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Abstract

Answering in a strong form a question posed by Bollobás and Scott, in this paper we determine

the discrepancy between two random k-uniform hypergraphs, up to a constant factor depending

solely on k.

1 Introduction

A hypergraph H is an ordered pair H = (V,E), where V is a finite set (the vertex set), and E is a

family of distinct subsets of V (the edge set). The hypergraph H is k-uniform if all its edges are of size

k. In this paper we consider only k-uniform hypergraphs. The edge density of a k-uniform hypergraph

H with n vertices is ρH = e(H)/
(
n
k

)
. We define the discrepancy of H to be

disc(H) = max
S⊆V (H)

∣∣∣∣e(S)− ρH
(
|S|
k

)∣∣∣∣ , (1)

where e(S) = e(H[S]) is the number of edges in the sub-hypergraph induced by S. The discrepancy

can be viewed as a measure of how uniformly the edges of H are distributed among the vertices. This

important concept appears naturally in various branches of Combinatorics and has been studied by

many researchers in recent years. The discrepancy is closely related to the theory of quasi-random

graphs (see [7]), as the property disc(G) = o(|V (G)|2) implies the quasi-randomness of the graph G.

Erdős and Spencer [9] proved that for k ≥ 2, any k-uniform hypergraph H with n vertices has a

subset S satisfying
∣∣∣e(S)− 1

2

(|S|
k

)∣∣∣ ≥ cn
k+1

2 , which implies the bound disc(H) ≥ cn
k+1

2 for k-uniform

hypergraphs H of edge density 1
2 . Erdős, Goldberg, Pach and Spencer [8] obtained a similar lower

bound for graphs of edge density smaller than 1
2 . These results were later generalized by Bollobás and

Scott in [3], who proved the inequality disc(H) ≥ ck
√
rn

k+1
2 for k-uniform hypergraphs H, whenever

r = ρH(1− ρH) ≥ 1/n. The random hypergraphs show that all the aforementioned lower bounds are

optimal up to constant factors. For more discussion and general accounts of discrepancy, we refer the

interested reader to Beck and Sós [2], Bollobás and Scott [3], Chazelle [6], Matoušek [11] and Sós [12].

A similar notion is the relative discrepancy of two hypergraphs. Let G and H be two k-uniform

hypergraphs over the same vertex set V , with |V | = n. For a bijection π : V → V , let Gπ be obtained

from G by permuting all edges according to π, i.e., E(Gπ) = π(E(G)). The overlap of G and H
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with respect to π, denoted by Gπ ∩H, is a hypergraph with the same vertex set V and with edge set

E(Gπ) ∩ E(H). The discrepancy of G with respect to H is

disc(G,H) = max
π

∣∣∣∣e(Gπ ∩H)− ρGρH
(
n

k

)∣∣∣∣ , (2)

where the maximum is taken over all bijections π : V → V . For random bijections π, the expected size

of E(Gπ) ∩ E(H) is ρGρH
(
n
k

)
; thus disc(G,H) measures how much the overlap can deviate from its

average. In a certain sense, the definition (2) is more general than (1), because one can write disc(H) =

max1≤i≤n disc(Gi, H), where Gi is obtained from the complete i-vertex k-uniform hypergraph by

adding n− i isolated vertices.

Bollobás and Scott introduced the notion of relative discrepancy in [4] and showed that for any

two n-vertex graphs G and H, if 16
n ≤ ρG, ρH ≤ 1− 16

n , then disc(G,H) ≥ c · f(ρG, ρH) · n
3
2 , where c

is an absolute constant and f(x, y) = x2(1 − x)2y2(1 − y)2. As a corollary, they proved a conjecture

in [8] regarding the bipartite discrepancy disc(G,Kbn
2
c,dn

2
e). Moreover, they also conjectured that

a similar bound holds for k-uniform hypergraphs, namely, there exists c = c(k, ρG, ρH) for which

disc(G,H) ≥ cn
k+1

2 holds for any k-uniform hypergraphs G and H satisfying 1
n ≤ ρG, ρH ≤ 1− 1

n .

In their paper, Bollobás and Scott also asked the following question (see Problem 12 in [4]). Given

two random n-vertex graphs G and H with constant edge probability p, what is the expected value

of disc(G,H)? In this paper, we solve this question completely for general k-uniform hypergraphs.

Let Hk(n, p) denote the random k-uniform hypergraph on n vertices, in which every edge is included

independently with probability p. We say that an event happens with high probability, or w.h.p. for

brevity, if it happens with probability at least 1−n−ω(1), where here and later ω(1) denotes an arbitrary

function tending to infinity together with n.

Theorem 1.1. For positive integers n and k, let N =
(n−n

k
k−1

)
. Let G and H be two random hypergraphs

distributed according to Hk(n, p) and Hk(n, q) respectively, where ω(1)
N ≤ p ≤ q ≤ 1

2 .

(1) dense case – If pqN > 1
30 log n, then w.h.p. disc(G,H) = Θk

(√
pq
(
n
k

)
n log n

)
;

(2) sparse case – If pqN ≤ 1
30 log n, let γ = logn

pqN ; then

(2.1) if pN ≥ logn
5 log γ , then w.h.p. disc(G,H) = Θk

(
n logn
log γ

)
.

(2.2) if pN < logn
5 log γ , then w.h.p. disc(G,H) = Θk

(
p
(
n
k

))
.

