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Abstract

Given positive integers p ≥ k, and a non-negative integer d, we say a graph G is
(k, d, p)-choosable if for every list assignment L with |L(v)| ≥ k for each v ∈ V (G)
and |

⋃
v∈V (G) L(v)| ≤ p, there exists an L-coloring of G such that each monochromatic

subgraph has maximum degree at most d. In particular, (k, 0, k)-choosable means k-
colorable, (k, 0,+∞)-choosable means k-choosable and (k, d,+∞)-choosable means d-
defective k-choosable. This paper proves that there are 1-defective 3-choosable planar
graphs that are not 4-choosable, and for any positive integers ℓ ≥ k ≥ 3, and non-
negative integer d, there are (k, d, ℓ)-choosable graphs that are not (k, d, ℓ+1)-choosable.
These results answer questions asked by Wang and Xu [SIAM J. Discrete Math. 27,
4(2013), 2020-2037], and Kang [J. Graph Theory 73, 3(2013), 342-353], respectively.
Our construction of (k, d, ℓ)-choosable but not (k, d, ℓ+ 1)-choosable graphs generalizes
the construction of Král’ and Sgall in [J. Graph Theory 49, 3(2005), 177-186] for the
case d = 0.

1 Introduction

A coloring of a graph G is a mapping ϕ which assigns to each vertex v a color. The defect of
a vertex v, denoted by λG(v, ϕ), is the number of neighbors of v which have the same color as
v. A coloring ϕ is d-defective if λG(v, ϕ) ≤ d for each vertex v ∈ V (G). A 0-defective coloring
is also called a proper coloring.

Assume G is a graph and f : V (G) → N+ is a mapping. An f -list assignment of G is
a list assignment L of G which assigns to each vertex v a set L(v) of f(v) colors. Given a
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list assignment L and nonnegative integer d, a d-defective L-coloring ϕ of G is a d-defective
coloring ϕ of G such that ϕ(v) ∈ L(v) for each vertex v. We say G is d-defective f -choosable
if G has a d-defective L-coloring for any f -list assignment L.

Given a mapping f : V (G) → N+ and two nonnegative integers d, p, we say G is (f, d, p)-
choosable if for any f -list assignment L with |

⋃
v∈V (G) L(v)| ≤ p, there exists a d-defective

L-coloring of G. In particular, (k, 0, k)-choosable is called k-colorable, (k, 0,+∞)-choosable is
called k-choosable, (k, d, k)-choosable is called d-defective k-colorable, (k, d,+∞)-choosable is
called d-defective k-choosable.

Defective coloring of planar graphs was first studied by Cowen, Cowen and Woodall [1].
They proved that every outerplanar graph is 2-defective 2-colorable and that every planar
graph is 2-defective 3-colorable. These results were strengthened to defective list coloring by
Eaton and Hull [2] and Škrekovski [12] independently. They proved that every planar graph
is 2-defective 3-choosable and every outerplanar graph is 2-defective 2-choosable.

These results motivated some problems on the relation among defective colorability, de-
fective choosability and choosability of planar graphs. It is known that there are 4-choosable
planar graphs that are not 1-defective 3-colorable [13] (hence not 1-defective 3-choosable).
Wang and Xu [13] asked the following.

Question 1 Is every 1-defective 3-choosable graph 4-choosable?

This paper gives a negative answer to this question in a stronger form as following.

Theorem 2 There are 1-defective 3-choosable planar graphs that are 4-choosable.

By definition, for any d ≥ 0, if G is (k, d,+∞)-choosable, then it is (k, d, p)-choosable for
any p ≥ k. Král’ and Sgall [7] showed that for each ℓ ≥ k ≥ 3, there exists a (k, 0, ℓ)-choosable
graph which is not (k, 0, ℓ+ 1)-choosable. Kang [6] asked the following question.

Question 3 Given positive integers k, d, does there exist an integer ℓk,d such that every
(k, d, ℓk,d)-choosable graph is (k, d,+∞)-choosable?

Our second result answers this question in negative for k ≥ 3, which generalizes the
construction of Král’ and Sgall [7] to the cases of d ≥ 0.

Theorem 4 For any integers d ≥ 0 and ℓ ≥ k ≥ 3, there exists a (k, d, ℓ)-choosable graph
which is not (k, d, ℓ+ 1)-choosable.

