On Two problems of Defective Choosability of Graphs

Jie Ma * Rongxing Xu ${ }^{\dagger}$ Xuding Zhu ${ }^{\ddagger}$

June 26, 2023

Abstract

Given positive integers $p \geq k$, and a non-negative integer d, we say a graph G is (k, d, p)-choosable if for every list assignment L with $|L(v)| \geq k$ for each $v \in V(G)$ and $\left|\bigcup_{v \in V(G)} L(v)\right| \leq p$, there exists an L-coloring of G such that each monochromatic subgraph has maximum degree at most d. In particular, $(k, 0, k)$-choosable means k colorable, $(k, 0,+\infty)$-choosable means k-choosable and ($k, d,+\infty$)-choosable means d defective k-choosable. This paper proves that there are 1 -defective 3 -choosable planar graphs that are not 4 -choosable, and for any positive integers $\ell \geq k \geq 3$, and nonnegative integer d, there are (k, d, ℓ)-choosable graphs that are not $(k, d, \ell+1)$-choosable. These results answer questions asked by Wang and Xu [SIAM J. Discrete Math. 27, 4(2013), 2020-2037], and Kang [J. Graph Theory 73, 3(2013), 342-353], respectively. Our construction of (k, d, ℓ)-choosable but not $(k, d, \ell+1)$-choosable graphs generalizes the construction of Král' and Sgall in [J. Graph Theory 49, 3(2005), 177-186] for the case $d=0$.

1 Introduction

A coloring of a graph G is a mapping ϕ which assigns to each vertex v a color. The defect of a vertex v, denoted by $\lambda_{G}(v, \phi)$, is the number of neighbors of v which have the same color as v. A coloring ϕ is d-defective if $\lambda_{G}(v, \phi) \leq d$ for each vertex $v \in V(G)$. A 0 -defective coloring is also called a proper coloring.

Assume G is a graph and $f: V(G) \rightarrow \mathbb{N}^{+}$is a mapping. An f-list assignment of G is a list assignment L of G which assigns to each vertex v a set $L(v)$ of $f(v)$ colors. Given a

[^0]list assignment L and nonnegative integer d, a d-defective L-coloring ϕ of G is a d-defective coloring ϕ of G such that $\phi(v) \in L(v)$ for each vertex v. We say G is d-defective f-choosable if G has a d-defective L-coloring for any f-list assignment L.

Given a mapping $f: V(G) \rightarrow \mathbb{N}^{+}$and two nonnegative integers d, p, we say G is (f, d, p) choosable if for any f-list assignment L with $\left|\bigcup_{v \in V(G)} L(v)\right| \leq p$, there exists a d-defective L-coloring of G. In particular, $(k, 0, k)$-choosable is called k-colorable, $(k, 0,+\infty)$-choosable is called k-choosable, (k, d, k)-choosable is called d-defective k-colorable, $(k, d,+\infty)$-choosable is called d-defective k-choosable.

Defective coloring of planar graphs was first studied by Cowen, Cowen and Woodall [1]. They proved that every outerplanar graph is 2 -defective 2 -colorable and that every planar graph is 2 -defective 3-colorable. These results were strengthened to defective list coloring by Eaton and Hull [2] and Škrekovski [12] independently. They proved that every planar graph is 2-defective 3-choosable and every outerplanar graph is 2-defective 2-choosable.

These results motivated some problems on the relation among defective colorability, defective choosability and choosability of planar graphs. It is known that there are 4 -choosable planar graphs that are not 1-defective 3-colorable [13] (hence not 1-defective 3-choosable). Wang and Xu [13] asked the following.

Question 1 Is every 1-defective 3-choosable graph 4-choosable?
This paper gives a negative answer to this question in a stronger form as following.
Theorem 2 There are 1-defective 3-choosable planar graphs that are 4-choosable.

By definition, for any $d \geq 0$, if G is $(k, d,+\infty)$-choosable, then it is (k, d, p)-choosable for any $p \geq k$. Král' and Sgall [7] showed that for each $\ell \geq k \geq 3$, there exists a ($k, 0, \ell$)-choosable graph which is not $(k, 0, \ell+1)$-choosable. Kang [6] asked the following question.

Question 3 Given positive integers k, d, does there exist an integer $\ell_{k, d}$ such that every $\left(k, d, \ell_{k, d}\right)$-choosable graph is $(k, d,+\infty)$-choosable?

Our second result answers this question in negative for $k \geq 3$, which generalizes the construction of Král' and Sgall [7] to the cases of $d \geq 0$.

Theorem 4 For any integers $d \geq 0$ and $\ell \geq k \geq 3$, there exists a (k, d, ℓ)-choosable graph which is not $(k, d, \ell+1)$-choosable.

2 Proof of Theorem 2

The gadget graph T depicted in Figure 1 was constructed by Gutner [4] (see Fig. 1) and used in the construction of many counterexamples for several topics related to list coloring of planar graphs $[9,10,11,14]$.

Fig. 1. The gadget graph T in [4].
For a positive integer k, let $T(k)$ be the graph obtained from the disjoint union of k copies of T by identifying all the copies of top vertex, denoted still by u, and identifying all the copies of the bottom vertex, denoted still by v. It is known $[4,11]$ that for any $k \geq 16, T(k)$ is not 4 -choosable.

