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Towards a conjecture of Birmelé-Bondy-Reed on the

Erdős-Pósa property of long cycles

Jie Ma∗ Chunlei Zu†

Abstract

A conjecture of Birmelé, Bondy and Reed states that for any integer ℓ ≥ 3, every

graph G without two vertex-disjoint cycles of length at least ℓ contains a set of at most

ℓ vertices which meets all cycles of length at least ℓ. They showed the existence of such

a set of at most 2ℓ+3 vertices. This was improved by Meierling, Rautenbach and Sasse

to 5ℓ/3+29/2. Here we present a proof showing that at most 3ℓ/2+7/2 vertices suffice.

1 Introduction

Let F be a family of graphs. For a given graph G, a subset X of V (G) is called a transversal

of F if the graph G − X contains no member of F . We say that F has the Erdős-Pósa

property, if there is a function f : N → N such that for every positive integer k, every graph
contains either k vertex-disjoint members of F or a transversal of F of size at most f(k).
A celebrated result of Erdős and Pósa [6] in 1965 states that the family of all cycles has the
Erdős-Pósa property. Since then it has stimulated a new field of extensive research.

For any integer ℓ ≥ 3, let Fℓ denote the family of cycles of length at least ℓ. In 2007,
Birmelé, Bondy and Reed [2] first proved that for every ℓ, Fℓ has the Erdős-Pósa property.
To be precise, they showed that any graph without k vertex-disjoint cycles in Fℓ has a
transversal of Fℓ of size at most O(ℓk2). The bound of the transversal was improved by
Fiorini and Herinckx [7] to O(ℓk log k). In 2017, Mousset, Noever, Škorić and Weissenberger
[12] further improved this to O(ℓk + k log k) and they also provided examples, showing that
this is optimal up to the constant factor.

The present paper focuses on the base case k = 2 of the above problem, namely, consid-
ering graphs without two vertex-disjoint cycles in Fℓ. As remarked by Birmelé, Bondy and
Reed [2], the case k = 2 is “of particular importance”. Indeed, all proofs of the above papers
use inductive arguments. Birmelé, Bondy and Reed [2] made the following conjecture.
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Conjecture 1.1 (Birmelé, Bondy, and Reed [2]). Let ℓ ≥ 3 and let G be a graph containing

no two vertex-disjoint cycles of Fℓ. Then there exists a transversal of Fℓ of size at most ℓ.

Note that in view of the complete graph on 2ℓ− 1 vertices, the conjectured bound would
be best possible. An early result of Lovász [10] implied the case ℓ = 3. Birmelé [1] confirmed
the cases ℓ ∈ {4, 5}. For general ℓ, Birmelé, Bondy and Reed [2] proved that there exists a
transversal of Fℓ of size at most 2ℓ+3. Later, Meierling, Rautenbach and Sasse [11] improved
this to 5ℓ/3 + 29/2. Our main result here gives a further improvement as follows.

Theorem 1.2. Let ℓ ≥ 3 be an integer. Let G be a graph containing no two vertex-disjoint

cycles of Fℓ. Then there exists a transversal of Fℓ of size at most 3ℓ/2 + 7/2.

For more references on the Erdős-Pósa property, we would like to direct interested readers
to the survey of Raymond and Thilikos [13] and [3–5, 8, 9, 14] for some recent developments
(by no mean of a comprehensive list). The rest of the paper is organized as follows. In
Section 2 we give the notation, while Section 3 is devoted to the proof of Theorem 1.2.

2 The notation

All graphs considered in this paper are finite, undirected and simple. Let X and Y be
subgraphs of a graph G. For a vertex x in V (G), we will use the notation x ∈ X instead of
x ∈ V (X). An (X, Y )-path is a path in G which starts at a vertex of X and ends at a vertex
of Y such that no internal vertex is contained in V (X)∪V (Y ). Here we allow the possibility
that X = Y . Let P be a path. By the length of P , we mean the number of edges in P . If
x and y are two vertices of P , then xPy denotes the subpath of P with initial vertex x and
terminal vertex y. We will reserve the term disjoint for vertex-disjoint.