2 Proof of Theorem 2

The gadget graph T depicted in Figure 1 was constructed by Gutner [4] (see Fig. 1) and
used in the construction of many counterexamples for several topics related to list coloring of
planar graphs [9, 10, 11, 14].
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Fig. 1. The gadget graph T in [4].

For a positive integer k, let T (k) be the graph obtained from the disjoint union of k copies
of T by identifying all the copies of top vertex, denoted still by u, and identifying all the
copies of the bottom vertex, denoted still by v. It is known [4, 11] that for any k ≥ 16, T (k)
is not 4-choosable.

To prove Theorem 2, it suffices to show that if k ≤ 26, then T (k) is 1-defective 3-choosable.
We first construct some 1-defective 3-colorings for some special list assignments of T . We

assume T are labeled as in Fig.1.

Lemma 5 Let H = T −{u, v}, and f(w) = 2 for w ∈ V (H)\{x, y, z} and f(x), f(y), f(z) ≥
1. If one of f(x), f(y), f(z) = 2, then H is 1-defective f -choosable.

Proof. Assume f(y) = f(z) = 1 and f(x) = 2 and L is an f -list assignment of H. Let
ϕ(y), ϕ(z) be the unique color in L(y), L(z), respectively. Let ϕ(u2) ∈ L(u2)−{ϕ(y)}, ϕ(v2) ∈
L(v2) − {ϕ(z)}, ϕ(u1) ∈ L(u1) − {ϕ(z)}, ϕ(v1) ∈ L(v1) − {ϕ(z)} and ϕ(x) ∈ L(x) − {ϕ(u1)}.
It is straightforward to verify that ϕ is a 1-defecitve L-coloring of H.

Assume f(z) = 2 and f(x) = f(y) = 1 and L is an f -list assignment ofH. Let ϕ(x), ϕ(y) be
the unique color in L(x), L(y), respectively. Let ϕ(u1) ∈ L(u1)−{ϕ(x)}, ϕ(z) ∈ L(z)−{ϕ(u1)},
ϕ(v1) ∈ L(v1) − {ϕ(z)}, ϕ(u2) ∈ L(u2) − {ϕ(z)} and ϕ(v2) ∈ L(v1) − {ϕ(y)}. Again it is
straightforward to verify that ϕ is a 1-defective L-coloring of H.

Corollary 6 Let L be a list assignment of T with L(u) = {α}, L(v) = {β} and |L(w)| ≥ 3
for w ∈ V (T ) \ {u, v}. If α = β, or α ̸= β and {α, β} ̸⊆ L(x) ∩ L(y) ∩ L(z), or α ̸= β and
L(x) ∩ L(y) ∩ L(z)− {α, β} ≠ ∅, then T has a 1-defective L-coloring ϕ such that λT (u, ϕ) =
λT (v, ϕ) = 0.

Proof. Let L′ be the list assignment of H = T − {u, v} defined as L′(w) = L(w) − {α, β}
if w ∈ {x, y, z}, and L′(w) = L(w) − {α} for w ∈ {u1, u2} and L′(w) = L(w) − {β} for
w ∈ {v1, v2}. If α = β or {α, β} ̸⊆ L(x) ∩ L(y) ∩ L(z), then it follows from Lemma 5 that H
has a 1-defective L′-coloring ϕ. Extend ϕ to T by letting ϕ(u) = α and ϕ(v) = β, then ϕ is a
1-defective L-coloring ϕ such that λT (u, ϕ) = λT (v, ϕ) = 0.

If α ̸= β and L(x) ∩ L(y) ∩ L(z)− {α, β} ̸= ∅, say c ∈ L(x) ∩ L(y) ∩ L(z)− {α, β}, then
let ϕ(x) = ϕ(y) = ϕ(z) = c, ϕ(w) ∈ L(w)− {α, c} for w ∈ {u1, u2} and ϕ(w) ∈ L(w)− {β, c}
for w ∈ {v1, v2}. It is straightforward to verify that ϕ is a 1-defective L-coloring ϕ such that
λT (u, ϕ) = λT (v, ϕ) = 0.
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Lemma 7 Let L be a list assignment of T with L(u) = {α}, L(v) = {β} and |L(w)| ≥ 3
for w ∈ V (T ) \ {u, v}. Then T has a 1-defective L-coloring ϕ such that λT (u, ϕ) = 0, and a
1-defective L-coloring ϕ such that λT (v, ϕ) = 0.

