Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Poset

1.1 The order from disorder

Definition 1.1. Consider a sequence $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n real numbers. A subsequence $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right)$ of X, where $i_{1}<i_{2}<\ldots<i_{m}$, is monotone, if either $x_{i_{1}} \leq x_{i_{2}} \leq \ldots \leq x_{i_{m}}$ or $x_{i_{1}} \geq x_{i_{2}} \geq \ldots \geq x_{i_{m}}$.

For example, $(10,9,7,4,5,1,2,3) \longrightarrow(10,9,7,5,1)$.
Theorem 1.2 (Erdős-Szekeres Theorem). For any sequence $\left(x_{1}, x_{2}, \ldots, x_{n^{2}+1}\right)$ of length $n^{2}+1$, there exists a monotone subsequence of length $n+1$.

Proof. Let $X=\left[n^{2}+1\right]$. We define a poset $P=(X, \preceq)$ as following: $i \preceq j$ if and only if $i \leq j$ and $x_{i} \leq x_{j}$.

It is easy to check that $P=(X, \preceq)$ indeed defines a poset (reflective antisymmetric and transitive). By the previous result that $\alpha(P) \cdot w(P) \geq|X|=n^{2}+1$, we have either $w(P) \geq n+1$ or $\alpha(P) \geq n+1$.
Case 1. $w(P) \geq n+1$.
There exists a chain of size $n+1$, say $\left\{i_{1}, i_{2}, . ., i_{n+1}\right\}$. By definition, $x_{i_{1}} \leq x_{i_{2}} \leq \ldots \leq x_{i_{n+1}}$ is an increasing subsequence of length $n+1$.
Case 2. $\alpha(P) \geq n+1$.
There exists an antichain of size $\mathrm{n}+1$, say $\left\{i_{1}, i_{2}, . ., i_{n+1}\right\}$. We may assume that $i_{1}<i_{2}<$ $\ldots<i_{n+1}$ being antichain, it implies that $x_{i_{1}}>x_{i_{2}}>\ldots>x_{i_{n+1}}$ is a decreasing subsequence of $\left(x_{1}, x_{2}, \ldots, x_{n^{2}+1}\right)$.

Remark 1.3. What we proved is a bit stronger: there is either an increasing subsequence of length $n+1$ or a strictly decreasing subsequence of length $n+1$.

Exercise 1.4. Find examples to show that Erdös-Szekeres Theorem is optimal: there exists a sequence of n^{2} reals such that NO monotone subsequence of length $n+1$.

1.2 The Pigeonhole Principle

Theorem 1.5 (The Pigeonhole Principle). Let X be a set with at least $1+\sum_{i=1}^{k}\left(n_{i}-1\right)$ elements and let $X_{1}, X_{2}, \ldots, X_{k}$ be disjoint sets forming a partition of X. Then, there exists some i, such that $\left|X_{i}\right| \geq n_{i}$.

(1) Two equal degrees.

Theorem 1.6. Any graph has two vertices of the same degree.
Proof. Let G be a graph with n vertices. Suppose that G does not have two vertices of same degree. So the only exceptional case will be that there is exactly one vertex of degree i for all $i \in\{0,1, \ldots, n-1\}$. But this is impossible to have a vertex with degree 0 and a vertex with degree $n-1$ at the same time.

Exercise 1.7. For any n, find an n-vertex graph G, which has exactly two vertices with the same degree.

(2) Subsets without divisors.

Question 1.8. How large a subset $S \subset[2 n]$ can be such that for any $i, j \in S$, we have $i \nmid j$ and $j \nmid i$?