Let C be a cycle with a prescribed orientation. For two vertices x, y ∈ V (C), the segment

xCy denotes the unique subpath of C from x to y following the orientation of C. So xCy and
yCx are edge-disjoint whose union forms the cycle C. Consider two disjoint (C,C)-paths P
and P ′ such that P is between u and v and P ′ is between u′ and v′. We say that P and
P ′ are parallel (with respect to C) if u, u′, v′, v appear in the given cyclic order on C and
crossing (with respect to C) otherwise (see Figure 1).

uu′

v′ v

uu′

v v′

Figure 1. parallel and crossing paths
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3 Proof of Theorem 1.2

Throughout the rest of this paper, let ℓ ≥ 3 be fixed. A cycle is called long if it has length
at least ℓ ( i.e., a cycle in Fℓ) and short otherwise. We will assume by default that the
orientation of any cycle is counterclockwise in all presentations and figures below.

Consider any graph G which contains no two disjoint long cycles. Our goal is to show
that there exists a transversal of Fℓ of size at most (3ℓ+ 7)/2 in G.

We now choose two long cycles C and D in G for the coming proof. Let C be a shortest
long cycle of G with length L. It is clear that C intersects every long cycle of G, thus V (C)
is a transversal of Fℓ. If L ≤ (3ℓ+ 7)/2, then the result follows. So we may assume that

L > (3ℓ+ 7)/2.

We may also assume that there are at least (3ℓ + 7)/2 ≥ 8 long cycles in G (as otherwise,
there is a transversal of Fℓ of size at most (3ℓ+7)/2 by taking a vertex from each long cycle).
For every long cycle D of G other than C, let CD denote a shortest segment of C containing
all vertices in V (C) ∩ V (D). Note that 1 ≤ |V (CD)| ≤ L. Choose a long cycle D such that
|V (CD)| is minimum. With respect to the given orientation of C, we let x and y be the first
and last vertices of CD, respectively. Clearly, x, y ∈ V (C) ∩ V (D).

The rest of the proof will be divided into two cases depending on whether x = y or not. In
each case, using Menger’s theorem, we will find either two disjoint long cycles or a transversal
of Fℓ of size at most (3ℓ+ 7)/2, thereby finishing the proof of Theorem 1.2.

3.1 The case when x 6= y

Let X1 be the set of ⌈ℓ/2⌉ − 1 vertices of C immediately preceding x, and let X2 be the set
of ⌈ℓ/2⌉ − 1 vertices of C immediately following y. Let B = C \ (X1 ∪X2 ∪ V (CD)).

We may assume that G − (X1 ∪ X2 ∪ {x, y}) contains some long cycle (as otherwise,
X1 ∪ X2 ∪ {x, y} is a transversal of Fℓ of size at most 2⌈ℓ/2⌉ ≤ ℓ + 1). Hence every long
cycle D′ in G− (X1 ∪X2 ∪{x, y}) intersects B by the minimality of CD. Let xD′CD′yD′ be a
shortest segment of C containing V (B) ∩ V (D′). From now on, choose a long cycle D′ such
that |V (xD′Cx)| is minimum.

Let X3 be the set of ⌈ℓ/2⌉ − 1 vertices of C immediately preceding xD′ . Clearly, X1, X2

and X3 are pairwise disjoint. Otherwise, X1 ∪ X2 ∪ X3 ∪ {x, y, xD′} is a transversal of Fℓ.
Since |X1 ∪ X2 ∪ X3 ∪ {x, y, xD′}| ≤

∑
3

i=1
|Xi| + 3 = 3⌈ℓ/2⌉ ≤ 3(ℓ + 1)/2, we obtain the

desired result. We know that B \X3 consists of two segments of C, say E1 and E2. One is
adjacent to X1 and another is adjacent to X2 on C. Without loss of generality, we assume
that E1 is adjacent to X1 and E2 is adjacent to X2 on C. Note that it is possible that V (E1)
or V (E2) is empty.

Note that C \ (X1 ∪ X2 ∪ X3) consists of three segments of C, namely E1, E2 and E3

(where E3 := CD). A (C,C)-path P with two endpoints x0 and y0 is called a special path
between Ei and Ej , if x0 ∈ V (Ei), y0 ∈ V (Ej) and i 6= j ∈ [3].

Claim A1. Every special path has length at least ℓ− 1.