To prove Theorem 2, it suffices to show that if $k \leq 26$, then $T(k)$ is 1-defective 3-choosable.
We first construct some 1-defective 3-colorings for some special list assignments of T. We assume T are labeled as in Fig.1.

Lemma 5 Let $H=T-\{u, v\}$, and $f(w)=2$ for $w \in V(H) \backslash\{x, y, z\}$ and $f(x), f(y), f(z) \geq$ 1. If one of $f(x), f(y), f(z)=2$, then H is 1 -defective f-choosable.

Proof. Assume $f(y)=f(z)=1$ and $f(x)=2$ and L is an f-list assignment of H. Let $\phi(y), \phi(z)$ be the unique color in $L(y), L(z)$, respectively. Let $\phi\left(u_{2}\right) \in L\left(u_{2}\right)-\{\phi(y)\}, \phi\left(v_{2}\right) \in$ $L\left(v_{2}\right)-\{\phi(z)\}, \phi\left(u_{1}\right) \in L\left(u_{1}\right)-\{\phi(z)\}, \phi\left(v_{1}\right) \in L\left(v_{1}\right)-\{\phi(z)\}$ and $\phi(x) \in L(x)-\left\{\phi\left(u_{1}\right)\right\}$. It is straightforward to verify that ϕ is a 1-defecitve L-coloring of H.

Assume $f(z)=2$ and $f(x)=f(y)=1$ and L is an f-list assignment of H. Let $\phi(x), \phi(y)$ be the unique color in $L(x), L(y)$, respectively. Let $\phi\left(u_{1}\right) \in L\left(u_{1}\right)-\{\phi(x)\}, \phi(z) \in L(z)-\left\{\phi\left(u_{1}\right)\right\}$, $\phi\left(v_{1}\right) \in L\left(v_{1}\right)-\{\phi(z)\}, \phi\left(u_{2}\right) \in L\left(u_{2}\right)-\{\phi(z)\}$ and $\phi\left(v_{2}\right) \in L\left(v_{1}\right)-\{\phi(y)\}$. Again it is straightforward to verify that ϕ is a 1 -defective L-coloring of H.

Corollary 6 Let L be a list assignment of T with $L(u)=\{\alpha\}, L(v)=\{\beta\}$ and $|L(w)| \geq 3$ for $w \in V(T) \backslash\{u, v\}$. If $\alpha=\beta$, or $\alpha \neq \beta$ and $\{\alpha, \beta\} \nsubseteq L(x) \cap L(y) \cap L(z)$, or $\alpha \neq \beta$ and $L(x) \cap L(y) \cap L(z)-\{\alpha, \beta\} \neq \emptyset$, then T has a 1-defective L-coloring ϕ such that $\lambda_{T}(u, \phi)=$ $\lambda_{T}(v, \phi)=0$.

Proof. Let L^{\prime} be the list assignment of $H=T-\{u, v\}$ defined as $L^{\prime}(w)=L(w)-\{\alpha, \beta\}$ if $w \in\{x, y, z\}$, and $L^{\prime}(w)=L(w)-\{\alpha\}$ for $w \in\left\{u_{1}, u_{2}\right\}$ and $L^{\prime}(w)=L(w)-\{\beta\}$ for $w \in\left\{v_{1}, v_{2}\right\}$. If $\alpha=\beta$ or $\{\alpha, \beta\} \nsubseteq L(x) \cap L(y) \cap L(z)$, then it follows from Lemma 5 that H has a 1 -defective L^{\prime}-coloring ϕ. Extend ϕ to T by letting $\phi(u)=\alpha$ and $\phi(v)=\beta$, then ϕ is a 1-defective L-coloring ϕ such that $\lambda_{T}(u, \phi)=\lambda_{T}(v, \phi)=0$.

If $\alpha \neq \beta$ and $L(x) \cap L(y) \cap L(z)-\{\alpha, \beta\} \neq \emptyset$, say $c \in L(x) \cap L(y) \cap L(z)-\{\alpha, \beta\}$, then let $\phi(x)=\phi(y)=\phi(z)=c, \phi(w) \in L(w)-\{\alpha, c\}$ for $w \in\left\{u_{1}, u_{2}\right\}$ and $\phi(w) \in L(w)-\{\beta, c\}$ for $w \in\left\{v_{1}, v_{2}\right\}$. It is straightforward to verify that ϕ is a 1 -defective L-coloring ϕ such that $\lambda_{T}(u, \phi)=\lambda_{T}(v, \phi)=0$.

Lemma 7 Let L be a list assignment of T with $L(u)=\{\alpha\}, L(v)=\{\beta\}$ and $|L(w)| \geq 3$ for $w \in V(T) \backslash\{u, v\}$. Then T has a 1-defective L-coloring ϕ such that $\lambda_{T}(u, \phi)=0$, and a 1-defective L-coloring ϕ such that $\lambda_{T}(v, \phi)=0$.