The previous theorem also provides tight bounds when p and/or q ≥ 1
2 , as we shall see in the

concluding remarks. The result of Theorem 1.1 in the sparse range is closely related to the recent

work of the third author with Lee and Loh [10]. Among other results, the authors of [10] show that

two independent copies G,H of the random graph G(n, p) with p�
√

log n/n w.h.p. have overlap of

order Θ
(
n logn

log γ

)
, where γ = logn

p2n
. Hence disc(G,H) = Θ

(
n logn

log γ

)
holds, since in this range of edge

probability, n logn
log γ is larger than the average overlap p2

(
n
2

)
. Our proof in the sparse case borrows some

ideas from [10]. On the other hand, one can not use their approach for all cases; hence some new ideas

were needed to prove Theorem 1.1.

It will become evident from our proof that the problem of determining the discrepancy can be

essentially reduced to the following question. Let K > 0, and let X be a binomial random variable with
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parameters m and ρ. What is the maximum value of Λ = Λ(m, ρ,K) satisfying P
[
X−mρ > Λ

]
≥ e−K?

This question is related to the rate function of binomial distribution. In all cases, the discrepancy in

the statement of Theorem 1.1 is w.h.p.

disc(G,H) = Θk

(
n · Λ

(
p

(
n− 1

k − 1

)
, q, log n

))
. (3)

Note that p
(
n−1
k−1

)
is roughly the size of the neighborhood of a vertex in the hypergraph G.

The rest of this paper is organized as follows. Section 2 contains a high level outline of our proof.

It also includes the definition of the probabilistic discrepancy discP (G,H). Section 3 contains a list

of inequalities and technical lemmas used throughout the paper. In particular, we demonstrate that

discP (G,H) w.h.p. does not deviate too much from disc(G,H). In Section 4, we establish the upper

bound for disc(G,H) based on a similar bound for discP (G,H). In Section 5, we give a detailed proof

of the lower bound for disc(G,H). The final section contains some concluding remarks. In this paper,

the function log refers to the natural logarithm and all asymptotic notation symbols (Ω, O, o and

Θ) are with respect to the variable n. Furthermore, the k-subscripts in these symbols indicate the

dependence on k in the relevant constants.

2 Outline of the proof

In this section, we describe the main ideas in the proof of Theorem 1.1. In order to determine

disc(G,H), we introduce a related quantity, the probabilistic discrepancy discP (G,H). Let G and

H be two random hypergraphs over the same vertex set V , distributed according to Hk(n, p) and

Hk(n, q), respectively. The probabilistic discrepancy of G with respect to H is defined by

discP (G,H) = max
π

∣∣∣∣e(Gπ ∩H)− pq
(
n

k

)∣∣∣∣ ,
where the maximum is taken over all bijections π : V → V . In Section 4, we show that discP (G,H) is

w.h.p. very close to disc(G,H), hence, to bound disc(G,H), it suffices to show corresponding bounds

for discP (G,H).

The proof of the upper bound for discP (G,H) is fairly standard. In case (2.2) of the main theorem,

the proof is trivial, as w.h.p. e(G) < 2p
(
n
k

)
. For the remaining cases, we remark that for any fixed

permutation π : V → V , the overlap Gπ ∩ H is a random hypergraph distributed according to

Hk(n, pq). The upper bound then follows from a straightforward union bound argument over all

possible permutations π, together with the application of concentration inequalities for the binomial

distribution. The remaining details of this particular argument are presented in Section 4.

The main contribution of the paper is the proof of the lower bound. In Section 5, we show that

w.h.p. there exists a permutation π such that the corresponding overlap e(Gπ ∩ H) is much bigger

than pq
(
n
k

)
. Note that e(Gπ ∩ H) > pq

(
n
k

)
, so the discrepancy is “positive” here. In the proof, we

fix an arbitrary set L ⊆ V of size |L| = n
k , and restrict the set of possible permutations to bijections

permuting only the elements of L. Then, we gradually expose the edges (belonging to both G and H)

in two rounds. In the first round, we expose the edges having exactly one vertex in L, while keeping

unexposed the edges having zero or at least two vertices in L. This way, the overall contribution to

the discrepancy from the edges exposed in the first round is exactly the sum of the contributions from

each individual choice of π(x). To be more precise, let R be the set of all (k − 1)-subsets of V \ L;
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for each u ∈ L, let NG(u) be the collection of all (k − 1)-sets T ∈ R such that {u} ∪ T is an edge of

G, and let NH(u) be defined similarly; finally, for each pair u, v ∈ L, let codeg(u, v) denote the size of

NG(u) ∩NH(v). The total number of edges in the overlap Gπ ∩H having exactly one vertex in L is

precisely the sum ∑
x∈L

codeg(x, π(x)). (4)

See Figure 1 for more details. The size |L| = n
k was appropriately chosen to maximize the number of

edges having precisely one vertex in L. Additionally, we remark that |R| =
(n−n

k
k−1

)
, which is exactly

the value of N in the statement of Theorem 1.1. The following inequality will be used extensively

later in the paper. It relates N and the binomial coefficient
(
n
k

)
for large enough n, as

1

3

(
n

k

)
≤ N n

k
≤ 1

2

(
n

k

)
.

L ⊆ V (G)

R

L ⊆ V (H)

u v

p q

NG(u)

NH(v)

Figure 1: Edges of G and H having one vertex in L.

Having found the bijection π with big overlap in the exposed edges (we have not yet explained how

to obtain such bijection), the final step would be to expose the remaining edges of both hypergraphs

(second round exposure) and compute the overall discrepancy. The potential “loss” in this final step

will be w.h.p. much smaller than the “gain” we already obtained in the previous steps.

It remains to explain how to obtain the bijection π. We define the connection graph Γ = Γ(G,H)

as follows. The set of vertices of Γ is the union of two disjoint copies of L, which we will refer to as

LG and LH , respectively. We will add an edge between u ∈ LG and v ∈ LH in Γ when codeg(u, v) is

sufficiently large. The notion of large here will vary, depending on which case (dense or sparse) we are

trying to prove. Because of (4), in order to maximize the overlap, it will suffice to show the existence

of a large matching in auxiliary graph Γ.

