j \in I$, and 0 otherwise. Then we can write

$$
\overrightarrow{1}_{I}=\sum_{i=1}^{n} \alpha_{i} \vec{v}_{i} \text { for some } \alpha_{i} \in \mathbb{R}
$$

Then we have

$$
\begin{equation*}
|I|=<\overrightarrow{1}_{I}, \overrightarrow{1}_{I}>=<\sum_{i} \alpha_{i} \vec{v}_{i}, \sum_{j} \alpha_{j} \vec{v}_{j}>=\sum_{i=1}^{n} \alpha_{i}^{2}, \tag{1.1}
\end{equation*}
$$

where $\alpha_{i}=<\overrightarrow{1}_{I}, \vec{v}_{i}>$.
Since G is d-regular, we have that $\lambda_{1}=d$ and $\vec{v}_{1}=(1 / \sqrt{n}, \ldots, 1 / \sqrt{n})^{T}$. So we get

$$
\begin{equation*}
\alpha_{1}=<\overrightarrow{1}_{I}, \vec{v}_{1}>=\frac{|I|}{\sqrt{n}} . \tag{1.2}
\end{equation*}
$$

Since I is an independent set in G,

$$
\overrightarrow{1}_{I}^{T} A_{G} \overrightarrow{1}_{I}=\sum_{i, j}\left(\overrightarrow{1}_{I}\right)_{i} a_{i j}\left(\overrightarrow{1}_{I}\right)_{j}=0,
$$

where $A(G)=\left(a_{i j}\right)$. On the other hand, we also have

$$
\begin{aligned}
& 0=\overrightarrow{1}_{I}^{T} A_{G} \overrightarrow{1}_{I}=\left(\sum_{i} \alpha_{i} \vec{v}_{i}\right)^{T} A_{G}\left(\sum_{j} \alpha_{j} \vec{v}_{j}\right)=\left(\sum_{i} \alpha_{i} \vec{v}_{i}\right)^{T}\left(\sum_{j} \alpha_{j} \lambda_{j} \vec{v}_{j}\right) \\
&=\sum_{i=1}^{n} \alpha_{i}^{2} \lambda_{i} \geq \alpha_{1}^{2} \lambda_{1}+\left(\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}\right) \lambda_{n} \stackrel{\text { by }}{(1.1)}=(1.2) \\
& \frac{|I|^{2}}{n} \lambda_{1}+\left(|I|-\frac{|I|^{2}}{n}\right) \lambda_{n} .
\end{aligned}
$$

Thus we have

$$
\frac{|I|^{2}}{n} \lambda_{1}+\left(|I|-\frac{|I|^{2}}{n}\right) \lambda_{n} \leq 0, \quad \text { and } \quad|I|\left(\frac{|I|}{n} \lambda_{1}+\lambda_{n}-\frac{|I|}{n} \lambda_{n}\right) \leq 0,
$$

which implies that

$$
\alpha(G)=|I| \leq n \cdot \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}} .
$$

Theorem 1.9 (see GTM 207, Theorem 9.4.3). The eigenvalues of Kneser graph $K(n, k)$ are:

$$
u_{j}=(-1)^{j}\binom{n-k-j}{k-j} \text { of multiplicity }\binom{n}{j}-\binom{n}{j-1}
$$

for every $0 \leq j \leq k$.

Proof of Theorem 1.3. Consider the eigenvalues of $K(n, k)$, say $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{\binom{n}{k}}$, where $\lambda_{1}=$ $\binom{n-k}{k}, \lambda_{\binom{n}{k}}=-\binom{n-k-1}{k-1}$. By Hoffman's bound,
as desired.

2 Partially Ordered Sets (Poset)

Let X be a finite set.
Definition 2.1. R is a relation on X, if $R \subseteq X \times X$ where $X \times X$ denote the Cartesion product of X, i.e., $X \times X=\left\{\left(x_{1}, x_{2}\right): \forall x_{1}, x_{2} \in X\right\}$. If $(x, y) \in R$, then we often write $x R y$.