Proof. By Corollary 6, it suffices to consider the case that α ̸= β and {α, β} ⊆ L(x)∩L(y)∩
L(z). Let ϕ(u) = α, ϕ(v) = β, ϕ(x), ϕ(z) be the unique color in L(x)− {α, β}, L(z)− {α, β},
respectively. Let ϕ(u1) ∈ L(u1) − {α, ϕ(x)}, ϕ(v1) ∈ L(v1) − {β, ϕ(z)}, ϕ(u2) ∈ L(u2) −
{α, ϕ(z)}, ϕ(v2) ∈ L(v2) − {β, ϕ(z)}. If ϕ(u2) ̸= ϕ(v2), then let ϕ(y) ∈ L(y) − {ϕ(u2), ϕ(v2)}.
Otherwise, let ϕ(y) be any color in {α, β}. It is easy to verify that ϕ is a 1-defective coloring
of T . In most cases, λT (u, ϕ) = λT (v, ϕ) = 0, except that in the last case, if ϕ(y) = α, then
λT (v, ϕ) = 0, if ϕ(y) = β, then λT (u, ϕ) = 0.

Now we are ready to prove Theorem 2.
Proof of Theorem 2. Let L be any 3-list assignment of T (k), we shall give a 1-defective
3-coloring ϕ of T (k). Without loss of generality, we assume that |L(w)| = 3 for each vertex
w. If L(u) ∩ L(v) ̸= ∅, say α ∈ L(u) ∩ L(v), then let ϕ(u) = ϕ(v) = α. By Corollary 6, ϕ can
be extended to a 1-defective coloring of T (k) so that λT (u, ϕ) = λT (v, ϕ) = 0.

Assume L(u)∩L(v) = ∅. For each pair of colors (α, β) with α ∈ L(u), β ∈ L(v), a copy of
T is called (α, β)-tight if {α, β} = L(x) ∩ L(y) ∩ L(z) (here x, y, z refer to the corresponding
vertices in that copy of T ). Note that if a copy of T is (α, β)-tight, then it is not (α′, β′)-tight for
any (α′, β′) ̸= (α, β). So by pigeonhole principle, there is a pair (α, β) with α ∈ L(u), β ∈ L(v)
such that there are at most two copies of T , say T 1 and T 2, that are (α, β)-tight. Let
ϕ(u) = α, ϕ(v) = β. By Corollary 6, for each other copy T ′ of T , ϕ can be extended to a
1-defective L-coloring of T ′ so that λT ′(u, ϕ) = λT ′(v, ϕ) = 0. By Lemma 7, ϕ can be extended
to a 1-defective L-coloring of T 1 so that λT 1(u, ϕ) = 0, and ϕ can be extended to a 1-defective
L-coloring of T 2 so that λT 2(v, ϕ) = 0. Thus ϕ can be extended to a 1-defective L-coloring of
T (k).

3 Proof of Theorem 4

Let ℓ ≥ k ≥ 3 and d ≥ 0 be any fixed integers. In this section we prove Theorem 4 by
constructing graphs that are (k, d, ℓ)-choosable but not (k, d, ℓ+ 1)-choosable.

Lovász [8] proved that every graph G with ∆(G) + 1 ≤ k(d+1) is d-defective k-colorable.
This was generalized to list-version by Hendrey and Wood (see Corollary 3.2 in [5]).

Lemma 8 ([5]) Every graph G with ∆(G) + 1 ≤ k(d+ 1) is d-defective k-choosable.

Lemma 8 implies that every complete graph with k(d+1) vertices is d-defective k-choosable.
In this paper, we need the following slightly stronger statement.

Lemma 9 Suppose G is a complete graph of order k(d+1), and v is any vertex in G. Assume
L is a list assignment with |L(u)| ≥ k for any u ∈ V (G) \ {v} and |L(v)| = 1. Then G has a
d-defective L-coloring.

