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1 Poset

1.1 The order from disorder

Definition 1.1. Consider a sequence X = (x1, x2, ..., xn) of n real numbers. A subsequence
(xi1 , xi2 , ..., xim) of X, where i1 < i2 < ... < im, is monotone, if either xi1 ≤ xi2 ≤ ... ≤ xim or
xi1 ≥ xi2 ≥ ... ≥ xim.

For example, (10, 9, 7, 4, 5, 1, 2, 3) −→ (10, 9, 7, 5, 1).

Theorem 1.2 (Erdős-Szekeres Theorem). For any sequence (x1, x2, ..., xn2+1) of length n2 + 1,
there exists a monotone subsequence of length n+ 1.

Proof. Let X = [n2 + 1]. We define a poset P = (X,�) as following: i � j if and only if i ≤ j
and xi ≤ xj .

It is easy to check that P = (X,�) indeed defines a poset (reflective antisymmetric and
transitive). By the previous result that α(P ) ·w(P ) ≥ |X| = n2 + 1, we have either w(P ) ≥ n+ 1
or α(P ) ≥ n+ 1.
Case 1. w(P ) ≥ n+ 1.

There exists a chain of size n+ 1, say {i1, i2, .., in+1}. By definition, xi1 ≤ xi2 ≤ ... ≤ xin+1 is
an increasing subsequence of length n+ 1.
Case 2. α(P ) ≥ n+ 1.

There exists an antichain of size n+1, say {i1, i2, .., in+1}. We may assume that i1 < i2 <
... < in+1 being antichain, it implies that xi1 > xi2 > ... > xin+1 is a decreasing subsequence of
(x1, x2, ..., xn2+1).

Remark 1.3. What we proved is a bit stronger: there is either an increasing subsequence of
length n+ 1 or a strictly decreasing subsequence of length n+ 1.

Exercise 1.4. Find examples to show that Erdős-Szekeres Theorem is optimal: there exists a
sequence of n2 reals such that NO monotone subsequence of length n+ 1.

1.2 The Pigeonhole Principle

Theorem 1.5 (The Pigeonhole Principle). Let X be a set with at least 1+
∑k

i=1(ni−1) elements
and let X1, X2, ..., Xk be disjoint sets forming a partition of X. Then, there exists some i, such
that |Xi| ≥ ni.

(1) Two equal degrees.
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Theorem 1.6. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. Suppose that G does not have two vertices of same
degree. So the only exceptional case will be that there is exactly one vertex of degree i for all
i ∈ {0, 1, ..., n−1}. But this is impossible to have a vertex with degree 0 and a vertex with degree
n− 1 at the same time.

Exercise 1.7. For any n, find an n-vertex graph G, which has exactly two vertices with the same
degree.

(2) Subsets without divisors.

Question 1.8. How large a subset S ⊂ [2n] can be such that for any i, j ∈ S, we have i - j and
j - i ?

Obviously, we can take S = {n+ 1, n+ 2, ..., 2n} with |S| = n.

Theorem 1.9. For any S ⊂ [2n] with |S| ≥ n+ 1, there exist i, j ∈ S such that i|j.

Proof. For any odd integer 2k − 1 ∈ [2n], define S2k−1 = {2i · (2k − 1) ∈ S : i ≥ 0}. Clearly,
S =

⋃n
k=1 S2k−1. Since |S| ≥ n + 1, there exists some |S2k−1| ≥ 2 say x, y ∈ S2k−1. It is easy to

see that we have x|y or y|x.

(3) Rational approximation.

Theorem 1.10. Given n ∈ Z+, for any x ∈ R+, there is a rational number p
q such that 1 ≤ q ≤ n

and |x− p
q | <

1
nq .

Proof. For any x ∈ R+, define {x} = x−bxc be the fractional part of x. Consider {ix} ∈ [0, 1), for
any i = 1, 2, ..., n+ 1. Partition [0, 1) into n subintervals [0, 1n), [ 1n ,

2
n), ..., [n−1n , 1). By Pigeonhole

Principle, there exists a subinterval [ kn ,
k+1
n ) contains two reals say {ix} and {jx} for 1 ≤ i < j ≤

n+1. Then we have {(j− i)x} ∈ [0, 1n)∪ [1− 1
n , 1). Let q = j− i ≤ n. So {qx} ∈ (0, 1n)∪ [1− 1

n , 1),
i.e. qx = p + ε for some p ∈ Z+ and |ε| < 1

n . Then we have x = p
q + ε

q , which implies that

|x− p
q | = |

ε
q | <

1
nq .