In the dense case, we prove that we can find a nearly regular subgraph of Γ (i.e., all the degrees

are roughly the same) and thus the existence of the desired bijection π easily follows from well-known

theorem of Vizing. For more details, see Section 5.1. In the sparse case, the proof is slightly different.

To find the matching in Γ, we divide LG into chunks, each having size n2/5. Then, for each chunk in

LG, we expose the neighborhoods of its vertices to R and w.h.p. we show that these neighborhoods can

be made disjoint by removing very few edges. Finally, we start matching the vertices in LH with the

vertices in LG. This is done by exposing the neighborhood of a vertex in LH (one by one, according
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to an arbitrary predetermined order), and matching it with a high codegree vertex in LG. The details

of this construction are contained in Section 5.2.

3 Auxiliary results

In this section we list and prove some useful concentration inequalities about the binomial and hy-

pergeometric distributions. In addition, we prove that discP (G,H) (defined in the previous section)

is w.h.p. very close to disc(G,H). Lastly, we prove a corollary from the well-known Vizing’s Theorem

which asserts the existence of a linear-size matching in nearly regular graphs (i.e., the maximum degree

is close to the average degree). We will not attempt to optimize our constants, preferring rather to

choose values which provide a simpler presentation. Let us start with classical Chernoff-type estimates

for the tail of the binomial distribution (see, e.g., [1]).

Lemma 3.1. Let X =
∑l

i=1Xi be the sum of independent zero-one random variables with average

µ = E[X]. Then for all non-negative λ ≤ µ, we have P[|X − µ| > λ] ≤ 2e
−λ

2

4µ .

The following lower tail inequality (see [1]) is due to Janson.

Lemma 3.2. Let A1, A2, . . . , Al be subsets of a finite set Ω, and let R be a random subset of Ω for

which the events r ∈ R are mutually independent over r ∈ Ω. Define Xj to be the indicator random

variable of Aj ⊂ R. Let X =
∑l

j=1Xj, µ = E[X], and ∆ =
∑

i∼j E[Xi ·Xj ], where i ∼ j means that

Xi and Xj are dependent (i.e., Ai intersects Aj). Then for any λ > 0,

P[X ≤ µ− λ] < e
− λ2

2µ+∆ .

Next, we establish that the difference between disc(G,H) and discP (G,H) is w.h.p. very small.

This difference is, in fact, much smaller than any bound stated in Theorem 1.1. Thus, to prove bounds

for disc(G,H), it suffices to show corresponding bounds for discP (G,H).

Lemma 3.3. Let G and H be two random hypergraphs over the same vertex set V , distributed according

to Hk(n, p) and Hk(n, q), respectively. With probability at least 1−4e−
√
n, the inequality |disc(G,H)−

discP (G,H)| ≤ 2ε holds, where ε = 4n
1
4

√
pq
(
n
k

)
.

Proof. Since p
(
n
k

)
= Ω(n), applying Lemma 3.1 to the random variable e(G) for λ = 2n

1
4

√
p
(
n
k

)
≤ p
(
n
k

)
yields

P

[∣∣∣e(G)− p
(
n

k

)∣∣∣ ≤ 2n
1
4

√
p

(
n

k

)]
≥ 1− 2e−

√
n.

Similarly, we have P
[
|e(H)− q

(
n
k

)
| ≤ 2n

1
4

√
q
(
n
k

) ]
≥ 1 − 2e−

√
n. Therefore, with probability at least

1 − 4e−
√
n, |ρG − p| ≤ 2n

1
4

(
p/
(
n
k

))1/2
and |ρH − q| ≤ 2n

1
4

(
q/
(
n
k

))1/2
. But if |AB − A0B0| ≥ ε1ε2 +

|A0|ε2 + |B0|ε1, then either |A−A0| ≥ ε1 or |B −B0| ≥ ε2. Together, these inequalities imply∣∣∣∣ρGρH(nk
)
− pq

(
n

k

)∣∣∣∣ ≤ 4
√
pqn+ 2pn

1
4

√
q

(
n

k

)
+ 2qn

1
4

√
p

(
n

k

)
≤ 2ε,

completing the proof of the lemma.
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In the proof of the dense case of the main theorem we will need a lower bound for the tail of the

hypergeometric distribution. To prove it we use the following well-known estimates for the binomial

coefficient.

Proposition 3.4. Let H(p) = −p log p− (1− p) log(1− p) (the binary entropy), then for any integer

m > 0 and real p ∈ (0, 1) satisfying pm ∈ Z we have
√

2π

e2
≤
(
m

pm

)√
mp(1− p)e−mH(p) ≤ e

2π
.

Proof. This can be derived from Stirling’s formula
√

2πm
(
m
e

)m ≤ m! ≤ e
√
m
(
m
e

)m
.

Lemma 3.5. Let d1, d2, ∆ and N be integers and K be a real parameter such that 1 ≤ d1, d2 ≤ 2N
3 ,

1 ≤ K ≤ d1d2
100N and ∆ =

√
d1d2K
N . Then

∑
t≥ d1d2

N
+∆

(
d1

t

)(
N−d1

d2−t
)(

N
d2

) ≥ e−40K .

Proof. For convenience, we write f(t) =
(
d1

t

)(
N−d1

d2−t
)
/
(
N
d2

)
. In order to show the desired lower bound of

the hypergeometric sum, it suffices to prove that

f(t) ≥ 4e−40K√
d1d2
N + ∆

,

for every integer t = d1d2
N + θ∆ with 1 ≤ θ ≤ 2. Indeed, to see this, note that there are at least

b∆c ≥ ∆
2 integers between d1d2

N + ∆ and d1d2
N + 2∆ and

∆ >
1

2

√
∆2 + ∆ ≥ 1

2

√
d1d2

N
+ ∆.