Proof. By Corollary 6 , it suffices to consider the case that $\alpha \neq \beta$ and $\{\alpha, \beta\} \subseteq L(x) \cap L(y) \cap$ $L(z)$. Let $\phi(u)=\alpha, \phi(v)=\beta, \phi(x), \phi(z)$ be the unique color in $L(x)-\{\alpha, \beta\}, L(z)-\{\alpha, \beta\}$, respectively. Let $\phi\left(u_{1}\right) \in L\left(u_{1}\right)-\{\alpha, \phi(x)\}, \phi\left(v_{1}\right) \in L\left(v_{1}\right)-\{\beta, \phi(z)\}, \phi\left(u_{2}\right) \in L\left(u_{2}\right)-$ $\{\alpha, \phi(z)\}, \phi\left(v_{2}\right) \in L\left(v_{2}\right)-\{\beta, \phi(z)\}$. If $\phi\left(u_{2}\right) \neq \phi\left(v_{2}\right)$, then let $\phi(y) \in L(y)-\left\{\phi\left(u_{2}\right), \phi\left(v_{2}\right)\right\}$. Otherwise, let $\phi(y)$ be any color in $\{\alpha, \beta\}$. It is easy to verify that ϕ is a 1 -defective coloring of T. In most cases, $\lambda_{T}(u, \phi)=\lambda_{T}(v, \phi)=0$, except that in the last case, if $\phi(y)=\alpha$, then $\lambda_{T}(v, \phi)=0$, if $\phi(y)=\beta$, then $\lambda_{T}(u, \phi)=0$.

Now we are ready to prove Theorem 2.
Proof of Theorem 2. Let L be any 3-list assignment of $T(k)$, we shall give a 1-defective 3 -coloring ϕ of $T(k)$. Without loss of generality, we assume that $|L(w)|=3$ for each vertex w. If $L(u) \cap L(v) \neq \emptyset$, say $\alpha \in L(u) \cap L(v)$, then let $\phi(u)=\phi(v)=\alpha$. By Corollary $6, \phi$ can be extended to a 1-defective coloring of $T(k)$ so that $\lambda_{T}(u, \phi)=\lambda_{T}(v, \phi)=0$.

Assume $L(u) \cap L(v)=\emptyset$. For each pair of colors (α, β) with $\alpha \in L(u), \beta \in L(v)$, a copy of T is called (α, β)-tight if $\{\alpha, \beta\}=L(x) \cap L(y) \cap L(z)$ (here x, y, z refer to the corresponding vertices in that copy of T). Note that if a copy of T is (α, β)-tight, then it is not $\left(\alpha^{\prime}, \beta^{\prime}\right)$-tight for any $\left(\alpha^{\prime}, \beta^{\prime}\right) \neq(\alpha, \beta)$. So by pigeonhole principle, there is a pair (α, β) with $\alpha \in L(u), \beta \in L(v)$ such that there are at most two copies of T, say T^{1} and T^{2}, that are (α, β)-tight. Let $\phi(u)=\alpha, \phi(v)=\beta$. By Corollary 6, for each other copy T^{\prime} of T, ϕ can be extended to a 1-defective L-coloring of T^{\prime} so that $\lambda_{T^{\prime}}(u, \phi)=\lambda_{T^{\prime}}(v, \phi)=0$. By Lemma 7, ϕ can be extended to a 1-defective L-coloring of T^{1} so that $\lambda_{T^{1}}(u, \phi)=0$, and ϕ can be extended to a 1-defective L-coloring of T^{2} so that $\lambda_{T^{2}}(v, \phi)=0$. Thus ϕ can be extended to a 1-defective L-coloring of $T(k)$.

3 Proof of Theorem 4

Let $\ell \geq k \geq 3$ and $d \geq 0$ be any fixed integers. In this section we prove Theorem 4 by constructing graphs that are (k, d, ℓ)-choosable but not $(k, d, \ell+1)$-choosable.

Lovász [8] proved that every graph G with $\Delta(G)+1 \leq k(d+1)$ is d-defective k-colorable. This was generalized to list-version by Hendrey and Wood (see Corollary 3.2 in [5]).

Lemma 8 ([5]) Every graph G with $\Delta(G)+1 \leq k(d+1)$ is d-defective k-choosable.
Lemma 8 implies that every complete graph with $k(d+1)$ vertices is d-defective k-choosable. In this paper, we need the following slightly stronger statement.

Lemma 9 Suppose G is a complete graph of order $k(d+1)$, and v is any vertex in G. Assume L is a list assignment with $|L(u)| \geq k$ for any $u \in V(G) \backslash\{v\}$ and $|L(v)|=1$. Then G has a d-defective L-coloring.

Proof. Assume $L(v)=\{c\}$. Let $V_{c}=\{u \in V(G): c \in L(u)\}$. If $\left|V_{c}\right| \geq d$, then we choose arbitrary d-subset $D \subset V_{c}$, and color all the vertices in D and v with color c, also we delete the color c from $V_{c}-D$. Note that $G-v-D$ is a complete graph of order $(k-1)(d+1)$,
and each vertex has at least $(k-1)$ colors available. By Lemma 8, we can color $G-v-D$ without using c and with defect d by colors from the lists. So assume that $\left|V_{c}\right| \leq d-1$. Then we color all the vertices in V_{c} with color c. Note that $G^{\prime}=G-V_{c}$ still satisfies that $\Delta\left(G^{\prime}\right)+1 \leq k(d+1)$ and each vertex has k colors available. Then we can extend the coloring to whole G by Lemma 8.