Proof. Let P be a special path between two vertices x0 and y0 of C. Let LP be the length of
P . Assume by symmetry that x0 ∈ V (E1) and y0 ∈ V (E2). Since x0Cy0 has length at least
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ℓ−1, x0Cy0∪y0Px0 forms a long cycle. By the minimality of C, LP ≥ |X3|+1 = ⌈ℓ/2⌉. Since
y0Cx0 has length at least ⌈ℓ/2⌉, we have that y0Cx0 ∪ x0Py0 is also a long cycle. Thus the
length of P is at least the length of x0Cy0, that is LP ≥ |X1|+|X2|+1 = ⌈ℓ/2⌉×2−1 ≥ ℓ−1,
as desired.

By the choice of D′, we see D′ is disjoint from X1 ∪X2 ∪X3 ∪ V (E2)∪ {x, y}. Note that
D′ intersects D. It follows that there exists a (E1, D \ {x, y})-path sQ1t in G− (X1 ∪X2 ∪
X3 ∪ V (E2) ∪ {x, y}), where s ∈ V (E1) and t ∈ V (D) \ {x, y}.

We may assume that there is still a long cycle D′′ in G− (X1 ∪X2 ∪X3 ∪ {x, y, xD′, t}).
This is because that, otherwise, X1 ∪ X2 ∪ X3 ∪ {x, y, xD′, t} is a transversal of Fℓ of size
at most

∑
3

i=1
|Xi| + 4 = ⌈ℓ/2⌉ × 3 + 1 ≤ 3ℓ/2 + 5/2. By the minimality of CD and the

choice of D′, we know that D′′ intersects E2. Moreover, D′′ intersects D. So there exists a
(E2, D \ {x, y, t})-path uQ2v in G − (X1 ∪ X2 ∪ X3 ∪ {x, y, xD′, t}), where u ∈ V (E2) and
v ∈ V (D)\{x, y, t}. We assert that Q2 \{u, v} is disjoint from C ∪sQ1t. Indeed, if not, then
there is a special path between E1 and E2 from which it is easy to find a long cycle disjoint
from D, a contradiction. Next, we show the following.

Claim A2. v ∈ V (tDx) \ {x, t}.

Proof. We have v ∈ V (D) \ {x, y, t} and there are three segments of D \ {x, y, t}, namely
xDy \ {x, y}, yDt \ {y, t} and tDx \ {x, t} (see Figure 2). Let C1 := sCx ∪ tDx ∪ sQ1t.
Clearly, tDx∪ sQ1t contains a special path between E1 and E3. If v ∈ V (xDy) \ {x, y}, then
C2 := yCu∪uQ2v∪ vDy and uQ2v∪ vDy contains a special path between E2 and E3, and if
v ∈ V (yDt) \ {y, t}, then C2 := yCu∪ uQ2v ∪ yDv and uQ2v ∪ yDv contains a special path
between E2 and E3. By Claim A1, both C1 and C2 are long cycles. So in each case, we find
two disjoint long cycles, a contradiction.

C

D

X1 X2

X3

E1

E2

sQ1t

uQ2v

x y

xD′

s

t

u

v

C

D

X1 X2

X3

E1

E2

sQ1t

uQ2v

x y

xD′

s

t

u

v

Figure 2. v ∈ V (xDy) \ {x, y} and v ∈ V (yDt) \ {y, t}.
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C

D

X1 X2

X3

E1

E2

sQ1t

pQq

p′Q′q′

x y

xD′

s

t

p

q

p′

q′ C

D

X1 X2

X3

E1

E2

sQ1t

pQq

p′Q′q′

x y

xD′

s

t

p

q

p′

q′

Figure 3. Two configurations in the proof of Claim A3.

Now, we see that uQ2v is a (E2, tDx \ {x, t})-path in G− (X1 ∪X2 ∪X3 ∪ {x, y, xD′, t})
which has no internal vertex in V (D ∪ E1 ∪ sQ1t).

Claim A3. One cannot find two disjoint (E2, tDx \ {x, t})-paths in G − (X1 ∪ X2 ∪ X3 ∪
{x, y, xD′, t}) which has no internal vertex in V (D ∪ E1 ∪ sQ1t).