Definition 2.2. A partially ordered set (poset for short) is an ordered pair (X, R), where X is a finite set and R is a relation on X such that the following hold:
(1) R is reflective: $x R x$ for any $x \in X$,
(2) R is antisymmetric: if $x R y$ and $y R x$, then $x=y$,
(3) R is transitive: if $x R y$ and $y R z$, then $x R z$.

Example 2.3. Consider the poset $\left(2^{[n]} \subseteq \subseteq\right)$, where " \subseteq " denotes the inclusion relationship.
We often use "ฬ" to replace the use of " R ". So poset $(X, R)=(X, \preccurlyeq)$ and $x R y=x \preccurlyeq y$. If $x \preccurlyeq y$ but $x \neq y$, then $x \prec y$, and we say x is a predecessor/child of y.

Definition 2.4. Let (X, \preccurlyeq) be a poset. We say an element x is an immediate predecessor of y, if
(1) $x \prec y$,
(2) there is no element $t \in X$ such that $x \prec t \prec y$.

In this case, we write $x \triangleleft y$.
Fact 2.5. For $x, y \in(X, \preccurlyeq), x \prec y$ if and only if there exist $z_{1}, z_{2}, \ldots, z_{k} \in X$ such that $x \triangleleft z_{1} \triangleleft$ $z_{2} \triangleleft \ldots \triangleleft z_{k} \triangleleft y$. (Note that here k can be 0, i.e., $x \triangleleft y$.)

Proof. (\Leftarrow) This direction is trivial, by transitive property.
(\Rightarrow) Let $x \prec y$. Let $M_{x y}=\{t \in X: x \prec t \prec y\}$. We prove by induction on $\left|M_{x y}\right|$.
Base case is clear, if $\left|M_{x y}\right|=0$, then $x \triangleleft y$. Now we may assume $M_{x y} \neq \emptyset$ and the statement holds for any $u \prec v$ with $\left|M_{u v}\right|<n$. Suppose $x \prec y$ with $\left|M_{x y}\right|=n \geqslant 1$. Pick any $t \in M_{x y}$ and consider $M_{x t}$ and $M_{t y}$. Clearly $M_{x t} \subsetneq M_{x y}$ and $M_{t y} \subsetneq M_{x y}$ (because of transitive property). By induction on $M_{x t}$ and $M_{t y}$, there exist $x_{1}, x_{2}, \ldots, x_{m} \in X$ and $y_{1}, y_{2}, \ldots, y_{l} \in X$ such that $x \triangleleft x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{m} \triangleleft t$ and $t \triangleleft y_{1} \triangleleft y_{2} \triangleleft \ldots \triangleleft y_{l} \triangleleft y$. Thus, $x \triangleleft x_{1} \triangleleft x_{2} \triangleleft x_{m} \triangleleft t \triangleleft y_{1} \triangleleft \ldots \triangleleft y_{l} \triangleleft y$ and we are done.

Now we can express a poset in a diagram.

Definition 2.6. The Hassa diagram of a poset (X, \preccurlyeq) is a drawing in the plane such that
(1) each element of X is drawn as a nod in the plane,
(2) each pair $x \triangleleft y$ is connected by a line segment,
(3) if $x \triangleleft y$, then the nod x must appear lower in the plane then the nod y.

The fact that $x \prec y$ if and only if $x \triangleleft x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{k} \triangleleft y$ now can be restated as follows: $x \prec y$ if and only if we can find a path in the Hassa diagram from nod x to nod y, strictly from bottom to top.

Definition 2.7. Let $\left(X_{1}, \preccurlyeq_{1}\right)$ and $\left(X_{2}, \preccurlyeq_{2}\right)$ be two posets. A mapping $f: X_{1} \rightarrow X_{2}$ is called an embedding of $\left(X_{1}, \preccurlyeq_{1}\right)$ in $\left(X_{2}, \preccurlyeq 2\right)$ if
(1) f is injective,
(2) $f(x) \preccurlyeq 2 f(y)$ if and only if $x \preccurlyeq 1 y$.

