Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Poset

1.1 The order from disorder

Definition 1.1. Consider a sequence $X = (x_1, x_2, ..., x_n)$ of n real numbers. A subsequence $(x_{i_1}, x_{i_2}, ..., x_{i_m})$ of X, where $i_1 < i_2 < ... < i_m$, is monotone, if either $x_{i_1} \leq x_{i_2} \leq ... \leq x_{i_m}$ or $x_{i_1} \geq x_{i_2} \geq ... \geq x_{i_m}$.

For example, $(10, 9, 7, 4, 5, 1, 2, 3) \longrightarrow (10, 9, 7, 5, 1)$.

Theorem 1.2 (Erdős-Szekeres Theorem). For any sequence $(x_1, x_2, ..., x_{n^2+1})$ of length $n^2 + 1$, there exists a monotone subsequence of length n + 1.

Proof. Let $X = [n^2 + 1]$. We define a poset $P = (X, \preceq)$ as following: $i \preceq j$ if and only if $i \leq j$ and $x_i \leq x_j$.

It is easy to check that $P = (X, \preceq)$ indeed defines a poset (reflective antisymmetric and transitive). By the previous result that $\alpha(P) \cdot w(P) \ge |X| = n^2 + 1$, we have either $w(P) \ge n + 1$ or $\alpha(P) \ge n + 1$.

Case 1. $w(P) \ge n + 1$.

There exists a chain of size n + 1, say $\{i_1, i_2, ..., i_{n+1}\}$. By definition, $x_{i_1} \leq x_{i_2} \leq ... \leq x_{i_{n+1}}$ is an increasing subsequence of length n + 1.

Case 2. $\alpha(P) \ge n+1$.

There exists an antichain of size n+1, say $\{i_1, i_2, ..., i_{n+1}\}$. We may assume that $i_1 < i_2 < ... < i_{n+1}$ being antichain, it implies that $x_{i_1} > x_{i_2} > ... > x_{i_{n+1}}$ is a decreasing subsequence of $(x_1, x_2, ..., x_{n^2+1})$.

Remark 1.3. What we proved is a bit stronger: there is either an increasing subsequence of length n + 1 or a strictly decreasing subsequence of length n + 1.

Exercise 1.4. Find examples to show that Erdős-Szekeres Theorem is optimal: there exists a sequence of n^2 reals such that NO monotone subsequence of length n + 1.

1.2 The Pigeonhole Principle

Theorem 1.5 (The Pigeonhole Principle). Let X be a set with at least $1 + \sum_{i=1}^{k} (n_i - 1)$ elements and let $X_1, X_2, ..., X_k$ be disjoint sets forming a partition of X. Then, there exists some i, such that $|X_i| \ge n_i$.

(1) Two equal degrees.

Theorem 1.6. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. Suppose that G does not have two vertices of same degree. So the only exceptional case will be that there is exactly one vertex of degree i for all $i \in \{0, 1, ..., n-1\}$. But this is impossible to have a vertex with degree 0 and a vertex with degree n-1 at the same time.

Exercise 1.7. For any n, find an n-vertex graph G, which has exactly two vertices with the same degree.

(2) Subsets without divisors.

Question 1.8. How large a subset $S \subset [2n]$ can be such that for any $i, j \in S$, we have $i \nmid j$ and $j \nmid i$?

Obviously, we can take $S = \{n + 1, n + 2, ..., 2n\}$ with |S| = n.

Theorem 1.9. For any $S \subset [2n]$ with $|S| \ge n+1$, there exist $i, j \in S$ such that i|j.

Proof. For any odd integer $2k - 1 \in [2n]$, define $S_{2k-1} = \{2^i \cdot (2k-1) \in S : i \ge 0\}$. Clearly, $S = \bigcup_{k=1}^n S_{2k-1}$. Since $|S| \ge n+1$, there exists some $|S_{2k-1}| \ge 2$ say $x, y \in S_{2k-1}$. It is easy to see that we have x|y or y|x.

(3) Rational approximation.

Theorem 1.10. Given $n \in \mathbb{Z}^+$, for any $x \in \mathbb{R}^+$, there is a rational number $\frac{p}{q}$ such that $1 \le q \le n$ and $|x - \frac{p}{q}| < \frac{1}{nq}$.

Proof. For any $x \in \mathbb{R}^+$, define $\{x\} = x - \lfloor x \rfloor$ be the fractional part of x. Consider $\{ix\} \in [0, 1)$, for any i = 1, 2, ..., n + 1. Partition [0, 1) into n subintervals $[0, \frac{1}{n}), [\frac{1}{n}, \frac{2}{n}), ..., [\frac{n-1}{n}, 1)$. By Pigeonhole Principle, there exists a subinterval $[\frac{k}{n}, \frac{k+1}{n})$ contains two reals say $\{ix\}$ and $\{jx\}$ for $1 \le i < j \le n+1$. Then we have $\{(j-i)x\} \in [0, \frac{1}{n}) \cup [1-\frac{1}{n}, 1)$. Let $q = j-i \le n$. So $\{qx\} \in (0, \frac{1}{n}) \cup [1-\frac{1}{n}, 1)$, i.e. $qx = p + \epsilon$ for some $p \in \mathbb{Z}^+$ and $|\epsilon| < \frac{1}{n}$. Then we have $x = \frac{p}{q} + \frac{\epsilon}{q}$, which implies that $|x - \frac{p}{q}| = |\frac{\epsilon}{q}| < \frac{1}{nq}$.