The following lemma follows from Lemma 3.3 in [5].
Lemma 10 ([5]) Let L be a k-list assignment of a graph G. Let A, B be a partition of $V(G)$, where $G[A]$ is d-defective L-colorable. If for every vertex $v \in B$,

$$
(d+1)\left|N_{G}(v) \cap A\right|+\operatorname{deg}_{B}(v)+1 \leq(d+1) k
$$

then G is d-defective L-colorable.
Given a graph G and an non-negative integer d, we denote by $G * d$ the graph obtained from the disjoint union of G and $|V(G)|$ copies of the complete graph K_{d}, denoted as $\left\{B_{v}\right.$: $v \in V(G)\}$, by identifying v with one vertex of B_{v}. Fig. 2 shows the graph $C_{9} * 4$.

Fig. 2. $C_{9} * 4$
Lemma $11 H=C_{2 k+1} *(2 d+2)$ is not d-defective 2-colorable.
Proof. Let $v_{1}, v_{2}, \ldots, v_{2 k+1}$ be the vertices of $C_{2 k+1}$ in order, and $B_{1}, B_{2}, \ldots, B_{2 k+1}$ be the corresponding vertex-set of the $2 k+1$ copies of $K_{2 d+2}$. Assume there is a d-defective 2 -coloring ϕ of H. Since B_{i} is a clique of order $2(d+1)$, each of the two colors is used $d+1$ times by ϕ in B_{i}. Therefore, $\phi\left(v_{i}\right) \neq \phi\left(v_{j}\right)$ whenever $v_{i} v_{j} \in E\left(C_{2 k+1}\right)$. This is a contradiction, as $C_{2 k+1}$ is not 2-colorable.

Lemma 12 Let $H=C_{2 k+1} *(2 d+2)$, with $v_{1}, v_{2}, \ldots, v_{2 k+1}$ be the vertices of $C_{2 k+1}$ in this cyclic order. Let $B_{1}, B_{2}, \ldots, B_{2 k+1}$ be the corresponding vertex-set of the $2 k+1$ copies of $K_{2 d+2}$. Assume L is a list assignment of H with $|L(u)| \geq 2$ for $u \in \bigcup_{i=1}^{2 k} B_{i}$ and $|L(u)| \geq 3$ for $u \in B_{2 k+1}$. Then for any color c, H has a d-defective L-coloring ϕ such that at most one vertex in $B_{2 k+1}$ is colored with c in ϕ.

Proof. As $\left|L\left(v_{2 k+1}\right)\right| \geq 3$, there is a proper L-coloring ϕ of $C_{2 k+1}$. We then extend ϕ from each v_{i} to B_{i} by Lemma 9 so that color c is not used on other vertices of $B_{2 k+1}$. This is possible since each vertex in $B_{2 k+1}$ still has at least two colors available.

Lemma 13 Assume $k \geq 3, t \geq 2, d \geq 0$ and $\ell=k-2+t$. There exists a graph $H(t, d, k)=$ (V, E) with a precolored independent set $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ for which the following hold:

- Assume the precoloring ϕ of T uses t distinct colors in $[\ell+1]$. Then there is a k-list assignment L of $H(t, d, k)$ with $L(v) \subseteq[\ell+1]$ for each vertex v such that ϕ cannot be extended to a d-defective coloring ψ of $H(t, d, k)$ with $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$ for each $u_{i} \in T$. On the other hand, if $d \geq 1$, then for any k-list assignment L of $H(t, d, k)-T, \phi$ can be extended to a d-defective L-coloring ψ of $H(t, d, k)$ such that $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$ for $i=1,2, \ldots, t-1$ and $\lambda_{H(t, d, k)}\left(u_{t}, \psi\right) \leq 1$.
- Assume the precoloring ϕ of T uses with at most $t-1$ colors. Then for any k-list assignment L of $H(t, d, k)-T, \phi$ can be extended to a d-defective L-coloring ψ of $H(t, d, k)$ such that $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$ for each $u_{i} \in T$.

Proof. We consider three cases according to the values of ℓ and k.
Case 1. $t \leq k-1$ (hence $3 \leq k \leq \ell \leq 2 k-3$).
Let $H(t, d, k)$ be the join of a complete graph $K_{(d+1)(k-t)+1}$ and an independent set $T=$ $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. Assume ϕ is a precoloring of T.

Assume ϕ uses t distinct colors in $[\ell+1]$. Let S be k colors in $[\ell+1]$ that contains $\phi(T)$, and let $L(v)=S$ for all $v \in V(H(t, d, k)-T$.

We then show that ϕ cannot be extended to a d-defective coloring ψ of $H(t, d, k)$ with $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$. Assume to the contrary that ϕ is extended to a d-defective coloring ψ of $H(t, d, k)$ with $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$. Then vertices in the complete graph $K_{(d+1)(k-t)+1}$ are colored by $k-t$ colors. So one color class contains at least $d+2$ vertices, which is a contradiction. On the other hand, if $d \geq 1$, then for any k-list assignment L of $H(t, d, k)-T$, let w be an arbitrary vertex in $V\left(H(t, d, k)-T, L^{\prime}(v)=L(v)-\phi(T)\right.$ for $v \in V(H(t, d, k)-T-\{w\}$, and $L^{\prime}(w)=L(w)-\phi\left(T-\left\{u_{t}\right\}\right)$. We have $\left|L^{\prime}(v)\right| \geq k-t$ for any $v \in V\left(K_{(d+1)(k-t)+1}\right)-\{w\}$, and $\left|L^{\prime}(w)\right| \geq k-t+1$. By Lemma $8, K_{(d+1)(k-t)+1}$ has a d-defective L^{\prime}-coloring, which is an extension of ϕ to a d-defective L-coloring of $H(t, d, k)$ with $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$ for each $u_{i} \in T-\left\{u_{t}\right\}$, and $\lambda_{H(t, d, k)}\left(u_{t}, \psi\right) \leq 1$.