Obviously, we can take $S=\{n+1, n+2, \ldots, 2 n\}$ with $|S|=n$.
Theorem 1.9. For any $S \subset[2 n]$ with $|S| \geq n+1$, there exist $i, j \in S$ such that $i \mid j$.
Proof. For any odd integer $2 k-1 \in[2 n]$, define $S_{2 k-1}=\left\{2^{i} \cdot(2 k-1) \in S: i \geq 0\right\}$. Clearly, $S=\bigcup_{k=1}^{n} S_{2 k-1}$. Since $|S| \geq n+1$, there exists some $\left|S_{2 k-1}\right| \geq 2$ say $x, y \in S_{2 k-1}$. It is easy to see that we have $x \mid y$ or $y \mid x$.

(3) Rational approximation.

Theorem 1.10. Given $n \in \mathbb{Z}^{+}$, for any $x \in \mathbb{R}^{+}$, there is a rational number $\frac{p}{q}$ such that $1 \leq q \leq n$ and $\left|x-\frac{p}{q}\right|<\frac{1}{n q}$.

Proof. For any $x \in \mathbb{R}^{+}$, define $\{x\}=x-\lfloor x\rfloor$ be the fractional part of x. Consider $\{i x\} \in[0,1)$, for any $i=1,2, \ldots, n+1$. Partition $[0,1)$ into n subintervals $\left[0, \frac{1}{n}\right),\left[\frac{1}{n}, \frac{2}{n}\right), \ldots,\left[\frac{n-1}{n}, 1\right)$. By Pigeonhole Principle, there exists a subinterval $\left[\frac{k}{n}, \frac{k+1}{n}\right.$) contains two reals say $\{i x\}$ and $\{j x\}$ for $1 \leq i<j \leq$ $n+1$. Then we have $\{(j-i) x\} \in\left[0, \frac{1}{n}\right) \cup\left[1-\frac{1}{n}, 1\right)$. Let $q=j-i \leq n$. So $\{q x\} \in\left(0, \frac{1}{n}\right) \cup\left[1-\frac{1}{n}, 1\right)$, i.e. $q x=p+\epsilon$ for some $p \in \mathbb{Z}^{+}$and $|\epsilon|<\frac{1}{n}$. Then we have $x=\frac{p}{q}+\frac{\epsilon}{q}$, which implies that $\left|x-\frac{p}{q}\right|=\left|\frac{\epsilon}{q}\right|<\frac{1}{n q}$.

1.3 Second proof of Erdős-Szekeres Theorem

Theorem 1.11 (Erdős-Szekeres Theorem). For any sequence of $m n+1$ real numbers $\left\{a_{0}, a_{1}, \ldots, a_{m n}\right\}$, there is an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$.

The second proof. Consider any sequence $\left\{a_{0}, a_{1}, \ldots, a_{m n}\right\}$. For any $i \in\{0,1, \ldots, m n\}$, let f_{i} be the maximum size of an increasing subsequence starting at a_{i}. We may assume $f_{i} \in\{1,2, \ldots, m\}$ for any $i \in\{0,1, \ldots, m n\}$. By Pigeonhole Principle, there exists a $s \in\{1,2, \ldots, m\}$ such that there are at least $n+1$ elements $i \in\{0,1, \ldots, m\}$ satisfying $f_{i}=s$. Let these elements be $i_{1}<i_{2}<\ldots<i_{n+1}$.

We claim that $a_{i_{1}} \geq a_{i_{2}} \geq \ldots \geq a_{i_{n+1}}$. Why? If $a_{i_{j}}<a_{i_{j+1}}$ for some $j \in[n]$, then we would extend the max increasing subsequence of length s starting at $a_{i_{j+1}}$ by adding $a_{i_{j}}$ to obtain an increasing subsequence starting at $a_{i_{j}}$ of length s+1, a contradiction to $f_{i_{j}}=s$.

2 Ramsey's Theorem

Fact 2.1 (A party of six). Suppose a party has six participants. Participants may know each other or not. Then there must be three participants who know each other or do not know each other, i.e. any 6 -vertex graph G has a K_{3} or I_{3}.