1.3 Second proof of Erdős-Szekeres Theorem

Theorem 1.11 (Erdős-Szekeres Theorem). For any sequence of mn+1 real numbers $\{a_0, a_1, ..., a_{mn}\}$, there is an increasing subsequence of length m + 1 or a decreasing subsequence of length n + 1.

The second proof. Consider any sequence $\{a_0, a_1, ..., a_{mn}\}$. For any $i \in \{0, 1, ..., mn\}$, let f_i be the maximum size of an increasing subsequence starting at a_i . We may assume $f_i \in \{1, 2, ..., m\}$ for any $i \in \{0, 1, ..., mn\}$. By Pigeonhole Principle, there exists a $s \in \{1, 2, ..., m\}$ such that there are at least n + 1 elements $i \in \{0, 1, ..., m\}$ satisfying $f_i = s$. Let these elements be $i_1 < i_2 < ... < i_{n+1}$.

We claim that $a_{i_1} \ge a_{i_2} \ge \dots \ge a_{i_{n+1}}$. Why? If $a_{i_j} < a_{i_{j+1}}$ for some $j \in [n]$, then we would extend the max increasing subsequence of length s starting at $a_{i_{j+1}}$ by adding a_{i_j} to obtain an increasing subsequence starting at a_{i_j} of length s+1, a contradiction to $f_{i_j} = s$.

2 Ramsey's Theorem

Fact 2.1 (A party of six). Suppose a party has six participants. Participants may know each other or not. Then there must be three participants who know each other or do not know each other, i.e. any 6-vertex graph G has a K_3 or I_3 .

Proof. We consider a graph G on six vertices say [6]. Each vertex i represents one participant: i and j are adjacent if and only if they know each other. Then we need to show that there are three vertices in G which form a triangle K_3 or an independent set I_3 .

Consider vertex 1. There are five other persons. So 1 is adjacent to three vertices or not adjacent to three vertices. By symmetry, we may assume that 1 is adjacent to three vertices, say 2, 3, 4. If one of pairs $\{2,3\}, \{2,4\}, \{3,4\}$ is adjacent, then we have a K_3 . Otherwise, $\{2,3,4\}$ forms an independent set of size three. This finishes the proof.

Definition 2.2. An r-edge-coloring of K_n is a mapping $f : E(K_n) \longrightarrow \{1, 2, ..., r\}$ which assigns one of the colors 1, 2, ..., r to each edge of K_n .

Definition 2.3. Given an r-edge-coloring of K_n . A clique in K_n is called monochromatic, if all its edges are colored by the same color.

Then the example of a party of six says that any 2-edge-coloring of K_6 has a monochromatic K_3 .

Theorem 2.4 (Ramsey's Theorem (2-colors-version)). Let $k, \ell \geq 2$ be any two integers. Then there exists an integer $N = N(k, \ell)$, such that any 2-edge-coloring of K_N (with colors red and blue) has a blue K_k or a red K_ℓ .

Proof. We will prove by induction on $k + \ell$ that any blue/red-edge-coloring of a clique on $N = \binom{k+\ell-2}{k-1}$ vertices has a blue K_k or a red K_ℓ .

Base case is trivial (as we have $N = \binom{k+\ell-2}{k-1} = \ell$ where k = 2 and $N = \binom{k+\ell-2}{k-1} = k$ where $\ell = 2$).

We may assume that the statement holds for $k'+\ell' \leq k+\ell-1$. Let $N_1 = \binom{k+\ell-3}{k-2}$, $N_2 = \binom{k+\ell-3}{k-1}$, and $N = \binom{k+\ell-2}{k-1}$. So $N_1 + N_2 = N$.

Consider any red/blue-edge-coloring of K_N . Consider any vertex x. Let $A = \{y \in V(K_n) - \{x\} : \text{edge } xy \text{ is blue}\}$ and $B = \{y \in V(K_n) - \{x\} : \text{edge } xy \text{ is red}\}$. So $|A| + |B| = N - 1 = N_1 + N_2 - 1$. By Pigeonhole Principle we have either $|A| \ge N_1$ or $|B| \ge N_2$. **Case 1** $|A| \ge N_1 - \binom{(k-1)+\ell-2}{2}$

Case 1. $|A| \ge N_1 = \binom{(k-1)+\ell-2}{(k-1)-1}$. The vertices of A contains a $K_{\binom{(k-1)+\ell-2}{(k-1)-1}}$ where edges are blue or red. By induction on this $K_{\binom{(k-1)+\ell-2}{(k-1)-1}}$ for the pair $\{k-1,\ell\}$, so A has a blue K_{k-1} or a red K_{ℓ} . In the former, by adding the vertex x to that blue K_{k-1} , we can obtain a blue K_k in the K_N . **Case 2.** $|B| \ge N_2 = \binom{k+\ell-3}{k-1}$.