Next we prove the bound for f(t). For our choice of ∆, the inequality ∆ ≤ d1
15 is true since

∆ =

√
d1d2K

N
= d1

√
d2

N
· K
d1
≤ d1

√
d2

N
· d2

100N
=
d1

10
· d2

N
≤ d1

15
.

Similarly ∆ ≤ d2
15 . Let x = d2

N , y = θ∆
d1

and z = θ∆
N−d1

. Then t = (x+y)d1 and d2− t = (x−z)(N−d1).

But 0 < x + y < 1, because 0 < x ≤ 2
3 and 0 < y ≤ 2∆

d1
< 1

3 . Furthermore, 0 < x − z < 1, because
z
x = θ∆N

d2(N−d1) ≤
3θ∆
d2
≤ 2

5 and x ≤ 2
3 . By Proposition 3.4, we have

f(t) =

(
d1

(x+y)d1

)(
N−d1

(x−z)(N−d1)

)(
N
xN

) ≥ 4π2

e5

√
Re−L,

where L = −d1 ·H(x+ y)− (N − d1) ·H(x− z) +N ·H(x) and

R =
x(1− x)N

(x− z)(1− x+ z)(x+ y)(1− x− y)d1(N − d1)
≥ 1

(x+ y)d1
≥ 1

2
· 1
d1d2
N + ∆

.

Here we used z ≤ x for the first the inequality; and we used θ ≤ 2 and the identity (x + y)d1 = t =
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d1d2
N + θ∆ for the second inequality. Because d1y = (N − d1)z = θ∆ and log(1 + s) ≤ s, we obtain

L = d1

[
(x+ y) log

(
1 +

y

x

)
+ (1− x− y) log

(
1− y

1− x

)]
+ (N − d1)

[
(x− z) log

(
1− z

x

)
+ (1− x+ z) log

(
1 +

z

1− x

)]
≤ d1

[
(x+ y)y

x
− (1− x− y)y

1− x

]
+ (N − d1)

[
−(x− z)z

x
+

(1− x+ z)z

1− x

]
= θ∆ · (y + z) ·

(
1

x
+

1

1− x

)
=

θ2∆2N3

d1(N − d1)d2(N − d2)
≤ 36K.

Thus we always have f(t) ≥ 4π2
√

2e5
· e−36K√

d1d2
N

+∆
≥ 4e−40K√

d1d2
N

+∆
, completing the proof.

The next lemma will be used to prove the lower bound in the sparse case of Theorem 1.1 and was

inspired by an analogous result in [10].

Lemma 3.6. For positive integers n and k, let N =
(n−n

k
k−1

)
, ω(1)

N ≤ p ≤ q ≤ 1
2 and suppose that

pqN ≤ 1
30 log n. Define γ = logn

pqN . Let N1, . . . , Ns ⊆ B be s ≥ n1/3 disjoint sets of size (1 + o(1))Np,

and consider the random set Bq, obtained by taking each element of B independently with probability

q. Then w.h.p., there is an index i for which

(1) |Bq ∩Ni| ≥ logn
6 log γ if pN ≥ logn

5 log γ ;

(2) Ni ⊆ Bq if pN < logn
5 log γ .

Proof. If pN ≥ logn
5 log γ , let t = logn

6 log γ . Clearly 1 − q ≥ e−3q/2 when q ≤ 1/2. For a fixed index i, the

probability that |Bq ∩Ni| ≥ t is at least
(|Ni|
t

)
qt(1− q)|Ni|−t. Using the bounds

(
a
n

)
≥ (ab )b for a ≥ b,

and 1
30 log n ≥ Npq = logn

γ , we obtain(
|Ni|
t

)
qt(1− q)|Ni|−t ≥

(
(1 + o(1))Npq

t

)t
e−2pqN ≥

(
5 log γ

γ

) logn
6 log γ

n−1/15

≥ n−1/6 · n−1/15 ≥ n−0.3.

Hence the expected number of indices i such that |Bq ∩Ni| ≥ t is at least sn−0.3 ≥ n1/30. Since the

sets Ni are disjoint, these events are independent for different choices of i. Therefore by Lemma 3.1

w.h.p. we can find such an index (actually many).

If pN < logn
5 log γ , then q = logn

γpN > 5 log γ
γ ≥ γ−1. Therefore the probability that some Ni ⊆ Bq is

q|Ni| ≥ γ−(1+o(1))Np ≥ γ−
logn

4 log γ = n−1/4,

and we can complete the proof as in the first case.

The last lemma in this section, which can be easily derived from Vizing’s Theorem, will be used

to find a linear-size matching in nearly regular graphs.

Lemma 3.7. Every graph G with maximum degree ∆(G), contains a matching of size at least e(G)
∆(G)+1 .
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Proof. By Vizing’s Theorem, the graph G has a proper edge coloring f : E(G)→ {1, 2, . . . ,∆(G)+1}.
For each color 1 ≤ c ≤ ∆(G) + 1, the edges f−1(c) form a matching in G. By the pigeonhole principle,

there is a color c such that f−1(c) has at least e(G)
∆(G)+1 edges.

4 Upper bounds

In this section we prove the upper bound for the discrepancy in Theorem 1.1. By Lemma 3.3, it

suffices to prove the corresponding bounds for discP (G,H) instead.

Lemma 4.1. Let G and H be as in Theorem 1.1. Then w.h.p. discP (G,H) satisfies the stated upper

bounds of Theorem 1.1.