If ϕ use at most $t-1$ colors, then for any k-list assignment L of $V(H(t, d, k))-T$, let $L^{\prime}(v)=L(v)-\phi(T)$ for $v \in V(H(t, d, k))-T$. We have $\left|L^{\prime}(v)\right| \geq k-t+1$ for any $v \in V\left(K_{(d+1)(k-t)+1}\right)$. By Lemma $8, K_{(d+1)(k-t)+1}$ has a d-defective L^{\prime}-coloring, which is an extension of ϕ to a d-defective L-coloring of $H(t, d, k)$ with $\lambda_{H(t, d, k)}\left(u_{i}, \psi\right)=0$ for each $u_{i} \in T$.
Case 2. $t \geq k=3$ (hence $\ell \geq 2 k-2=4$).
Let $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be an independent set. Let $s \in\left\{\binom{t}{2},\binom{t}{2}+1\right\}$ be an odd integer, and let $\mathcal{X}=\left\{X_{a}: 1 \leq a \leq s\right\}$ be a set disjoint copies of K_{d+1}. Let $\pi:[s] \rightarrow\{(i, j): 1 \leq i<j \leq t\}$ be a surjective map, and for each $a \in[s]$ with $\pi(a)=(i, j)$, connect each vertex of X_{a} to u_{i} and u_{j}. Add the graph $H=C_{s} * 2(d+1)$, with $\left\{B_{a}: 1 \leq a \leq s\right\}$ be the corresponding vertex-set of the s copies of $K_{2 d+2}$. For each $a \in[s]$, choose one vertex $x_{a} \in X_{a}$ and connect x_{a} to all the vertices in B_{a}. This completes the construction of $H(t, d, 3)$. Fig. 3 is an example with $t=4$ and $d=3$.

Assume ϕ is a precoloring of T.
Assume ϕ uses t distinct colors in $[\ell+1]$. Let L be a 3 -list assignment of $H(t, d, 3)-T$ defined as follows: For $x \in X_{a}$ with $a \in[s]$ and $\pi(a)=(i, j)$, let $L(x)=\left\{\phi\left(u_{i}\right), \phi\left(u_{j}\right), \beta\right\}$ and

Fig. 3. $H(4,3,3)$; The green vertices are x_{i} s and red vertices are v_{i} s in the copy of $C_{7} * 8$. We used the pair $\left(u_{3}, u_{4}\right)$ twice as $\binom{4}{2}$ is even.
$L(y)=\left\{\phi\left(u_{1}\right), \phi\left(u_{2}\right), \beta\right\}$ for $y \in V(H)$, where $\beta \in[\ell+1] \backslash \phi(T)$ is an fixed color. We shall show that ϕ cannot be extended to a d-defective coloring ψ of $H(t, d, 3)$ with $\lambda_{H(t, d, 3)}\left(u_{i}, \psi\right)=0$ for $i=1,2, \ldots, t$. Otherwise, assume ϕ is extended to a d-defective coloring ψ of $H(t, d, 3)$ with $\lambda_{H(t, d, 3)}\left(u_{i}, \psi\right)=0$. Then vertices in X_{a} are all colored by β for each $a \in[s]$, and hence vertices in H are colored with $\phi\left(u_{1}\right)$ and $\phi\left(u_{2}\right)$. This is in contrary to Lemma 11.

On the other hand, for any k-list assignment L of $H(t, d, 3)-T$, let L^{\prime} be the list assignment of H obtained from L by deleting all the colors used in ϕ on $\left\{x_{1}, x_{2}, \ldots, x_{s-1}\right\}$. It is clear that

$$
\left|L^{\prime}(w)\right| \geq \begin{cases}2, & \text { if } w \in \bigcup_{i=1}^{s-1} B_{i} \\ 3, & \text { if } w \in B_{s}\end{cases}
$$

Therefore, by Lemma 12, we can extend the ϕ to a d-defective coloring of H, such that at most one vertex in B_{s} uses $\phi\left(x_{s}\right)$, which yields a d-defective L-coloring as desired.

Assume ϕ uses at most $t-1$ distinct colors. Then at least two vertices u_{i}, u_{j} in T received the same color. Without loss of generality, assume $\pi(s)=(i, j)$. Then we extend ϕ to $V(H(t, d, 3)) \backslash V(H)$ by assigning $\left.\phi(w) \in L(w) \backslash \phi\left(N_{H(t, d, 3)}(w)\right) \cap T\right)$ for each vertex $w \in$ $\bigcup_{i=1}^{s} V\left(X_{i}\right)$ such that w has defect at most d if $w \neq x_{s}$ and at most $d-1$ if $w=x_{s}$, this is possible as each X_{i} has exactly $d+1$ vertices and x_{s} has two colors available.