Proof. Assume L(v) = {c}. Let Vc = {u ∈ V (G) : c ∈ L(u)}. If |Vc| ≥ d, then we choose
arbitrary d-subset D ⊂ Vc, and color all the vertices in D and v with color c, also we delete
the color c from Vc − D. Note that G − v − D is a complete graph of order (k − 1)(d + 1),
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and each vertex has at least (k − 1) colors available. By Lemma 8, we can color G − v −D
without using c and with defect d by colors from the lists. So assume that |Vc| ≤ d − 1.
Then we color all the vertices in Vc with color c. Note that G′ = G − Vc still satisfies that
∆(G′)+1 ≤ k(d+1) and each vertex has k colors available. Then we can extend the coloring
to whole G by Lemma 8.

The following lemma follows from Lemma 3.3 in [5].

Lemma 10 ([5]) Let L be a k-list assignment of a graph G. Let A,B be a partition of V (G),
where G[A] is d-defective L-colorable. If for every vertex v ∈ B,

(d+ 1)|NG(v) ∩ A|+ degB(v) + 1 ≤ (d+ 1)k,

then G is d-defective L-colorable.

Given a graph G and an non-negative integer d, we denote by G ∗ d the graph obtained
from the disjoint union of G and |V (G)| copies of the complete graph Kd, denoted as {Bv :
v ∈ V (G)}, by identifying v with one vertex of Bv. Fig. 2 shows the graph C9 ∗ 4.

v1

v2
v3v4

v5

v6
v7 v8

v9

Fig. 2. C9 ∗ 4

Lemma 11 H = C2k+1 ∗ (2d+ 2) is not d-defective 2-colorable.

Proof. Let v1, v2, . . . , v2k+1 be the vertices of C2k+1 in order, and B1, B2, . . . , B2k+1 be the
corresponding vertex-set of the 2k+1 copies of K2d+2. Assume there is a d-defective 2-coloring
ϕ of H. Since Bi is a clique of order 2(d+ 1), each of the two colors is used d+ 1 times by ϕ
in Bi. Therefore, ϕ(vi) ̸= ϕ(vj) whenever vivj ∈ E(C2k+1). This is a contradiction, as C2k+1

is not 2-colorable.

Lemma 12 Let H = C2k+1 ∗ (2d + 2), with v1, v2, . . . , v2k+1 be the vertices of C2k+1 in this
cyclic order. Let B1, B2, . . . , B2k+1 be the corresponding vertex-set of the 2k + 1 copies of
K2d+2. Assume L is a list assignment of H with |L(u)| ≥ 2 for u ∈

⋃2k
i=1Bi and |L(u)| ≥ 3

for u ∈ B2k+1. Then for any color c, H has a d-defective L-coloring ϕ such that at most one
vertex in B2k+1 is colored with c in ϕ.

Proof. As |L(v2k+1)| ≥ 3, there is a proper L-coloring ϕ of C2k+1. We then extend ϕ from
each vi to Bi by Lemma 9 so that color c is not used on other vertices of B2k+1. This is
possible since each vertex in B2k+1 still has at least two colors available.
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Lemma 13 Assume k ≥ 3, t ≥ 2, d ≥ 0 and ℓ = k− 2 + t. There exists a graph H(t, d, k) =
(V,E) with a precolored independent set T = {u1, u2, . . . , ut} for which the following hold:

• Assume the precoloring ϕ of T uses t distinct colors in [ℓ + 1]. Then there is a k-list
assignment L of H(t, d, k) with L(v) ⊆ [ℓ + 1] for each vertex v such that ϕ cannot be
extended to a d-defective coloring ψ of H(t, d, k) with λH(t,d,k)(ui, ψ) = 0 for each ui ∈ T .
On the other hand, if d ≥ 1, then for any k-list assignment L of H(t, d, k) − T , ϕ can
be extended to a d-defective L-coloring ψ of H(t, d, k) such that λH(t,d,k)(ui, ψ) = 0 for
i = 1, 2, . . . , t− 1 and λH(t,d,k)(ut, ψ) ≤ 1.

• Assume the precoloring ϕ of T uses with at most t − 1 colors. Then for any k-list
assignment L of H(t, d, k) − T , ϕ can be extended to a d-defective L-coloring ψ of
H(t, d, k) such that λH(t,d,k)(ui, ψ) = 0 for each ui ∈ T .

Proof. We consider three cases according to the values of ℓ and k.