Proof. We consider a graph G on six vertices say [6]. Each vertex i represents one participant: i and j are adjacent if and only if they know each other. Then we need to show that there are three vertices in G which form a triangle K_{3} or an independent set I_{3}.

Consider vertex 1. There are five other persons. So 1 is adjacent to three vertices or not adjacent to three vertices. By symmetry, we may assume that 1 is adjacent to three vertices, say $2,3,4$. If one of pairs $\{2,3\},\{2,4\},\{3,4\}$ is adjacent, then we have a K_{3}. Otherwise, $\{2,3,4\}$ forms an independent set of size three. This finishes the proof.

Definition 2.2. An r-edge-coloring of K_{n} is a mapping $f: E\left(K_{n}\right) \longrightarrow\{1,2, \ldots, r\}$ which assigns one of the colors $1,2, \ldots, r$ to each edge of K_{n}.

Definition 2.3. Given an r-edge-coloring of K_{n}. A clique in K_{n} is called monochromatic, if all its edges are colored by the same color.

Then the example of a party of six says that any 2 -edge-coloring of K_{6} has a monochromatic K_{3}.

Theorem 2.4 (Ramsey's Theorem (2-colors-version)). Let $k, \ell \geq 2$ be any two integers. Then there exists an integer $N=N(k, \ell)$, such that any 2 -edge-coloring of K_{N} (with colors red and blue) has a blue K_{k} or a red K_{ℓ}.

Proof. We will prove by induction on $k+\ell$ that any blue/red-edge-coloring of a clique on $N=$ $\binom{k+\ell-2}{k-1}$ vertices has a blue K_{k} or a red K_{ℓ}.

Base case is trivial (as we have $N=\binom{k+\ell-2}{k-1}=\ell$ where $k=2$ and $N=\binom{k+\ell-2}{k-1}=k$ where $\ell=2$).

We may assume that the statement holds for $k^{\prime}+\ell^{\prime} \leq k+\ell-1$. Let $N_{1}=\binom{k+\ell-3}{k-2}, N_{2}=\binom{k+\ell-3}{k-1}$, and $N=\binom{k+\ell-2}{k-1}$. So $N_{1}+N_{2}=N$.

Consider any red/blue-edge-coloring of K_{N}. Consider any vertex x. Let $A=\left\{y \in V\left(K_{n}\right)-\right.$ $\{x\}$: edge $x y$ is blue $\}$ and $B=\left\{y \in V\left(K_{n}\right)-\{x\}\right.$: edge $x y$ is red $\}$. So $|A|+|B|=N-1=$ $N_{1}+N_{2}-1$. By Pigeonhole Principle we have either $|A| \geq N_{1}$ or $|B| \geq N_{2}$.
Case 1. $|A| \geq N_{1}=\binom{(k-1)+\ell-2}{(k-1)-1}$.
The vertices of A contains a $K_{\binom{(k-1)+\ell-2}{(k-1)-1}}$ where edges are blue or red. By induction on this $K_{\binom{(k-1)+\ell-2}{(k-1)-1}}$ for the pair $\{k-1, \ell\}$, so A has a blue K_{k-1} or a red K_{ℓ}. In the former, by adding the vertex x to that blue K_{k-1}, we can obtain a blue K_{k} in the K_{N}.
Case 2. $|B| \geq N_{2}=\binom{k+\ell-3}{k-1}$.
This case is similar (by induction on $\{k, \ell-1\}$).
Definition 2.5. For $k, \ell \geq 2$, the Ramsey Number $R(k, \ell)$ denotes the smallest integer N such that any 2 -edge-coloring of K_{N} has a blue K_{k} or a red K_{ℓ}.

Remark 2.6. Ramsay Theorem says that $R(k, \ell) \leq\binom{ k+\ell-2}{k-1}$.
Let us try to understand this definition a bit more:

- $R(k, \ell) \leq L$ if and only if any 2-edge-coloring of K_{L} has a blue K_{k} or a red K_{ℓ}.
- $R(k, \ell)>M$ if and only if there exists a 2-edge-coloring of K_{M} which has no blue K_{k} nor red K_{ℓ}.