Finally, we need to extend ϕ to H. Let L^{\prime} be the list assignment of H defined as

$$
L^{\prime}(v)= \begin{cases}L(v)-\left\{\phi\left(x_{i}\right): i=1,2, \ldots, s\right\}, & \text { if } v \in V(H) \backslash B_{s} \\ L(v)-\left\{\phi\left(x_{i}\right): i=1,2, \ldots, s-1\right\}, & \text { if } v \in B_{s}\end{cases}
$$

Then $\left|L^{\prime}(u)\right| \geq 2$ for $u \in V(H) \backslash B_{s}$, and $\left|L^{\prime}(u)\right| \geq 3$ if $u \in B_{s}$. Since $d \geq 1$, then by Lemma 12, we can extend ϕ to a d-defective L^{\prime}-coloring of H such that at most one vertex in B_{s} is colored with $\phi\left(x_{s}\right)$, which yields a desired coloring.

Case 3. $t \geq k>3$ (hence $\ell \geq 2 k-2 \geq 6$).
Let $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be an independent set. Let $s \in\left\{\binom{t}{k-2},\binom{t}{k-2}+1\right\}$ be an odd integer. Denote by $\binom{[t]}{k-2}$ the set of $(k-2)$-subsets of $[t]=\{1,2, \ldots, t\}$. Let H be a copy of $C_{s} *(2 d+2), B_{1}, B_{2}, \ldots, B_{s}$ be the corresponding vertex-set of the s copies of $K_{2 d+2}$. Let
$\pi:[s] \rightarrow\binom{[t]}{k-2}$ be a surjective map. For $a \in[s]$, connect each vertex in B_{a} to $\left\{u_{i}: i \in \pi(a)\right\}$. This completes the construction of $H(t, d, k)$.

Suppose ϕ is a precoloring of T with t distinct colors in $[\ell+1]$. For each B_{i}, let $T_{i} \subset T$ be the neighbors of vertices of B_{i}. Let L be a k-list assignment for vertices in H, such that for any $w \in B_{i}, L(w)=\bigcup_{v \in T_{i}}\{\phi(v)\} \cup\left\{\beta_{1}, \beta_{2}\right\}$, where $\beta_{1}, \beta_{2} \in[\ell+1] \backslash \phi(T)$ (note that $\ell+1-t \geq 2)$. If ϕ can be extended to a d-defective coloring ψ of $H(t, d, k)$ with $\lambda\left(u_{i}, \psi\right)=0$, then vertices in H can be only colored with two colors $\left\{\beta_{1}, \beta_{2}\right\}$. But this is not possible by Lemma 11.

On the other hand, if $d \geq 1$, for any k-list assignment L of $H(t, d, 3)-T$, let L^{\prime} be the list assignment of H obtained from L as follows (without loss of generality, we assume that $t \in \pi(s))$:

$$
L^{\prime}(w)= \begin{cases}L(w) \backslash \phi(T), & \text { if } w \in \bigcup_{i=1}^{s-1} B_{i} \\ L(w) \backslash \phi\left(T-u_{t}\right), & \text { if } w \in B_{s}\end{cases}
$$

It is clear that $\left|L^{\prime}(w)\right| \geq 2$ if $w \in \bigcup_{i=1}^{s-1} B_{i}$ and $\left|L^{\prime}(w)\right| \geq 3$ if $w \in B_{s}$. Therefore, by Lemma 12 , we can extend the ϕ to a d-defective coloring of H, such that at most one vertex in B_{s} uses $\phi\left(x_{s}\right)$, which yields a d-defective L-coloring as desired.

Assume that ϕ is a precoloring of T with $t-1$ distinct colors, and L is a k-list assignment of H. It follows that at least two vertices in T received same color, say u_{1} and u_{2}. Without loss of generality, assume that $\{1,2\} \subset \pi(s)$. Let L^{\prime} be the list assignment of H obtained from L by deleting all the colors used in ϕ on T. It is clear that $|L(w)| \geq 2$ and moreover, $|L(w)| \geq 3$ if $w \in B_{s}$. So we can extend the precoloring to H by Lemma 12 as desired.

Now we are ready to prove Theorem 4.
Proof of Theorem 4. Assume $\ell \geq k \geq 3$ and $d \geq 0$. We shall construct a graph which is (k, d, ℓ)-choosable but not $(k, d, \ell+1)$-choosable.

Let $t=\ell+2-k \geq 2$. Let $G_{1}=K_{k(d+1)}$, and $z \in V\left(G_{1}\right)$. Take k disjoint copies of $K_{(k-1)(d+1)}$, which are denoted as $C_{1}, C_{2}, \ldots C_{k}$. Connect all the vertices of $C_{1} \cup \ldots \cup C_{k}$ to the vertex z. The resulting graph is G_{2}.

Let $q=\binom{(k-1)(d+1)}{k-1}$. For $i=1,2, \ldots, k$, let $X_{i, 1}, X_{i, 2}, \ldots, X_{i, q}$ be the family of all the ($k-1$)-subsets of $V\left(C_{i}\right)$. For $1 \leq i \leq k, 1 \leq j \leq q$, take t copies of disjoint complete graphs K_{d+1}, which are denoted by $D_{i, j, 1}, D_{i, j, 2}, \ldots, D_{i, j, t}$. For $s=1,2, \ldots, t$, connect all the vertices in $D_{i, j, s}$ to all vertices in $X_{i, j}$. The resulting graph is G_{3}.