Case 1. t ≤ k − 1 (hence 3 ≤ k ≤ ℓ ≤ 2k − 3).
Let H(t, d, k) be the join of a complete graph K(d+1)(k−t)+1 and an independent set T =

{u1, u2, . . . , ut}. Assume ϕ is a precoloring of T .
Assume ϕ uses t distinct colors in [ℓ+ 1]. Let S be k colors in [ℓ+ 1] that contains ϕ(T ),

and let L(v) = S for all v ∈ V (H(t, d, k)− T .
We then show that ϕ cannot be extended to a d-defective coloring ψ of H(t, d, k) with

λH(t,d,k)(ui, ψ) = 0. Assume to the contrary that ϕ is extended to a d-defective coloring
ψ of H(t, d, k) with λH(t,d,k)(ui, ψ) = 0. Then vertices in the complete graph K(d+1)(k−t)+1

are colored by k − t colors. So one color class contains at least d + 2 vertices, which is a
contradiction. On the other hand, if d ≥ 1, then for any k-list assignment L ofH(t, d, k)−T , let
w be an arbitrary vertex in V (H(t, d, k)−T , L′(v) = L(v)−ϕ(T ) for v ∈ V (H(t, d, k)−T−{w},
and L′(w) = L(w)−ϕ(T −{ut}). We have |L′(v)| ≥ k− t for any v ∈ V (K(d+1)(k−t)+1)−{w},
and |L′(w)| ≥ k − t + 1. By Lemma 8, K(d+1)(k−t)+1 has a d-defective L′-coloring, which is
an extension of ϕ to a d-defective L-coloring of H(t, d, k) with λH(t,d,k)(ui, ψ) = 0 for each
ui ∈ T − {ut}, and λH(t,d,k)(ut, ψ) ≤ 1.

If ϕ use at most t − 1 colors, then for any k-list assignment L of V (H(t, d, k)) − T ,
let L′(v) = L(v) − ϕ(T ) for v ∈ V (H(t, d, k)) − T . We have |L′(v)| ≥ k − t + 1 for any
v ∈ V (K(d+1)(k−t)+1). By Lemma 8, K(d+1)(k−t)+1 has a d-defective L′-coloring, which is an
extension of ϕ to a d-defective L-coloring of H(t, d, k) with λH(t,d,k)(ui, ψ) = 0 for each ui ∈ T .

Case 2. t ≥ k = 3 (hence ℓ ≥ 2k − 2 = 4).
Let T = {u1, u2, . . . , ut} be an independent set. Let s ∈ {

(
t
2

)
,
(
t
2

)
+1} be an odd integer, and

let X = {Xa : 1 ≤ a ≤ s} be a set disjoint copies of Kd+1. Let π : [s] → {(i, j) : 1 ≤ i < j ≤ t}
be a surjective map, and for each a ∈ [s] with π(a) = (i, j), connect each vertex of Xa to
ui and uj. Add the graph H = Cs ∗ 2(d + 1), with {Ba : 1 ≤ a ≤ s} be the corresponding
vertex-set of the s copies of K2d+2. For each a ∈ [s], choose one vertex xa ∈ Xa and connect
xa to all the vertices in Ba. This completes the construction of H(t, d, 3). Fig. 3 is an example
with t = 4 and d = 3.

Assume ϕ is a precoloring of T .
Assume ϕ uses t distinct colors in [ℓ + 1]. Let L be a 3-list assignment of H(t, d, 3) − T

defined as follows: For x ∈ Xa with a ∈ [s] and π(a) = (i, j), let L(x) = {ϕ(ui), ϕ(uj), β} and

6



u1 u2 u3 u4

H

B1 B2 B3 B4 B5 B6 B7

X1 X2 X3 X4 X5 X6 X7

Fig. 3. H(4, 3, 3); The green vertices are xis and red vertices are vis in the copy of C7 ∗ 8.
We used the pair (u3, u4) twice as

(
4
2

)
is even.

L(y) = {ϕ(u1), ϕ(u2), β} for y ∈ V (H), where β ∈ [ℓ+1]\ϕ(T ) is an fixed color. We shall show
that ϕ cannot be extended to a d-defective coloring ψ of H(t, d, 3) with λH(t,d,3)(ui, ψ) = 0
for i = 1, 2, . . . , t. Otherwise, assume ϕ is extended to a d-defective coloring ψ of H(t, d, 3)
with λH(t,d,3)(ui, ψ) = 0. Then vertices in Xa are all colored by β for each a ∈ [s], and hence
vertices in H are colored with ϕ(u1) and ϕ(u2). This is in contrary to Lemma 11.