Theorem 2.8. For every poset (X, \preccurlyeq) there exists an embedding of (X, \preccurlyeq) in $\mathscr{B}_{X}=\left(2^{X}, \subseteq\right)$.
Proof. Consider the mapping $f: X \rightarrow 2^{X}$ by letting $f(x)=\{y \in X: y \preccurlyeq x\}$ for any $x \in X$. It suffices to verify that f is an embedding of (X, \preccurlyeq) in $\left(2^{X}, \subseteq\right)$.

Firstly, f is injective. If $f(x)=f(y)$ for $x, y \in X$, then $x \in f(x)=f(y)$ and $x \preccurlyeq y$. Similarly we have $y \preccurlyeq x$. So $x=y$.

Secondly, $f(x) \subseteq f(y)$ if and only if $x \preccurlyeq y$. To see this, if $x \preccurlyeq y$, then clearly $f(x) \subseteq f(y)$. Now suppose $f(x) \subseteq f(y)$. Since $x \in f(x) \subseteq f(y)$, we have $x \preccurlyeq y$. This shows that f indeed is an embedding.

Definition 2.9. Let $P=(X, \preccurlyeq)$ be a poset.
(1) For distinct $x, y \in X$, if $x \prec y$ or $y \prec x$, then we say that x, y are comparable; otherwise, x, y are incomparable.
(2) The set $A \subseteq X$ is an antichain of P, if any two elements in A are incomparable. Let $\alpha(P)$ be the maximum size of an antichain of P
(3) The set $B \subseteq X$ is a chain of P, if any two elements of B are comparable. Let $\omega(P)$ be the maximum size of a chain of P

Consider the Hassa diagram, $\omega(P)$ means the maximum number of vertices in a path (from bottom to top) in this diagram. So $\omega(P)$ is also called the height of P and $\alpha(P)$ is called the width of P.

Definition 2.10. An element $x \in X$ is minimal in $P=(X, \preccurlyeq)$, if x has no predecessor in P.
Fact 2.11. The set of all minimal elements of $P=(X, \preccurlyeq)$ forms an antichain of P.
Theorem 2.12. For any poset $P=(X, \preccurlyeq), \alpha(P) \cdot \omega(P) \geq|X|$.

Proof. We inductively define a sequence of posets $P_{i}=\left(X_{i}, \preceq\right)$ and a sequence of sets $M_{i} \subset P_{i}$, such that each M_{i} is the set of minimal elements of P_{i}, and $X_{i}=X-\sum_{j=0}^{i-1} M_{j}$, where $M_{0}=\emptyset$.

First, set $P_{1}=P=(X, \preccurlyeq), X_{1}=X$ and $M_{1}=\emptyset$. Assume posets $P_{i}=\left(X_{i}, \preccurlyeq\right)$ and M_{i-1} are defined for all $1 \leqslant i \leqslant k$. Let $M_{i}=\left\{\right.$ all minimal elements of $\left.P_{i}\right\}$ and let $X_{i+1}=X-M_{1} \cup \ldots \cup M_{i}$. Then let P_{i+1} be the subposet of P restricted on X_{i+1}. We keep doing this until $X_{\ell+1}=\emptyset$. By Fact 2.11, each M_{i} is an antichain of P_{i}. Since P_{i} is the restricted subposet of P on X_{i}, M_{i} is also an antichain of P. So

$$
\left|M_{i}\right| \leq \alpha(P) .
$$

It suffices to find a chain $x_{1} \prec x_{2} \prec \ldots \prec x_{\ell}$ in P , such that $x_{i} \in P_{i}=\left(X_{i}, \preccurlyeq\right)$ for $i \in[\ell]$. Indeed, if this holds, then

$$
X=M_{1} \bigcup M_{2} \bigcup \ldots \bigcup M_{\ell} \text { and }|X|=\sum_{i=1}^{\ell}\left|M_{i}\right| \leq \alpha(P) \cdot \ell \leq \alpha(P) \cdot \omega(P) .
$$

In fact, by the definition of M_{i}, we can claim something stronger holds: For any $x \in M_{i}(2 \leq i<$ ℓ), there exists $y \in M_{i}$, such that $y \prec x$. This completes the proof.