Proof. Since the number of edges of G is distributed binomially and p
(
n
k

)
= Ω(n), by Lemma 3.1,

we have e(G) < 2p
(
n
k

)
with probability at least 1 − e−Θ(n). Since discP (G,H) is bounded by

max
{
e(G), pq

(
n
k

)}
, this implies the assertion in the case (2.2) of Theorem 1.1.

For any fixed bijection π : V → V , the number of edges in Gπ ∩H is distributed binomially with

parameters
(
n
k

)
and pq. If pq

(
n
k

)
> 4n log n let λ = 2

√
pq
(
n
k

)
n log n ≤ pq

(
n
k

)
. Then by Lemma 3.1, the

probability that
∣∣e(Gπ ∩H)− pq

(
n
k

)∣∣ > λ is at most 2e−n logn. On the other hand, if pq
(
n
k

)
≤ 4n log n,

let γ′ = 4en logn

pq(nk)
≥ e > 1 and λ = 4e2n logn

log γ′ ≥ 4e2n logn
γ′ = epq

(
n
k

)
. Since

(
a
b

)
≤
(
ea
b

)b
, the probability

that e(Gπ ∩H) > λ is at most((n
k

)
λ

)
(pq)λ ≤

(
e
(
n
k

)
pq

λ

)λ
=

(
4e2n log n

γ′λ

)λ
=

(
γ′

log γ′

)− 4e2n logn
log γ′

< e−n logn.

In either case, since there are n! possible bijections π : V → V , by the union bound

P [discP (G,H) > λ ] ≤ n! · 2e−n logn ≤ e−n/2,

which finishes the proof of the upper bound in case (1). Since γ (defined in Theorem 1.1) satisfies γ =

Θk(γ
′), this implies upper bound in case (2.1) as well. Finally, observe that we divided the dense and

sparse cases in this proof, according to whether pq
(
n
k

)
is bigger (or smaller) than 4n log n, a threshold

slightly different than the one used in Theorem 1.1. This difference is not essential though, as for p, q

satisfying both pq
(
n
k

)
≤ 4n log n and pqN ≥ 1

30 log n, we have
√
pq
(
n
k

)
n log n = Θk

(
4e2n logn

log γ′

)
.

5 Lower bounds

In this section we prove the lower bounds in Theorem 1.1. As we previously explained, it is enough

to obtain these bounds for discP (G,H). We divide the proof into two cases. The first (dense case)

will be discussed in the next subsection. The second (sparse case) will be discussed in subsection 5.2.

Throughout the proofs, we assume that k is fixed and n is tending to infinity.
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5.1 Dense Case

Let N =
(n−n

k
k−1

)
and let p, q be such that pqN > 1

30 log n. Select an arbitrary set L ⊆ V of size |L| = n
k .

We prove that w.h.p. there exists an L-bijection π : V → V with overlap

e(Gπ ∩H) ≥ pq
(
n

k

)
+ Θk

(
n ·
√
pqN log n

)
= pq

(
n

k

)
+ Θk

(√
pq

(
n

k

)
n log n

)
, (5)

where an L-bijection π : V → V is a bijection from V to V which only permutes the elements of L,

i.e., π(x) = x for all x 6∈ L.

We start by describing the construction outlined in Section 2 in more details. From the random

hypergraph G we construct a random bipartite graph G̃ with vertex set LG∪R, where LG = L and R is

the set of all (k−1)-tuples in V \L. Note that |R| = N . The vertices v1 ∈ LG and {v2, v3, . . . , vk} ∈ R
are adjacent if {v1, v2, . . . , vk} forms an edge in the hypergraph G. With slight abuse of notation, we

view G̃ as a sub-hypergraph of G, containing all edges e having exactly one vertex in L, i.e. |e∩L| = 1.

Similarly, from the random hypergraph H we construct a random bipartite graph H̃ with vertex set

LH ∪R. Figure 1 shows the resulting bipartite graphs.

Given an L-bijection π : V → V , we divide the edge set of Gπ ∩H into two subsets: the edge set of

G̃π∩H̃ and its complement. To prove our result we first expose the random edges in G̃ and H̃, and show

how to find an L-bijection π having overlap at least Θk

(
n ·
√
pqN log n

)
more than the expectation.

Then we fix such π and expose all the remaining edges in G and H showing that the contribution

of these edges to Gπ ∩H does not deviate much from the expected contribution. More precisely, let

eπ = |E((G − G̃)π) ∩ E(H − H̃)|, then e(Gπ ∩ H) = e(G̃π ∩ H̃) + eπ. Moreover, eπ is distributed

according to Bin(m, pq), where 1
2

(
n
k

)
≤ m =

(
n
k

)
−N n

k ≤
(
n
k

)
. Thus w.h.p. |eπ − pqm| <

√
pqm · log n,

as Lemma 3.1 shows. Also,
√
pqm · log n �

√
pq
(
n
k

)
n log n = Θk

(
n
√
pqN log n

)
. To obtain (5), it is

therefore enough to show that w.h.p. there exists an L-bijection π such that

e(G̃π ∩ H̃) ≥ n

k
·
(
pqN + Θk

(√
pqN log n

))
. (6)

since then w.h.p.,

e(Gπ ∩H) = e(G̃π ∩ H̃) + eπ

≥ n

k
(pqN + Θk(

√
pqN log n)) + pqm−√pqm log n

=
n

k
Θk(

√
pqN log n) + pq

(
n

k

)
−√pqm log n

= pq

(
n

k

)
+ Θk

(√
pq

(
n

k

)
n log n

)
.