On the other hand, for any k-list assignment L ofH(t, d, 3)−T , let L′ be the list assignment
of H obtained from L by deleting all the colors used in ϕ on {x1, x2, . . . , xs−1}. It is clear that

|L′(w)| ≥

{
2, if w ∈

⋃s−1
i=1 Bi,

3, if w ∈ Bs.

Therefore, by Lemma 12, we can extend the ϕ to a d-defective coloring of H, such that at
most one vertex in Bs uses ϕ(xs), which yields a d-defective L-coloring as desired.

Assume ϕ uses at most t− 1 distinct colors. Then at least two vertices ui, uj in T received
the same color. Without loss of generality, assume π(s) = (i, j). Then we extend ϕ to
V (H(t, d, 3)) \ V (H) by assigning ϕ(w) ∈ L(w) \ ϕ(NH(t,d,3)(w)) ∩ T ) for each vertex w ∈⋃s

i=1 V (Xi) such that w has defect at most d if w ̸= xs and at most d − 1 if w = xs, this is
possible as each Xi has exactly d+ 1 vertices and xs has two colors available.

Finally, we need to extend ϕ to H. Let L′ be the list assignment of H defined as

L′(v) =

{
L(v)− {ϕ(xi) : i = 1, 2, . . . , s}, if v ∈ V (H) \Bs,

L(v)− {ϕ(xi) : i = 1, 2, . . . , s− 1}, if v ∈ Bs.

Then |L′(u)| ≥ 2 for u ∈ V (H) \ Bs, and |L′(u)| ≥ 3 if u ∈ Bs. Since d ≥ 1, then by
Lemma 12, we can extend ϕ to a d-defective L′-coloring of H such that at most one vertex in
Bs is colored with ϕ(xs), which yields a desired coloring.

Case 3. t ≥ k > 3 (hence ℓ ≥ 2k − 2 ≥ 6).
Let T = {u1, u2, . . . , ut} be an independent set. Let s ∈ {

(
t

k−2

)
,
(

t
k−2

)
+ 1} be an odd

integer. Denote by
(

[t]
k−2

)
the set of (k − 2)-subsets of [t] = {1, 2, . . . , t}. Let H be a copy of

Cs ∗ (2d + 2), B1, B2, . . . , Bs be the corresponding vertex-set of the s copies of K2d+2. Let

7



π : [s] →
(

[t]
k−2

)
be a surjective map. For a ∈ [s], connect each vertex in Ba to {ui : i ∈ π(a)}.

This completes the construction of H(t, d, k).
Suppose ϕ is a precoloring of T with t distinct colors in [ℓ + 1]. For each Bi, let Ti ⊂ T

be the neighbors of vertices of Bi. Let L be a k-list assignment for vertices in H, such that
for any w ∈ Bi, L(w) =

⋃
v∈Ti

{ϕ(v)} ∪ {β1, β2}, where β1, β2 ∈ [ℓ + 1] \ ϕ(T ) (note that
ℓ+1− t ≥ 2). If ϕ can be extended to a d-defective coloring ψ of H(t, d, k) with λ(ui, ψ) = 0,
then vertices in H can be only colored with two colors {β1, β2}. But this is not possible by
Lemma 11.

On the other hand, if d ≥ 1, for any k-list assignment L of H(t, d, 3) − T , let L′ be the
list assignment of H obtained from L as follows (without loss of generality, we assume that
t ∈ π(s)):

L′(w) =

{
L(w) \ ϕ(T ), if w ∈

⋃s−1
i=1 Bi,

L(w) \ ϕ(T − ut), if w ∈ Bs.

It is clear that |L′(w)| ≥ 2 if w ∈
⋃s−1

i=1 Bi and |L′(w)| ≥ 3 if w ∈ Bs. Therefore, by Lemma
12, we can extend the ϕ to a d-defective coloring of H, such that at most one vertex in Bs

uses ϕ(xs), which yields a d-defective L-coloring as desired.
Assume that ϕ is a precoloring of T with t− 1 distinct colors, and L is a k-list assignment

of H. It follows that at least two vertices in T received same color, say u1 and u2. Without
loss of generality, assume that {1, 2} ⊂ π(s). Let L′ be the list assignment of H obtained
from L by deleting all the colors used in ϕ on T . It is clear that |L(w)| ≥ 2 and moreover,
|L(w)| ≥ 3 if w ∈ Bs. So we can extend the precoloring to H by Lemma 12 as desired.