Proof. Suppose for a contradiction that such two paths exist, say pQq and p′Q′q′. There are
two configurations as indicated in Figure 3. In the left configuration of the figure, we have
two cycles C1 := pCx∪ pQq ∪ qDx and C2 := yCp′ ∪ p′Q′q′ ∪ yDq′. In the right side, we also
have two cycles C1 := pCs∪ sQ1t∪ pQq ∪ tDq and C2 := yCp′ ∪ p′Q′q′ ∪ q′Dy. Using Claim
A1, we see that in both cases, C1 and C2 are two disjoint long cycles, a contradiction.

By Menger’s theorem, Claim A3 shows that there is a vertex z meeting all (E2, tDx \
{x, t})-paths in G − (X1 ∪ X2 ∪ X3 ∪ {x, y, xD′, t}) which has no internal vertex in V (D ∪
E1 ∪ sQ1t). Let X := X1 ∪ X2 ∪ X3 ∪ {x, y, z, xD′, t}. Note that |X| ≤

∑
3

i=1
|Xi| + 5 =

3⌈ℓ/2⌉ + 2 ≤ (3ℓ + 7)/2. So it suffices to show that X is a transversal of Fℓ. Suppose not.
Then there is a long cycle D∗ in G − X . Repeating the same proof as above, one can find
a (E2, tDx \ {x, t})-path in G − X which has no internal vertex in V (D ∪ E1 ∪ sQ1t), a
contradiction to the definition of the vertex z. This completes the proof for the case x 6= y.

3.2 The case when x = y

In this case, clearly we may assume that G − {x} contains at least one long cycle. Every
long cycle in G− {x} intersects each of the long cycles C and D. Thus there exists at least
one (C,D)-path in G − {x}. We choose a (C,D)-path y′P0w in G − {x}, where y′ ∈ V (C)
and w ∈ V (D), such that the distance in C between x and y′ is minimum. Without loss of
generality, we assume that xCy′ is a shortest path in C between x and y′.

5



Let X1 be the set of ⌈ℓ/2⌉ − 1 vertices of C immediately preceding x, and let X2 be the
set of ⌈ℓ/2⌉ − 1 vertices of C immediately following y′. Let A = xCy′ and B = C \ (X1 ∪
X2 ∪ V (xCy′)). Since |X1 ∪ X2 ∪ {x, y′, w}| ≤ ⌈2ℓ/2⌉ + 1 ≤ ℓ + 2, we may assume that
there still is a long cycle D′ in G − (X1 ∪X2 ∪ {x, y′, w}), which intersects both C and D.
If V (D′ ∩ C) ⊆ V (xCy′), then by passing D′, one can find a path from V (xCy′) \ {x, y′}
to V (D) \ {x} internally disjoint from C ∪ D, a contradiction to the definition of wP0y

′.
Therefore, every such cycle D′ intersects B. Denote xD′CD′yD′ to be a shortest segment of
C containing V (B) ∩ V (D′). From now on, choose a long cycle D′ such that |V (xD′Cx)|
is minimum. Let X3 be the set of ⌈ℓ/2⌉ − 1 vertices of C immediately preceding xD′ . As
before, we know that B \ X3 consists of two segments of C, say E1 and E2. Without loss
of generality, we assume that E1 is adjacent to X1 and E2 is adjacent to X2 on C. Let us
call a (C,C)-path P with two endpoints x0 and y0 as a special path between Ei and Ej,
if x0 ∈ V (Ei), y0 ∈ V (Ej) and i 6= j ∈ [3]. We point out that X1, X2 and X3 are pairwise
disjoint, and every special path has length at least ℓ− 1.

By the choice of wP0y
′, there is no (A \ {x, y′}, D \ {x, w})-path internally disjoint from

C. It follows from the existence of D′ that there is a (E1, D \ {x, w})-path sQ1t in G− (X1∪
X2 ∪ X3 ∪ V (E2) ∪ {x, y′, w}), where s ∈ V (E1) and t ∈ V (D) \ {x, w}, internally disjoint
from C, D and P0.