We define an auxiliary bipartite graph Γ = Γ(G̃, H̃) as follows. A vertex u ∈ LG survives if

|deg
G̃

(u) − pN | ≤ 2
√

2pN and similarly, a vertex v ∈ LH survives if |deg
H̃

(v) − qN | ≤ 2
√

2qN . Let

SG and SH be the sets of all surviving vertices of G̃ and H̃, respectively. Let sG = |SG| and sH = |SH |.
The set of vertices of Γ is the union of SG and SH . The edges of Γ are defined by the property

u ∼Γ v ⇐⇒ codeg(u, v) ≥
deg

G̃
(u) deg

H̃
(v)

N
+ 10−2

√
pqN log n,

9



where codeg(u, v) denotes the codegree of u ∈ LG and v ∈ LH , i.e. codeg(u, v) = |N
G̃

(u) ∩ N
H̃

(v)|.
The graph Γ has many vertices in both parts, as the following simple lemma demonstrates

Lemma 5.1. W.h.p. each part of Γ has size at least n
4k .

Proof. Let α be the probability that some vertex u survives in LG. Since pN ≥ 8, we have that

2
√

2pN ≤ pN . Thus Lemma 3.1 applied to deg
G̃

(u) implies α ≥ 1 − 2e−2 ≥ 1/2. Since the events

that vertices survive are independent, sG stochastically dominates the binomial distribution with

parameters n/k and 1/2. Thus, again by Lemma 3.1, w.h.p. sG ≥ n/(4k) and a similar estimate holds

for sH .

To prove (6), we will show that the following two statements hold w.h.p.

(a) Γ has a matching M = {(u1, v1), . . . , (ul, vl)} of size l = n
50k ;

(b) there exists an L-bijection π such that π(ui) = vi for all i = 1, 2, . . . , l, and,∑
u∈LG\{u1,u2,...,ul}

codeg(u, π(u)) ≥
(n
k
− l
)
pqN − 2

n

k

√
pqN.

Indeed, for any two adjacent vertices u, v in Γ, we have

deg
G̃

(u) deg
H̃

(v)

N
≥ (pN −

√
8pN)(qN −

√
8qN)

N
≥ pqN − 6

√
pqN.

Thus using (a), (b) and l = n
50k we obtain

e(G̃π ∩ H̃) =
∑
u∈LG

codeg(u, π(u)) ≥
l∑

i=1

codeg(ui, vi) +
(n
k
− l
)
pqN − 2

n

k

√
pqN

≥
l∑

i=1

[
deg

G̃
(ui) deg

H̃
(vi)

N
+ 10−2

√
pqN log n

]
+
(n
k
− l
)
pqN − 2

n

k

√
pqN

≥
l∑

i=1

[
pqN − 6

√
pqN

]
+

n

50k
10−2

√
pqN log n+

(n
k
− l
)
pqN − 2

n

k
·
√
pqN

≥ n

k

(
pqN + 10−4

√
pqN log n

)
We need the following lemma in order to prove that (b) holds.

Lemma 5.2. Let 0 < α < 1 be any absolute constant. Then with probability at least 1− e−
n
k , any two

subsets A ⊆ LG and B ⊆ LH with |A| = |B| = αn
k satisfy

XA,B :=
∑

u∈A,v∈B
codeg(u, v) ≥

(αn
k

)2
pqN − 2α

(n
k

)2√
pqN.

Proof. Let Xw,u,v be the indicator of wu ∈ E(G̃) and wv ∈ E(H̃) for w ∈ R, u ∈ A, v ∈ B. So

XA,B =
∑

w∈R,u∈A,v∈BXw,u,v and E[Xw,u,v] = pq. Moreover, Xw,u,v and Xw′,u′,v′ are dependent if and

only if wu = w′u′ or wv = w′v′. Thus, µ = E[XA,B] =
(
αn
k

)2
Npq and

∆ =
∑

w∈R,u∈A

∑
v,v′∈B

E[Xw,u,v ·Xw,u,v′ ] +
∑

w∈R,v∈B

∑
u,u′∈A

E[Xw,u,v ·Xw,u′,v] =
αn

k

(αn
k

2

)
Npq (p+ q) ,

10



where µ and ∆ are defined as in Lemma 3.2. Let F be the event that there exists at least one pair of

subsets A ⊆ LG, B ⊆ LH with |A| = |B| = αn
k satisfying XA,B < (αnk )2Npq − 2α(nk )2

√
Npq. By the

union bound and by Lemma 3.2, we have

P[F ] ≤
∑

A∈(LGαn),B∈(LHαn )

P
[
XA,B < µ− 2α

(n
k

)2√
Npq

]
≤
( n

k
αn
k

)2

e
−(2α(n

k
)2
√
Npq)

2

2µ+∆

≤
( e
α

) 2αn
k
e−3n

k ≤ e−
n
k ,

since 2µ+ ∆ ≤ 4
3

(
αn
k

)3
Npq, α < 1 and α log(e/α) ≤ 1 for all such α.

Let M = {(u1, v1), . . . , (ul, vl)} be a matching satisfying (a) and let A = LG \ {u1, u2, . . . , ul}
and B = LH \ {v1, v2, . . . , vl}. Write |A| = |B| = n

k − l = αn
k , where α = 49

50 . Consider XA,B =∑
u∈A,v∈B codeg(u, v). Then, by Lemma 5.2, with probability at least 1− e−

n
k , we have∑

u∈A,v∈B
codeg(u, v) ≥

(n
k
− l
)2
pqN − 2

n

k

(n
k
− l
)√

pqN.

Since the complete bipartite graph with parts A,B is a disjoint union of n
k − l perfect matchings, by

the pigeonhole principle, there exists a matching M ′ between A and B such that∑
(u,v)∈M ′

codeg(u, v) ≥
∑

u∈A,v∈B codeg(u, v)
n
k − l

≥
(n
k
− l
)
pqN − 2n

k

√
pqN.