Now we are ready to prove Theorem 4.
Proof of Theorem 4. Assume ℓ ≥ k ≥ 3 and d ≥ 0. We shall construct a graph which is
(k, d, ℓ)-choosable but not (k, d, ℓ+ 1)-choosable.

Let t = ℓ + 2 − k ≥ 2. Let G1 = Kk(d+1), and z ∈ V (G1). Take k disjoint copies of
K(k−1)(d+1), which are denoted as C1, C2, . . . Ck. Connect all the vertices of C1 ∪ . . . ∪ Ck to
the vertex z. The resulting graph is G2.

Let q =
(
(k−1)(d+1)

k−1

)
. For i = 1, 2, . . . , k, let Xi,1, Xi,2, . . . , Xi,q be the family of all the

(k − 1)-subsets of V (Ci). For 1 ≤ i ≤ k, 1 ≤ j ≤ q, take t copies of disjoint complete graphs
Kd+1, which are denoted by Di,j,1, Di,j,2, . . . , Di,j,t. For s = 1, 2, . . . , t, connect all the vertices
in Di,j,s to all vertices in Xi,j. The resulting graph is G3.

For 1 ≤ i ≤ k, 1 ≤ j ≤ q, take a t-set Ti,j = {ui,j,1, ui,j,2, . . . , ui,j,t} with ui,j,s ∈ V (Di,j,s),
and build a copyHi,j(t, d, k) ofH(t, d, k) described in Lemma 13 with T = Ti,j. This completes
the construction of the graph G. See Fig. 4 for illustration.

We first show that G is not (k, d, ℓ+ 1)-choosable. We shall construct a k-list assignment
L of G, with L(v) ⊆ [ℓ+ 1] for each vertex v, such that G is not d-defective L-colorable.

For each vertex v in the subgraph G2, let L(v) = {1, 2, . . . , k}. For i = 1, 2, . . . , k, 1 ≤
j ≤ q, 1 ≤ s ≤ t, let θi,j : [t] → {i, k + 1, k + 2, . . . , ℓ + 1} be a bijection. For v ∈ Di,j,s, let
L(v) = ([k] \ {i}) ∪ {θi,j(s)}.

For 1 ≤ i ≤ k and 1 ≤ j ≤ q, for v ∈ V (Hi,j(t, d, k)) − Ti,j, let L(v) = Li,j(v), where Li,j

is a list assignment defined as follows:
Let ϕi,j be the coloring of Ti,j defined as ϕi,j(ui,j,s) = θi,j(s). By Lemma 13, there is a

k-list assignment Li,j of Hi,j(t, d, k) with Li,j(v) ⊆ [ℓ + 1] such that ϕi,j cannot be extended
to a d-defective coloring ψi,j of Hi,j(t, d, k) with λHi,j(t,d,k)(ui,j,s, ψi,j) = 0 for each ui,j,s ∈ Ti,j.

8



z

Kk(d+1)

Kk−1

· · ·D1,1,1 D1,1,2 D1,1,t

H(t, d, k)

· · ·Kd+1Kd+1 Kd+1

H(t, d, k)

· · ·D1,q,1 D1,q,2 D1,q,t

H(t, d, k)