1.3 Second proof of Erdős-Szekeres Theorem

Theorem 1.11 (Erdős-Szekeres Theorem). For any sequence of mn+1 real numbers {a0, a1, ..., amn},
there is an increasing subsequence of length m+ 1 or a decreasing subsequence of length n+ 1.

The second proof. Consider any sequence {a0, a1, ..., amn}. For any i ∈ {0, 1, ...,mn}, let fi be
the maximum size of an increasing subsequence starting at ai. We may assume fi ∈ {1, 2, ...,m}
for any i ∈ {0, 1, ...,mn}. By Pigeonhole Principle, there exists a s ∈ {1, 2, ...,m} such that
there are at least n + 1 elements i ∈ {0, 1, ....,m} satisfying fi = s. Let these elements be
i1 < i2 < ... < in+1.

We claim that ai1 ≥ ai2 ≥ ... ≥ ain+1 . Why? If aij < aij+1 for some j ∈ [n], then we would
extend the max increasing subsequence of length s starting at aij+1 by adding aij to obtain an
increasing subsequence starting at aij of length s+1, a contradiction to fij = s.
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2 Ramsey’s Theorem

Fact 2.1 (A party of six). Suppose a party has six participants. Participants may know each
other or not. Then there must be three participants who know each other or do not know each
other, i.e. any 6-vertex graph G has a K3 or I3.

Proof. We consider a graph G on six vertices say [6]. Each vertex i represents one participant:
i and j are adjacent if and only if they know each other. Then we need to show that there are
three vertices in G which form a triangle K3 or an independent set I3.

Consider vertex 1. There are five other persons. So 1 is adjacent to three vertices or not
adjacent to three vertices. By symmetry, we may assume that 1 is adjacent to three vertices, say
2, 3, 4. If one of pairs {2, 3}, {2, 4}, {3, 4} is adjacent, then we have a K3. Otherwise, {2, 3, 4}
forms an independent set of size three. This finishes the proof.

Definition 2.2. An r-edge-coloring of Kn is a mapping f : E(Kn) −→ {1, 2, ..., r} which assigns
one of the colors 1, 2, ..., r to each edge of Kn.

Definition 2.3. Given an r-edge-coloring of Kn. A clique in Kn is called monochromatic, if all
its edges are colored by the same color.

Then the example of a party of six says that any 2-edge-coloring of K6 has a monochromatic
K3.

Theorem 2.4 (Ramsey’s Theorem (2-colors-version)). Let k, ` ≥ 2 be any two integers. Then
there exists an integer N = N(k, `), such that any 2-edge-coloring of KN (with colors red and
blue) has a blue Kk or a red K`.

Proof. We will prove by induction on k + ` that any blue/red-edge-coloring of a clique on N =(
k+`−2
k−1

)
vertices has a blue Kk or a red K`.

Base case is trivial (as we have N =
(
k+`−2
k−1

)
= ` where k = 2 and N =

(
k+`−2
k−1

)
= k where

` = 2 ).
We may assume that the statement holds for k′+`′ ≤ k+`−1. LetN1 =

(
k+`−3
k−2

)
, N2 =

(
k+`−3
k−1

)
,

and N =
(
k+`−2
k−1

)
. So N1 +N2 = N .

Consider any red/blue-edge-coloring of KN . Consider any vertex x. Let A = {y ∈ V (Kn) −
{x} : edge xy is blue} and B = {y ∈ V (Kn) − {x} : edge xy is red}. So |A| + |B| = N − 1 =
N1 +N2 − 1. By Pigeonhole Principle we have either |A| ≥ N1 or |B| ≥ N2.

Case 1. |A| ≥ N1 =
((k−1)+`−2

(k−1)−1
)
.