For $1 \leq i \leq k, 1 \leq j \leq q$, take a t-set $T_{i, j}=\left\{u_{i, j, 1}, u_{i, j, 2}, \ldots, u_{i, j, t}\right\}$ with $u_{i, j, s} \in V\left(D_{i, j, s}\right)$, and build a copy $H_{i, j}(t, d, k)$ of $H(t, d, k)$ described in Lemma 13 with $T=T_{i, j}$. This completes the construction of the graph G. See Fig. 4 for illustration.

We first show that G is not $(k, d, \ell+1)$-choosable. We shall construct a k-list assignment L of G, with $L(v) \subseteq[\ell+1]$ for each vertex v, such that G is not d-defective L-colorable.

For each vertex v in the subgraph G_{2}, let $L(v)=\{1,2, \ldots, k\}$. For $i=1,2, \ldots, k, 1 \leq$ $j \leq q, 1 \leq s \leq t$, let $\theta_{i, j}:[t] \rightarrow\{i, k+1, k+2, \ldots, \ell+1\}$ be a bijection. For $v \in D_{i, j, s}$, let $L(v)=([k] \backslash\{i\}) \cup\left\{\theta_{i, j}(s)\right\}$.

For $1 \leq i \leq k$ and $1 \leq j \leq q$, for $v \in V\left(H_{i, j}(t, d, k)\right)-T_{i, j}$, let $L(v)=L_{i, j}(v)$, where $L_{i, j}$ is a list assignment defined as follows:

Let $\phi_{i, j}$ be the coloring of $T_{i, j}$ defined as $\phi_{i, j}\left(u_{i, j, s}\right)=\theta_{i, j}(s)$. By Lemma 13, there is a k-list assignment $L_{i, j}$ of $H_{i, j}(t, d, k)$ with $L_{i, j}(v) \subseteq[\ell+1]$ such that $\phi_{i, j}$ cannot be extended to a d-defective coloring $\psi_{i, j}$ of $H_{i, j}(t, d, k)$ with $\lambda_{H_{i, j}(t, d, k)}\left(u_{i, j, s}, \psi_{i, j}\right)=0$ for each $u_{i, j, s} \in T_{i, j}$.

Fig. 4. Illustration of the main construction

Now we prove that G is not d-defective L-colorable. Assume to the contrary that G has an L-coloring ψ with defect d. Assume $\pi(z)=r$. Since G_{1} is a complete graph with $k(d+1)$ vertices, there must be d neighbors of z in G_{1} colored with r. Then the $(k-1)(d+1)$ vertices of C_{r} are colored with $\{1,2, \ldots, k\} \backslash\{r\}$. Hence each of the $k-1$ colors is used $d+1$ times in ψ. Assume $X_{r, p}$ is a $(k-1)$-subset of C_{r} that are colored by distinct colors from $\{1,2, \ldots, k\} \backslash\{r\}$. Note that each vertex $x \in X_{r, p}$ has d neighbors in C_{r} that are colored the same color as x. As all vertices in $D_{r, p, 1}, D_{r, p, 2}, \ldots, D_{r, p, t}$ are adjacent to $X_{r, p}$. For each $1 \leq s \leq t$, we have $\psi(v)=\theta_{r, p}(s)$ for each vertex $v \in V\left(D_{r, p, s}\right)$. In particular, $\psi\left(u_{r, p, s}\right)=\theta_{r, p}(s)$ and $u_{r, p, s}$ has d neighbors in $D_{r, p, s}$ that are colored the same color as $u_{r, s, p}$. This implies that $\lambda_{H_{r, p}(t, d, k)}\left(u_{r, p, s}, \psi\right)=0$ for $s=1,2, \ldots, t$. This is a contradiction, as $\psi\left(u_{r, p, s}\right)=\theta_{r, p}(s)=\phi_{r, p}\left(u_{r, p, s}\right)$, and by Lemma $13, \phi_{r, p}$ cannot be extended to a d-defective L-coloring of $H_{r, p}(t, d, k)$ with $\lambda_{H_{r, p}(t, d, k)}\left(u_{r, p, s}, \psi\right)=0$ for $s=1,2, \ldots, t$.

Lastly, we show that G is (k, d, ℓ)-choosable. Assume L is any k-list assignment of G with $L(v) \subseteq[\ell]$. We shall show that G is d-defective L-colorable.

By Lemma 8, there is a d-defective L-coloring ϕ of G_{1}. By Lemma 10, ϕ can be extended to a d-defective L-coloring of G_{2} (by setting $A=V\left(G_{1}\right)$ and $B=V\left(G_{2}\right) \backslash V\left(G_{1}\right)$). Similarly, by Lemma 10, we can extend ϕ to a d-defective L-coloring of G_{3}. Note that each vertex in $D_{i, j, s}$ has $(k-1)$ neighbors in C_{i} and d neighbors in $D_{i, j, s}$, so it also satisfies the inequality in Lemma 10 by setting $A=V\left(G_{2}\right)$ and $B=V\left(G_{3}\right) \backslash V\left(G_{2}\right)$.