Since |X1 ∪ X2 ∪ X3 ∪ {x, y′, xD′, w}| ≤ 3⌈ℓ/2⌉ + 1 ≤ 3ℓ/2 + 5/2, we may assume that
there is a long cycle D′′ in G − (X1 ∪ X2 ∪ X3 ∪ {x, y′, xD′ , w}). By the choice of y′ and
xD′, D′′ intersects E2 and D \ {x, w}. So there exists a (E2, D \ {x, w})-path uQ2v in
G− (X1 ∪X2 ∪X3 ∪ {x, y′, xD′, w}), where u ∈ V (E2) and v ∈ V (D) \ {x, w}. We point out
that uQ2v has no internal vertex in V (C ∪ D ∪ P0 ∪ (Q1 \ {t})) (as otherwise, it is easy to
find two disjoint long cycles in G as before; see Figure 4). Note that D \ {x, w} consists of
two segments of D, i.e., xDw \ {x, w} and wDx \ {x, w}.

D
C

X1

X2

X3

A

E1

E2

sQ1t

wP0y
′

x

xD′

s

t
y′w

Figure 4. wP0y
′.

Claim B1. If t ∈ V (xDw) \ {x, w}, then v ∈ V (xDt) \ {x}; if t ∈ V (wDx) \ {x, w}, then
v ∈ V (tDx) \ {x}.

Proof. First, consider t ∈ V (xDw) \ {x, w} (see Figure 5). Suppose for a contradiction
that v /∈ V (xDt) \ {x}. Then either v ∈ V (tDw) \ {t, w} or v ∈ V (wDx) \ {x, w}. Let
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C1 := sCx∪xDt∪sQ1t. If v ∈ V (tDw)\{t, w}, then define C2 := y′Cu∪uQ2v∪vDw∪y′P0w;
otherwise v ∈ V (wDx) \ {x, w}, define C2 := y′Cu∪ uQ2v ∪wDv∪ y′P0w. In both cases, C1

and C2 are disjoint long cycles, a contradiction.

D
C

X1

X2

X3

A

E1

E2

sQ1t
uQ2v

P0

v ∈ V (tDw) \ {t, w}

x

xD′

s

t

u

v
y′

w

D
C

X1

X2

X3

A

E1

E2

sQ1t
uQ2v

P0

v ∈ V (wDt) \ {t, w}

x

xD′

s

t

u

v
y′

w

Figure 5. t ∈ V (xDw) \ {x, w}.

It remains to consider t ∈ V (wDx)\{x, w} (see Figure 6). Suppose that v /∈ V (tDx)\{x}.
Then either v ∈ V (xDw) \ {x, w} or v ∈ V (wDt) \ {w, t}. Let C3 := sCx ∪ tDx ∪ sQ1t.
If v ∈ V (xDw) \ {x, w}, then define C4 := y′Cu ∪ uQ2v ∪ vDw ∪ y′P0w; otherwise v ∈
V (wDt) \ {w, t}, define C4 := y′Cu∪ uQ2v ∪wDv ∪ y′P0w. Again, in both cases, C3 and C4

are two disjoint long cycles, a contradiction.

D
C

X1

X2

X3

A

E1

E2

sQ1t uQ2v

P0

v ∈ V (xDw) \ {x, w}

x

xD′

s

t

u

v
y′

w

D
C

X1

X2

X3

A

E1

E2

sQ1t uQ2v

P0

v ∈ V (wDt) \ {t, w}

x

xD′

s

t

u

v
y′

w

Figure 6. t ∈ V (wDx) \ {x, w}.
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Let pQq and p′Q′q′ be disjoint (E2, D\{x, w})-paths in G−(X1∪X2∪X3∪{x, y
′, xD′, w}),

where p, p′ ∈ V (E2) and q, q′ ∈ V (D) \ {x, w}, such that they have no internal vertex in
V (C ∪D ∪ P0 ∪ (Q1 \ {t})). Without loss of generality, we assume that p′ precedes p on C.

D
C

X1

X2

X3

A

E1

E2

Q Q′

P0

q′ ∈ V (xDw \ {x, w})

x

xD′

p

q

p′

q′
y′

w

D
C

X1

X2

X3

A

E1

E2

Q
Q′

P0

q′ ∈ V (wDx \ {x, w})

x

xD′

p

q

p′

q′
y′

w

Figure 7. pQq and p′Q′q′ are parallel.