The vertices of A contains a K((k−1)+`−2
(k−1)−1 ) where edges are blue or red. By induction on this

K((k−1)+`−2
(k−1)−1 ) for the pair {k − 1, `}, so A has a blue Kk−1 or a red K`. In the former, by adding

the vertex x to that blue Kk−1, we can obtain a blue Kk in the KN .
Case 2.|B| ≥ N2 =

(
k+`−3
k−1

)
.

This case is similar (by induction on {k, `− 1}).

Definition 2.5. For k, ` ≥ 2, the Ramsey Number R(k, `) denotes the smallest integer N such
that any 2-edge-coloring of KN has a blue Kk or a red K`.

Remark 2.6. Ramsay Theorem says that R(k, `) ≤
(
k+`−2
k−1

)
.

Let us try to understand this definition a bit more:
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• R(k, `) ≤ L if and only if any 2-edge-coloring of KL has a blue Kk or a red K`.

• R(k, `) > M if and only if there exists a 2-edge-coloring of KM which has no blue Kk nor
red K`.

Fact 2.7. (1) R(k, `) = R(`, k).
(2) R(2, `) = ` and R(k, 2) = k.
(3) R(3, 3) = 6.

Proof. It is easy to know that (1) and (2) is right. We have R(3, 3) ≤ 6 from the fact on a party
of six. On the other hand, we have R(3, 3) > 5 form the following graph (if u, v are adjacent, we
color edge uv blue, otherwise we color edge uv red).

Exercise 2.8. R(k, `) ≤ R(k − 1, `) +R(k, `− 1).

Theorem 2.9. If for some (k, `), the numbers R(k − 1, `) and R(k, `− 1) are even, then

R(k, `) ≤ R(k − 1, `) +R(k, `− 1)− 1.

Proof. Let n = R(k − 1, `) + R(k, ` − 1) − 1. So n is odd. Consider any 2-edge-coloring of Kn.
For any vertex x, define the following as before Ax = {y : xy is blue} and Bx = {y : xy is red}.

The previous proof tells us that if |Ax| ≥ R(k− 1, `) or |Bx| ≥ R(k, `− 1), then we can find a
blue Kk or a red K`. Thus, we may assume that |Ax| ≤ R(k− 1, `)− 1 and |Bx| ≤ R(k, `− 1)− 1
for any vertex v, which implies that

n ≤ Ax +Bx + 1 ≤ R(k − 1, `) +R(k, `− 1)− 1

This shows that for each x, |Ax| = R(k−1, `)−1 and |Bx| = R(k, `−1)−1. Now we consider
the graph G consisting of all blue edges. Note that G has an odd number of vertices and any
vertex has odd degree. But this contradicts the Handshaking Lemma.

Corollary 2.10. R(3, 4) = 9.

Proof. By the previous theorem, we have R(3, 4) ≤ R(2, 4) +R(3, 3)− 1 = 4 + 6− 1 = 9. On the
other hand, we have R(3, 4) > 8 form the following graph (if u, v are adjacent, we color edge uv
blue, otherwise we color edge uv red).
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Definition 2.11. For any k ≥ 2 and any integers s1, s2, ..., sk ≥ 2, the Ramsey number Rk(s1, s2, ..., sk)
is the least integer N such that any k-edge-coloring of KN has a clique Ksi in color i, for some
i ∈ [k].

Homework 2.12. Rk(s1, s2, ..., sk) < +∞.

Theorem 2.13 (Schur’s Theorem). For k ≥ 2, there exists some integer N = N(k) such that for
any coloring ϕ : [N ] → [k], there exist three integers x, y, z ∈ [N ] satisfying that ϕ(x) = ϕ(y) =
ϕ(z) and x+ y = z.

Proof. Let N = Rk(3, 3, ..., 3). Define a k-edge-coloring of KN from the coloring ϕ as following:
for any i, j ∈ [N ], define the color of ij to be ϕ(|i− j|). By the definition of Rk(3, 3, ..., 3), we can
find a monochromatic triangle, say ij`. Suppose i < j < `, we have ϕ(`− j) = ϕ(`− i) = ϕ(j− i).
Let x = `− j, y = `− i, z = j − i ∈ [N ], we have ϕ(x) = ϕ(y) = ϕ(z) and x+ y = z. This finishes
the proof.

Remark 2.14. It is also true to require x, y, z to be distinct, by considering N = Rk(4, 4, ..., 4).
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