Then the matching M ∪M ′ between LG and LH gives the desired L-bijection π and proves (b).

To finish the proof we need to establish (a). If Γ is nearly regular, then by Lemma 3.7, Γ would

contain a linear-size matching. Unfortunately, it is not clear that this is the case. However, we will

show that it is possible to delete some edges of Γ at random and obtain a pruned graph Γ′, which is

nearly regular. Let

f(d1, d2) := P
[
u ∼Γ v|deg

G̃
(u) = d1,deg

H̃
(v) = d2

]
,

where |d1− pN | ≤ 2
√

2pN and |d2− qN | ≤ 2
√

2qN . Let f0 be the minimum of f(d1, d2) over all pairs

(d1, d2) in the domain of f . Suppose that f0 ≥ n−
1
2 , which we shall prove later. We keep each edge

uv of Γ in Γ′ independently with probability f0

f(d1,d2) , where d1 = deg
G̃

(u) and d2 = deg
H̃

(v). Then,

we claim that for any vertex u ∈ SG, degΓ′(u) is binomially distributed with parameters sH and f0.

Indeed, by definition, P
[
u ∼Γ′ v| deg

G̃
(u) = d1, deg

H̃
(v) = d2

]
= f0 for all possible d1, d2. Moreover,

conditioning on the neighbors of u in G̃ and on the values of the degrees deg
H̃

(v1), deg
H̃

(v2), . . . ,

deg
H̃

(vm), the events u ∼Γ v1, u ∼Γ v2, . . . , and u ∼Γ vm are all independent. Therefore, by definition

of Γ′, it is easy to see that u ∼Γ′ v1, u ∼Γ′ v2, . . ., and u ∼Γ′ vm are independent as well. Thus for

any u ∈ SG, degΓ′(u) ∼ Bin(sH , f0) and similarly, degΓ′(v) ∼ Bin(sG, f0) for all v ∈ SH .

Conditioning on the degrees of all vertices in G̃, H̃, we obtain sets SG and SH , which w.h.p. satisfy

the assertion of Lemma 5.1, i.e., |SG| = sG ≥ n
4k and |SH | = sH ≥ n

4k . Thus both sGf0 and sHf0 are

Ωk(
√
n). Since all degrees in Γ′ are binomially distributed, Lemma 5.1 together with the union bound

imply that w.h.p. all vertices u ∈ SG, v ∈ SH satisfy

sHf0

2
≤ degΓ′(u) ≤ 3sHf0

2
and

sGf0

2
≤ degΓ′(v) ≤ 3sGf0

2
.
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Therefore, the max-degree ∆(Γ′) ≤ max
{

3sHf0

2 , 3sGf0

2

}
≤ 3nf0

2k and e(Γ′) ≥ sGsHf0

2 ≥ n2f0

32k2 . Thus by

Lemma 3.7, Γ′ has a matching of size at least e(Γ′)
∆(Γ′)+1 ≥

n
50k , completing the proof of (a).

It remains to prove the bound f0 ≥ n−
1
2 . Let K = logn

5000 ≥ 1. Since pN tends to infinity, p ≤ q ≤ 1/2

and |d1−pN | ≤ 2
√

2pN , we have 1 ≤ d1 = (1+o(1))pN ≤ 2N
3 . Similarly 1 ≤ d2 = (1+o(1))qN ≤ 2N

3 .

Also recall that pqN ≥ 1
30 log n, which implies

d1d2

100N
= (1 + o(1))

pqN

100
≥ (1 + o(1))

log n

3000
> K.

Therefore we can apply Lemma 3.5 with ∆ =
√

d1d2K
N >

√
pqN logn

100 . By the definition of f(d1, d2), we

have

f(d1, d2) =
∑

t≥ d1d2
N

+
√
pqN logn

100

(
d1

t

)(
N−d1

d2−t
)(

N
d2

) ≥
∑

t≥ d1d2
N

+∆

(
d1

t

)(
N−d1

d2−t
)(

N
d2

) ≥ e−40K > n−
1
2 .

This completes the proof.

5.2 Sparse case

In this subsection, we prove the lower bound in the sparse case pqN ≤ 1
30 log n. Note that, since

p ≤ q and
(
n
k

)
≤ 3N n

k in this case, we have p ≤ N−1/2+o(1) and pq
(
n
k

)
< n log n. The proof runs

along the same lines as that of the dense case differing only in the application of Lemma 3.6 to obtain

an L-bijection π : V → V whose sum of codegrees
∑

u∈LG codeg(u, π(u)) is large. Suppose first that

pN ≥ logn
5 log γ . Recall that γ = logn

pqN ≥ 30 and thus logn
6 log γ ≥

logn
42 log γ + logn

γ = logn
42 log γ + pqN . Also,

√
pqm log n ≤

√
pq
(
n
k

)
log n � logn

42 log γ
n
k . Therefore it is enough to find a bijection π between LG and

LH such that
∑

u∈LG codeg(u, π(u)) ≥ (1 + o(1))nk ·
logn

6 log γ . Using such bijection, together with above

inequalities and m+N n
k =

(
n
k

)
, we obtain that

e(Gπ ∩H) =
∑

codeg(u, π(u)) + eπ

≥ (1 + o(1))
n

k

log n

6 log γ
+ pqm−√pqm log n

≥ (1 + o(1))
log n

42 log γ

n

k
+ pq

(
n

k

)
.

Analogous to the dense case, we define the connection graph Γ = Γ(G̃, H̃) for the sparse case. But

the criterion to add edges to Γ is different – u and v are joined if and only if codeg(u, v) ≥ logn
6 log γ .