It remains to show that we can extend ϕ to $H_{i, j}(t, d, k)$ for $1 \leq i \leq k, 1 \leq j \leq q$.
First assume that for any $u, v \in X_{i, j}, \phi(u) \neq \phi(v)$ and for any $x \in X_{i, j}, \lambda_{G_{3}}(x, \phi)=d$. In this case, there are only $\ell-(k-1)=t-1$ colors available for vertices in $\bigcup_{s=1}^{t} V\left(D_{i, j, s}\right)$. So at least two of vertices in $T_{i, j}$ received the same color By Lemma 13, we can extend ϕ to $H_{i, j}(t, d, k)$. In particular, if $d=0$, then ϕ is a 0 -defective coloring, i.e., a proper coloring of G_{3}, implying that for any $u, v \in X_{i, j}, \phi(u) \neq \phi(v)$ and for any $x \in X_{i, j}, \lambda_{G_{3}}(x, \phi)=0=d$. Hence ϕ can be extended to $H_{i, j}(t, d, k)$.

Next assume that $\phi(u)=\phi(v)$ for some $u, v \in X_{i, j}$ or $\lambda_{G_{3}}(x, \phi) \leq d-1$ for some $x \in X_{i, j}$. In either case, it is enough to modify ϕ on $D_{i, j, t}$ (if necessary) such that $\lambda_{G_{3}}\left(u_{i, j, t}, \phi\right) \leq d-1$. So it suffices to show that we can extend ϕ from T to $H_{i, j}(t, d, k)$ such that $\lambda_{H_{i, j}(t, d, k)}\left(u_{i, j, s}\right)=0$ for $s=1,2, \ldots, t-1$ and $\lambda_{H_{i, j}(t, d, k)}\left(u_{i, j, t}\right) \leq 1$. By Lemma 13, this is possible. The proof of Theorem 4 now is completed.

4 Open problems

For $d \geq 0$, a graph is d-defective 1 -choosable if and only if $\Delta(G) \leq d$, and which is equivalent to be d-defective 1 -colorable. So Question 3 has a positive answer for $k=1$ and $\ell_{1, d}=1$. For $k=2$ and $d=0$, Král' and Sgall [7] showed that every ($2,0,4$)-choosable graph is $(2,0,+\infty)$ choosable. The proof relies on a characterization of 2 -choosable graphs by [3]. For $d \geq 1$, no characterization of d-defective 2-choosable graphs is known, and Question 3 remains open for $k=2$ and $d \geq 1$.

The following problem asked by Král and Sgall [7] also remains open.
Problem 14 Is it true that for each $k \geq 3$, there exists a number ℓ such that each $(k, 0, \ell)$ choosable graph is $(k+1)$-choosable? If so, what is the least number ℓ with this property?

References

[1] L. J. Cowen, R. H. Cowen, and D. R. Woodall. Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187-195, 1986.
[2] N. Eaton and T. Hull. Defective list colorings of planar graphs. Bull. Inst. Combin. Appl., 25:79-87, 1999.
[3] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, pages 125-157. Utilitas Math., Winnipeg, Man., 1980.
[4] S. Gutner. The complexity of planar graph choosability. Discrete Math., 159(1-3):119130, 1996.
[5] K. Hendrey and D. R. Wood. Defective and clustered choosability of sparse graphs. Combin. Probab. Comput., 28(5):791-810, 2019.
[6] R. J. Kang. Improper choosability and Property B. J. Graph Theory, 73(3):342-353, 2013.
[7] D. Král' and J. Sgall. Coloring graphs from lists with bounded size of their union. J. Graph Theory, 49(3):177-186, 2005.
[8] L. Lovász. On decomposition of graphs. Studia Sci. Math. Hungar., 1:237-238, 1966.
[9] E. Smith-Roberge. On the choosability with separation of planar graphs and its correspondence colouring analogue. arXiv:2203.13348, 2022.
[10] M. Voigt. On list colourings and choosability of graphs. Habilitationsschrift, Tu Ilmenau, 1998.
[11] M. Voigt and B. Wirth. On 3-colorable non-4-choosable planar graphs. J. Graph Theory, 24(3):233-235, 1997.
[12] R. Škrekovski. List improper colourings of planar graphs. Combin. Probab. Comput., 8(3):293-299, 1999.
[13] Y. Wang and L. Xu. Improper choosability of planar graphs without 4-cycles. SIAM J. Discrete Math., 27(4):2029-2037, 2013.
[14] R. Xu and X. Zhu. The strong fractional choice number and the strong fractional paint number of graphs. SIAM J. Discrete Math., 36(4):2585-2601, 2022.

[^0]: *School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China. E-mail: jiema@ustc.edu.cn. Supported in part by the National Key R and D Program of China 2020YFA0713100, National Natural Science Foundation of China grants 12125106, Innovation Program for Quantum Science and Technology 2021ZD0302904, and Anhui Initiative in Quantum Information Technologies grant AHY150200.
 ${ }^{\dagger}$ School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China and School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321000, China. E-mail: xurongxing@ustc.edu.cn. Supported by Anhui Initiative in Quantum Information Technologies grant AHY150200. Supported also by NSFC grant 11871439.
 ${ }^{\ddagger}$ School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321000, China. E-mail: xdzhu@zjnu.edu.cn. Grant Number: NSFC 11971438, U20A2068.