Claim B2. If pQq and p′Q′q′ are parallel, then q, q′ ∈ V (xDw) \ {x, w}; if pQq and p′Q′q′

are crossing, then q, q′ ∈ V (wDx) \ {x, w};

Proof. If pQq and p′Q′q′ are parallel (see Figure 7), then q′ precedes q on D. Suppose
for a contradiction that at least one of q and q′ is not in V (xDw) \ {x, w}. Then q ∈
V (wDx) \ {x, w}. Let C1 := pCx ∪ qDx ∪ pQq. If q′ ∈ V (xDw) \ {x, w}, define C2 :=
y′Cp′∪p′Q′q′∪q′Dw∪y′P0w; if q

′ ∈ V (wDx)\{x, w}, define C2 := y′Cp′∪p′Q′q′∪wDq′∪y′P0w.
In both cases, C1 and C2 are disjoint long cycles, a contradiction.

D
C

X1

X2

X3

A

E1

E2

Q
Q′

P0

q′ ∈ V (wDx) \ {x, w}

x

xD′

p

q

p′

q′
y′

w

D
C

X1

X2

X3

A

E1

E2

Q

Q′

P0

q′ ∈ V (xDw) \ {x, w}

x

xD′

p

q

p′

q′
y′

w

Figure 8. pQq and p′Q′q′ are crossing.
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If pQq and p′Q′q′ are crossing (see Figure 8), then q precedes q′ on D. Suppose for a
contradiction that at least one of q and q′ is not in V (wDx) \ {x, w}. Then q ∈ V (xDw) \
{x, w}. Let C3 := pCx ∪ xDq ∪ pQq. If q′ ∈ V (wDx) \ {x, w}, let C4 := y′Cp′ ∪ p′Q′q′ ∪
wDq′ ∪ y′P0w; otherwise q′ ∈ V (xDw) \ {x, w}, let C4 := y′Cp′ ∪ p′Q′q′ ∪ q′Dw ∪ y′P0w. In
both cases, C3 and C4 are disjoint long cycles, a contradiction.

Claim B3. One cannot find two disjoint (E2, D \ {x, w})-paths in G − (X1 ∪ X2 ∪ X3 ∪
{x, y′, xD′, w}) which has no internal vertex in V (C ∪D ∪ P0 ∪ (Q1 \ {t})).

Proof. Suppose for a contradiction that such paths exist, say pQq and p′Q′q′, where p, p′ ∈
V (E2), q, q

′ ∈ V (D) \ {x, w} and p′ precedes p on C. By Claims B1 and B2, there are two
configurations (see Figure 9). Be aware that there might be q = t. In the left configuration
of Figure 9, pQq, p′Q′q′ and sQ1t are pairwise crossing, and let C1 := pCs∪sQ1t∪ tDq∪pQq
and C2 := xCp′∪p′Q′q′∪ q′Dx. In the right configuration, pQq, p′Q′q′ and sQ1t are pairwise
parallel, and let C1 := pCs∪ sQ1t∪ qDt∪ pQq and C2 := xCp′ ∪ p′Q′q′ ∪ xDq′. It is easy to
check that C1 and C2 are disjoint long cycles in both cases.

D
C

X1

X2

X3

A

E1

E2

Q1

Q

Q′

P0

x

xD′

s

t

p

q

p′

q′
y′w D

C

X1

X2

X3

A

E1

E2

Q1

Q
Q′

P0

x

xD′

s

t

p

q

p′

q′
y′

w

Figure 9. Two configurations in the proof of Claim B3.

By Menger’s theorem, Claim B3 shows that there is a vertex z meeting all (E2, D\{x, w})-
paths in G− (X1 ∪X2 ∪X3 ∪ {x, y′, xD′, w}) which has no internal vertex in V (C ∪D ∪P0 ∪
(Q1 \ {t})). Let X := X1 ∪ X2 ∪ X3 ∪ {x, y′, z, xD′ , w}. Note that |X| ≤

∑
3

i=1
|Xi| + 5 =

⌈ℓ/2⌉ × 3 + 2 ≤ 3ℓ/2 + 7/2. So it is enough to show that X is a transversal of Fℓ. Suppose
not, then there is a long cycle D∗ in G−X . As the same proof, one can show that there exists
a (E2, D \ {x, w})-path in G−X which has no internal vertex in V (C ∪D ∪P0 ∪ (Q1 \ {t})).
This is a contradiction to the definition of the vertex z. We have completed the proof of the
case x = y and thereby the proof of Theorem 1.2.
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