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1 Poset

1.1 The order from disorder

Definition 1.1. Consider a sequence X = (x1,x2,...,xy) of n real numbers. A subsequence
(Tiyy Tigy ey Ty, ) of X, where i1 < iy < ... < iy, is monotone, if either x;, < z;, < .. < x; or
Ty > Lo > .2 Ly

For example, (10,9,7,4,5,1,2,3) — (10,9,7,5,1).

Theorem 1.2 (Erdds-Szekeres Theorem). For any sequence (x1, %2, ...,Tp241) of length n® + 1,
there exists a monotone subsequence of length n + 1.

Proof. Let X = [n? + 1]. We define a poset P = (X, <) as following: i < j if and only if i < j
and x; < x;.

It is easy to check that P = (X, <) indeed defines a poset (reflective antisymmetric and
transitive). By the previous result that o(P)-w(P) > |X| = n? + 1, we have either w(P) > n+1
or a(P) >n+ 1.

Case 1. w(P)>n+ 1.

There exists a chain of size n + 1, say {41,142, ..,%,41}. By definition, x;; <, < ... <y, is
an increasing subsequence of length n + 1.

Case 2. a(P) > n+ 1.

There exists an antichain of size n+1, say {i1,12,..,in,+1}. We may assume that i; < iy <
... < ip41 being antichain, it implies that z;, > z;, > ... > @x;,, is a decreasing subsequence of
(1,22, ooy Tp24q)-

|

Remark 1.3. What we proved is a bit stronger: there is either an increasing subsequence of
length n + 1 or a strictly decreasing subsequence of length n + 1.

Exercise 1.4. Find examples to show that Erdds-Szekeres Theorem is optimal: there exists a
sequence of n? reals such that NO monotone subsequence of length n + 1.

1.2 The Pigeonhole Principle

Theorem 1.5 (The Pigeonhole Principle). Let X be a set with at least 14+ 3% (n;—1) elements
and let X1, Xo, ..., Xy be disjoint sets forming a partition of X. Then, there exists some i, such
that | X;| > n.

(1) Two equal degrees.



Theorem 1.6. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. Suppose that G does not have two vertices of same
degree. So the only exceptional case will be that there is exactly one vertex of degree i for all
i€ {0,1,...,n—1}. But this is impossible to have a vertex with degree 0 and a vertex with degree
n — 1 at the same time. |

Exercise 1.7. For any n, find an n-vertex graph G, which has exactly two vertices with the same
degree.

(2) Subsets without divisors.

Question 1.8. How large a subset S C [2n] can be such that for any i,j € S, we have i {j and
Obviously, we can take S = {n+1,n+2,...,2n} with |S| = n.
Theorem 1.9. For any S C [2n] with |S| > n + 1, there exist i,5 € S such that i|j.

Proof. For any odd integer 2k — 1 € [2n], define Sop_1 = {2°- (2k — 1) € S : i > 0}. Clearly,
S = Uy Sok—1. Since |S| > n + 1, there exists some |Sox_1| > 2 say =,y € Sop_1. It is easy to
see that we have z|y or y|x. ]

(3) Rational approximation.

Theorem 1.10. Givenn € Z*, for any v € RT, there is a rational number % such that1 < g<mn

and |z — | < niq.

Proof. For any z € RT, define {x} = z— |x] be the fractional part of z. Consider {iz} € [0,1), for
any i = 1,2, ...,n+ 1. Partition [0, 1) into n subintervals [0, %), [%, %), vy [”771, 1). By Pigeonhole
Principle, there exists a subinterval [£, #F1) contains two reals say {iz} and {jz} for 1 <i < j <
n+1. Then we have {(j—i)z} € [0, 2)U[1—1,1). Let ¢ = j—i < n. So {qz} € (0,1)u[1-1,1),
ie. qv = p+e for some p € Z* and |¢] < L. Then we have z = % + ¢, which implies that

o — Bl =g < L. "

1.3 Second proof of Erd6s-Szekeres Theorem

Theorem 1.11 (Erdds-Szekeres Theorem). For any sequence of mn-+1 real numbers {ag, a1, ..., amn },
there is an increasing subsequence of length m + 1 or a decreasing subsequence of length n + 1.

The second proof. Consider any sequence {ag,ai,...,amn}. For any i € {0,1,...,mn}, let f; be
the maximum size of an increasing subsequence starting at a;. We may assume f; € {1,2,...,m}
for any i € {0,1,...,mn}. By Pigeonhole Principle, there exists a s € {1,2,...,m} such that
there are at least n + 1 elements ¢ € {0,1,....,m} satisfying f; = s. Let these elements be
1<t <...< in+1.

We claim that a;, > a;, > ... > a;,,,. Why? If a;; < a;;, for some j € [n], then we would
extend the max increasing subsequence of length s starting at a;,, by adding a;; to obtain an
increasing subsequence starting at a;; of length s+1, a contradiction to f;; = s.

|



2 Ramsey’s Theorem

Fact 2.1 (A party of six). Suppose a party has sixz participants. Participants may know each
other or not. Then there must be three participants who know each other or do not know each
other, i.e. any 6-vertex graph G has a K3 or Is.

Proof. We consider a graph G on six vertices say [6]. Each vertex i represents one participant:
¢ and j are adjacent if and only if they know each other. Then we need to show that there are
three vertices in G which form a triangle K3 or an independent set Is.

Consider vertex 1. There are five other persons. So 1 is adjacent to three vertices or not
adjacent to three vertices. By symmetry, we may assume that 1 is adjacent to three vertices, say
2,3,4. If one of pairs {2,3},{2,4},{3,4} is adjacent, then we have a K3. Otherwise, {2,3,4}
forms an independent set of size three. This finishes the proof. |

Definition 2.2. An r-edge-coloring of K, is a mapping f : E(K,) — {1,2,...,7} which assigns
one of the colors 1,2, ...;1 to each edge of Kj.