This case is similar (by induction on $\{k, \ell - 1\}$).

Definition 2.5. For $k, \ell \geq 2$, the Ramsey Number $R(k, \ell)$ denotes the smallest integer N such that any 2-edge-coloring of K_N has a blue K_k or a red K_ℓ .

Remark 2.6. Ramsay Theorem says that $R(k, \ell) \leq \binom{k+\ell-2}{k-1}$.

Let us try to understand this definition a bit more:

- $R(k, \ell) \leq L$ if and only if any 2-edge-coloring of K_L has a blue K_k or a red K_ℓ .
- $R(k, \ell) > M$ if and only if there exists a 2-edge-coloring of K_M which has no blue K_k nor red K_ℓ .

Fact 2.7. (1) $R(k, \ell) = R(\ell, k)$. (2) $R(2, \ell) = \ell$ and R(k, 2) = k. (3) R(3, 3) = 6.

Proof. It is easy to know that (1) and (2) is right. We have $R(3,3) \leq 6$ from the fact on a party of six. On the other hand, we have R(3,3) > 5 form the following graph (if u, v are adjacent, we color edge uv blue, otherwise we color edge uv red).

Exercise 2.8. $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell-1).$

Theorem 2.9. If for some (k, ℓ) , the numbers $R(k-1, \ell)$ and $R(k, \ell-1)$ are even, then

$$R(k,\ell) \le R(k-1,\ell) + R(k,\ell-1) - 1.$$

Proof. Let $n = R(k - 1, \ell) + R(k, \ell - 1) - 1$. So n is odd. Consider any 2-edge-coloring of K_n . For any vertex x, define the following as before $A_x = \{y : xy \text{ is blue}\}$ and $B_x = \{y : xy \text{ is red}\}$.

The previous proof tells us that if $|A_x| \ge R(k-1,\ell)$ or $|B_x| \ge R(k,\ell-1)$, then we can find a blue K_k or a red K_ℓ . Thus, we may assume that $|A_x| \le R(k-1,\ell) - 1$ and $|B_x| \le R(k,\ell-1) - 1$ for any vertex v, which implies that

$$n \le A_x + B_x + 1 \le R(k - 1, \ell) + R(k, \ell - 1) - 1$$

This shows that for each x, $|A_x| = R(k-1, \ell) - 1$ and $|B_x| = R(k, \ell - 1) - 1$. Now we consider the graph G consisting of all blue edges. Note that G has an odd number of vertices and any vertex has odd degree. But this contradicts the Handshaking Lemma.

Corollary 2.10. R(3,4) = 9.

Proof. By the previous theorem, we have $R(3,4) \leq R(2,4) + R(3,3) - 1 = 4 + 6 - 1 = 9$. On the other hand, we have R(3,4) > 8 form the following graph (if u, v are adjacent, we color edge uv blue, otherwise we color edge uv red).

Definition 2.11. For any $k \ge 2$ and any integers $s_1, s_2, ..., s_k \ge 2$, the Ramsey number $R_k(s_1, s_2, ..., s_k)$ is the least integer N such that any k-edge-coloring of K_N has a clique K_{s_i} in color i, for some $i \in [k]$.

Homework 2.12. $R_k(s_1, s_2, ..., s_k) < +\infty$.

Theorem 2.13 (Schur's Theorem). For $k \ge 2$, there exists some integer N = N(k) such that for any coloring $\varphi : [N] \to [k]$, there exist three integers $x, y, z \in [N]$ satisfying that $\varphi(x) = \varphi(y) = \varphi(z)$ and x + y = z.

Proof. Let $N = R_k(3, 3, ..., 3)$. Define a k-edge-coloring of K_N from the coloring φ as following: for any $i, j \in [N]$, define the color of ij to be $\varphi(|i-j|)$. By the definition of $R_k(3, 3, ..., 3)$, we can find a monochromatic triangle, say $ij\ell$. Suppose $i < j < \ell$, we have $\varphi(\ell - j) = \varphi(\ell - i) = \varphi(j - i)$. Let $x = \ell - j, y = \ell - i, z = j - i \in [N]$, we have $\varphi(x) = \varphi(y) = \varphi(z)$ and x + y = z. This finishes the proof.

Remark 2.14. It is also true to require x, y, z to be distinct, by considering $N = R_k(4, 4, ..., 4)$.