Fact 2.7. (1) $R(k, \ell)=R(\ell, k)$.
(2) $R(2, \ell)=\ell$ and $R(k, 2)=k$.
(3) $R(3,3)=6$.

Proof. It is easy to know that (1) and (2) is right. We have $R(3,3) \leq 6$ from the fact on a party of six. On the other hand, we have $R(3,3)>5$ form the following graph (if u, v are adjacent, we color edge $u v$ blue, otherwise we color edge $u v$ red).

Exercise 2.8. $R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)$.
Theorem 2.9. If for some (k, ℓ), the numbers $R(k-1, \ell)$ and $R(k, \ell-1)$ are even, then

$$
R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)-1 .
$$

Proof. Let $n=R(k-1, \ell)+R(k, \ell-1)-1$. So n is odd. Consider any 2-edge-coloring of K_{n}. For any vertex x, define the following as before $A_{x}=\{y: x y$ is blue $\}$ and $B_{x}=\{y: x y$ is red $\}$.

The previous proof tells us that if $\left|A_{x}\right| \geq R(k-1, \ell)$ or $\left|B_{x}\right| \geq R(k, \ell-1)$, then we can find a blue K_{k} or a red K_{ℓ}. Thus, we may assume that $\left|A_{x}\right| \leq R(k-1, \ell)-1$ and $\left|B_{x}\right| \leq R(k, \ell-1)-1$ for any vertex v, which implies that

$$
n \leq A_{x}+B_{x}+1 \leq R(k-1, \ell)+R(k, \ell-1)-1
$$

This shows that for each $x,\left|A_{x}\right|=R(k-1, \ell)-1$ and $\left|B_{x}\right|=R(k, \ell-1)-1$. Now we consider the graph G consisting of all blue edges. Note that G has an odd number of vertices and any vertex has odd degree. But this contradicts the Handshaking Lemma.

Corollary 2.10. $R(3,4)=9$.
Proof. By the previous theorem, we have $R(3,4) \leq R(2,4)+R(3,3)-1=4+6-1=9$. On the other hand, we have $R(3,4)>8$ form the following graph (if u, v are adjacent, we color edge $u v$ blue, otherwise we color edge $u v$ red).

Definition 2.11. For any $k \geq 2$ and any integers $s_{1}, s_{2}, \ldots, s_{k} \geq 2$, the Ramsey number $R_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is the least integer N such that any k-edge-coloring of K_{N} has a clique $K_{s_{i}}$ in color i, for some $i \in[k]$.

Homework 2.12. $R_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)<+\infty$.
Theorem 2.13 (Schur's Theorem). For $k \geq 2$, there exists some integer $N=N(k)$ such that for any coloring $\varphi:[N] \rightarrow[k]$, there exist three integers $x, y, z \in[N]$ satisfying that $\varphi(x)=\varphi(y)=$ $\varphi(z)$ and $x+y=z$.

Proof. Let $N=R_{k}(3,3, \ldots, 3)$. Define a k-edge-coloring of K_{N} from the coloring φ as following: for any $i, j \in[N]$, define the color of $i j$ to be $\varphi(|i-j|)$. By the definition of $R_{k}(3,3, \ldots, 3)$, we can find a monochromatic triangle, say $i j \ell$. Suppose $i<j<\ell$, we have $\varphi(\ell-j)=\varphi(\ell-i)=\varphi(j-i)$. Let $x=\ell-j, y=\ell-i, z=j-i \in[N]$, we have $\varphi(x)=\varphi(y)=\varphi(z)$ and $x+y=z$. This finishes the proof.

Remark 2.14. It is also true to require x, y, z to be distinct, by considering $N=R_{k}(4,4, \ldots, 4)$.