Definition 2.3. Given an r-edge-coloring of K,,. A clique in K, is called monochromatic, if all
its edges are colored by the same color.

Then the example of a party of six says that any 2-edge-coloring of Kg has a monochromatic
Ks.

Theorem 2.4 (Ramsey’s Theorem (2-colors-version)). Let k,¢ > 2 be any two integers. Then
there exists an integer N = N(k,£), such that any 2-edge-coloring of Kn (with colors red and
blue) has a blue Ky, or a red K.

Proof. We will prove by induction on k + ¢ that any blue/red-edge-coloring of a clique on N =

(k/‘-’i‘-fIQ) vertices has a blue K}, or a red Kj.

Base case is trivial (as we have N = (k:ff) = ¢ where k = 2 and N = (szf) = k where
0=2).

We may assume that the statement holds for &’ +/¢' < k+/—1. Let N1 = (k;rf;?’), Ny = (k;gfﬁ),
and N = (M%), So Ny + Np = N.

Consider any red/blue-edge-coloring of K. Consider any vertex x. Let A = {y € V(K,,) —
{z} : edge zy is blue} and B = {y € V(K,,) — {z} : edge zy is red}. So |A|+ |B| =N —1
Ni + N3 — 1. By Pigeonhole Principle we have either |A| > Ny or |B| > Na.

Case 1. |A| > N, = ((k(;);)rff)

The vertices of A contains a K ((Iz;i)S-EIQ) where edges are blue or red. By induction on this
K(ug(;i)lﬁ;z) for the pair {k — 1,/¢}, so A has a blue Kj_; or a red Ky. In the former, by adding
the vertex x to that blue Kj_1, we can obtain a blue Kj in the Ky.

Case 2.|B| > Ny = (karﬁg)
This case is similar (by induction on {k,¢ — 1}). ]

Definition 2.5. For k,{ > 2, the Ramsey Number R(k,{) denotes the smallest integer N such
that any 2-edge-coloring of Kn has a blue Ky or a red K.

Remark 2.6. Ramsay Theorem says that R(k, () < (k;if)

Let us try to understand this definition a bit more:



e R(k,¢) < L if and only if any 2-edge-coloring of K, has a blue K}, or a red K.

e R(k,¢) > M if and only if there exists a 2-edge-coloring of Kj; which has no blue K nor
red K 0-

Fact 2.7. (1) R(k,¢) = R({, k).
(2) R(2,¢) =¥ and R(k,2) = k.
(3) R(3,3) = 6.

Proof. Tt is easy to know that (1) and (2) is right. We have R(3,3) < 6 from the fact on a party
of six. On the other hand, we have R(3,3) > 5 form the following graph (if u, v are adjacent, we
color edge uv blue, otherwise we color edge uv red).

Exercise 2.8. R(k,{) < R(k—1,¢) + R(k,¢ —1).
Theorem 2.9. If for some (k, (), the numbers R(k —1,¢) and R(k,{ — 1) are even, then
R(k,0) < R(k—1,¢0) + R(k,¢—1) — 1.

Proof. Let n = R(k — 1,¢) + R(k,¢ — 1) — 1. So n is odd. Consider any 2-edge-coloring of K.
For any vertex z, define the following as before A, = {y : zy is blue} and B, = {y : zy is red}.

The previous proof tells us that if |A;| > R(k—1,¢) or |By| > R(k,¢— 1), then we can find a
blue K} or a red Ky. Thus, we may assume that |A;| < R(k—1,¢)—1 and |By| < R(k,/—1)—1
for any vertex v, which implies that

n<A,+B,+1<Rk-1,0)+R(k,{—1)—1

This shows that for each z, |A;| = R(k—1,¢)—1 and |B,| = R(k,{—1) — 1. Now we consider
the graph G consisting of all blue edges. Note that G has an odd number of vertices and any
vertex has odd degree. But this contradicts the Handshaking Lemma. |

Corollary 2.10. R(3,4) =9.

Proof. By the previous theorem, we have R(3,4) < R(2,4) + R(3,3) —1 =446 —-1=09. On the
other hand, we have R(3,4) > 8 form the following graph (if u,v are adjacent, we color edge uv
blue, otherwise we color edge uv red).



Definition 2.11. For any k > 2 and any integers s1, So, ..., S > 2, the Ramsey number Ry (s1, 2, ...

is the least integer N such that any k-edge-coloring of K has a clique K, in color i, for some

i € [K].
Homework 2.12. Ry (s1, s, ..., k) < +00.

Theorem 2.13 (Schur’s Theorem). For k > 2, there exists some integer N = N (k) such that for
any coloring ¢ : [N] — [k], there exist three integers x,y,z € [N] satisfying that p(z) = o(y) =
o(z) and z +y = z.

Proof. Let N = Ry(3,3,...,3). Define a k-edge-coloring of Ky from the coloring ¢ as following:
for any 4, j € [IV], define the color of ij to be ¢(|i — j|). By the definition of R(3,3,...,3), we can
find a monochromatic triangle, say ij¢. Suppose i < j < £, we have p({ —j) = (L —1i) = o(j —1).
Let x =0—j,y=4{0—i,z=j—i€ [N], we have () = ¢(y) = ¢(z) and = +y = z. This finishes
the proof. |

Remark 2.14. [t is also true to require x,y, z to be distinct, by considering N = Ri(4,4,...,4).

75k)