Again, our goal is to find a large matching in Γ, but the strategy will be slightly different this time.

Partition the vertices of LG into r = n
ks disjoint sets S1, . . . , Sr each of size s = n2/5. We will

construct π by applying the following greedy algorithm to each set. Let us start with S1. The

algorithm will reveal the edges emanating from S1 to R in G̃ by repeatedly exposing the neighborhood

of a vertex in S1, one at a time. Throughout this process, we construct a subset S′1 ⊆ S1 of size

(1 + o(1))|S1| and a family of disjoint sets Nu ⊆ R, such that each Nu has size (1 + o(1))Np and

is contained in the neighborhood of u, for all u ∈ S′1. At each step, we pick a fresh vertex u in S1

and expose its neighborhood. If u has a set of (1 + o(1))Np neighbors which is disjoint from Nw for

all w in the current S′1, denote this particular set by Nu and put u in the set S′1; otherwise move to

12



the next fresh vertex in S1, until there are none left. The union X = ∪w∈S′1Nw always has size at

most O(pN · s) ≤ N0.9+o(1). Moreover, every vertex in R \ X is adjacent to u independently with

probability p. Since pN ≥ ω(1) tends to infinity with n, the set of neighbors of u outside X has size

(1 + o(1))|R \ X|p = (1 + o(1))Np with probability 1 + o(1). Thus, there exists an absolute lower

bound p0 = 1 + o(1) such that the event “S′1 contains u” occurs with probability at least p0, for all

u. Furthermore, conditioned on the sizes of R \X, these events are independent for different vertices

u. A straightforward coupling argument shows that the number of elements in S′1 can be bounded

below by a binomial random variable with s trials and probability p0. Therefore, by Lemma 3.1,

w.h.p. |S′1| = (1 + o(1))|S1|. Next, we construct the partial matching for S1. Consider the disjoint

sets Nu, for u ∈ S′1, each of size (1 + o(1))Np. Pick an arbitrary vertex v in LH and expose its

neighbors in H̃. This is a random subset Nv of R, obtained by taking each element independently

with probability q. Therefore by case (1) of Lemma 3.6, w.h.p there is a vertex u ∈ S′1 such that

codeg(u, v) ≥ |Nu∩Nv| ≥ logn
6 log γ . Define π(u) = v, remove u from S′1, remove v from LH and continue.

Note that, as long as there are at least n1/3 vertices remaining in S′1, we can match one of them with a

newly exposed vertex from LH such that the codegree of this pair is at least logn
6 log γ . Once the number

of vertices in S′1 drops below n1/3, leave the remaining vertices unmatched. W.h.p. we can match a

1 + o(1) fraction of the vertices in S1.

Continue the above procedure for S2, . . . , Sr as well. At the end of the process, we will have

matched a 1 + o(1) fraction of all the vertices in LG with distinct vertices in LH such that codegree of

every matched pair is at least logn
6 log γ . Therefore the sum of the codegrees of this partial matching is at

least (1 + o(1))nk ·
logn

6 log γ . To obtain the bijection π, one can match the remaining vertices in LG and

LH arbitrarily.

When pN < logn
5 log γ the same proof as above together with case (2) of Lemma 3.6 yields a bijection

π such that
∑

u∈LG codeg(u, π(u)) ≥ (1 + o(1))nk · pN . Since q ≤ 1
2 , p ≥ ω(1)

N and m =
(
n
k

)
−N n

k , this

implies

e(Gπ ∩H) ≥ (1 + o(1))
n

k
pN + pqm−√pqm log n

= Θk

(
p

(
n

k

))
+ pq

(
n

k

)
.

finishing the analysis of the sparse case.

6 Concluding remarks

As we stated in the introduction, Theorem 1.1 also yields tight bounds when p and/or q > 1
2 . For any

G and H, one can check that disc(G,H) = disc(G,H), where H is the complement of H. Moreover, H

is distributed according to Hk(n, 1− q), hence we can reduce the case q > 1
2 to the case q′ = 1−q ≤ 1

2 ;

the same holds when we take the complement of G instead. We remark that one can determine the

discrepancy when p is smaller than ω(1)
N , but we chose not to discuss this range here, since the proof

is similar to the sparse case and it wouldn’t provide any new insight.

The definition of discrepancy can be rephrased as disc(G,H) = max {disc+(G,H), disc−(G,H)},
where disc+(G,H) = maxπ e(Gπ ∩H)− ρGρH

(
n
k

)
and disc−(G,H) = ρGρH

(
n
k

)
−minπ e(Gπ ∩H) are

the one-sided relative discrepancies. In fact, all the lower bounds we obtained are for disc+(G,H), and

some of them are not true for disc−(G,H). This is because disc−(G,H) ≤ ρGρH
(
n
k

)
' pq

(
n
k

)
and in

13



the sparse case, pq
(
n
k

)
could be much smaller than disc(G,H). Under the same hypothesis and using

similar ideas as in Theorem 1.1, one can show that

disc−(G,H) =

{
Θk

(√
pq
(
n
k

)
n log n

)
if pqN > 1

30 log n;

Θk

(
pq
(
n
k

))
otherwise.

The last equation is related to the lower tail of the binomial distribution.

It would be interesting to determine the exact dependence on k of the relative discrepancy. It

also worth mentioning that there are a substantial number of open problems about disc(G,H) and its

related topics in [4].

Acknowledgment. We would like to thank two anonymous referees for the thorough and helpful

comments and suggestions on the early version of this paper.

Note added in proof. After this paper was written and submitted for publication, we learned that

Bollobás and Scott [5] obtained similar results.
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