· · ·Dk,q,1 Dk,q,2 Dk,q,t

Kk−1

H(t, d, k)
· · ·

· · ·

· · ·

C1 C2
K(k−1)(d+1)
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copies

G1

G2

G3

Fig. 4. Illustration of the main construction

Now we prove that G is not d-defective L-colorable. Assume to the contrary that G has
an L-coloring ψ with defect d. Assume π(z) = r. Since G1 is a complete graph with k(d+ 1)
vertices, there must be d neighbors of z in G1 colored with r. Then the (k − 1)(d + 1)
vertices of Cr are colored with {1, 2, . . . , k} \ {r}. Hence each of the k − 1 colors is used
d + 1 times in ψ. Assume Xr,p is a (k − 1)-subset of Cr that are colored by distinct colors
from {1, 2, . . . , k} \ {r}. Note that each vertex x ∈ Xr,p has d neighbors in Cr that are
colored the same color as x. As all vertices in Dr,p,1, Dr,p,2, . . . , Dr,p,t are adjacent to Xr,p.
For each 1 ≤ s ≤ t, we have ψ(v) = θr,p(s) for each vertex v ∈ V (Dr,p,s). In particular,
ψ(ur,p,s) = θr,p(s) and ur,p,s has d neighbors in Dr,p,s that are colored the same color as
ur,s,p. This implies that λHr,p(t,d,k)(ur,p,s, ψ) = 0 for s = 1, 2, . . . , t. This is a contradiction, as
ψ(ur,p,s) = θr,p(s) = ϕr,p(ur,p,s), and by Lemma 13, ϕr,p cannot be extended to a d-defective
L-coloring of Hr,p(t, d, k) with λHr,p(t,d,k)(ur,p,s, ψ) = 0 for s = 1, 2, . . . , t.

Lastly, we show that G is (k, d, ℓ)-choosable. Assume L is any k-list assignment of G with
L(v) ⊆ [ℓ]. We shall show that G is d-defective L-colorable.

By Lemma 8, there is a d-defective L-coloring ϕ of G1. By Lemma 10, ϕ can be extended
to a d-defective L-coloring of G2 (by setting A = V (G1) and B = V (G2) \ V (G1)). Similarly,
by Lemma 10, we can extend ϕ to a d-defective L-coloring of G3. Note that each vertex in
Di,j,s has (k− 1) neighbors in Ci and d neighbors in Di,j,s, so it also satisfies the inequality in
Lemma 10 by setting A = V (G2) and B = V (G3) \ V (G2).

It remains to show that we can extend ϕ to Hi,j(t, d, k) for 1 ≤ i ≤ k, 1 ≤ j ≤ q.
First assume that for any u, v ∈ Xi,j, ϕ(u) ̸= ϕ(v) and for any x ∈ Xi,j, λG3(x, ϕ) = d.

In this case, there are only ℓ − (k − 1) = t − 1 colors available for vertices in
⋃t

s=1 V (Di,j,s).
So at least two of vertices in Ti,j received the same color By Lemma 13, we can extend ϕ to
Hi,j(t, d, k). In particular, if d = 0, then ϕ is a 0-defective coloring, i.e., a proper coloring of
G3, implying that for any u, v ∈ Xi,j, ϕ(u) ̸= ϕ(v) and for any x ∈ Xi,j, λG3(x, ϕ) = 0 = d.
Hence ϕ can be extended to Hi,j(t, d, k).
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Next assume that ϕ(u) = ϕ(v) for some u, v ∈ Xi,j or λG3(x, ϕ) ≤ d− 1 for some x ∈ Xi,j.
In either case, it is enough to modify ϕ on Di,j,t (if necessary) such that λG3(ui,j,t, ϕ) ≤ d− 1.
So it suffices to show that we can extend ϕ from T to Hi,j(t, d, k) such that λHi,j(t,d,k)(ui,j,s) = 0
for s = 1, 2, . . . , t − 1 and λHi,j(t,d,k)(ui,j,t) ≤ 1. By Lemma 13, this is possible. The proof of
Theorem 4 now is completed.

4 Open problems

For d ≥ 0, a graph is d-defective 1-choosable if and only if ∆(G) ≤ d, and which is equivalent
to be d-defective 1-colorable. So Question 3 has a positive answer for k = 1 and ℓ1,d = 1. For
k = 2 and d = 0, Král’ and Sgall [7] showed that every (2, 0, 4)-choosable graph is (2, 0,+∞)-
choosable. The proof relies on a characterization of 2-choosable graphs by [3]. For d ≥ 1, no
characterization of d-defective 2-choosable graphs is known, and Question 3 remains open for
k = 2 and d ≥ 1.

The following problem asked by Král and Sgall [7] also remains open.

Problem 14 Is it true that for each k ≥ 3, there exists a number ℓ such that each (k, 0, ℓ)-
choosable graph is (k + 1)-choosable? If so, what is the least number ℓ with this property?

References

[1] L. J. Cowen, R. H. Cowen, and D. R. Woodall. Defective colorings of graphs in surfaces:
partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187–195, 1986.

[2] N. Eaton and T. Hull. Defective list colorings of planar graphs. Bull. Inst. Combin.
Appl., 25:79–87, 1999.
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