Towards a conjecture of Birmelé-Bondy-Reed on the Erdős-Pósa property of long cycles

Jie Ma^{*} Chunlei Zu^{\dagger}

Abstract

A conjecture of Birmelé, Bondy and Reed states that for any integer $\ell \geq 3$, every graph G without two vertex-disjoint cycles of length at least ℓ contains a set of at most ℓ vertices which meets all cycles of length at least ℓ . They showed the existence of such a set of at most $2\ell + 3$ vertices. This was improved by Meierling, Rautenbach and Sasse to $5\ell/3+29/2$. Here we present a proof showing that at most $3\ell/2+7/2$ vertices suffice.

1 Introduction

Let \mathscr{F} be a family of graphs. For a given graph G, a subset X of V(G) is called a *transversal* of \mathscr{F} if the graph G - X contains no member of \mathscr{F} . We say that \mathscr{F} has the *Erdős-Pósa* property, if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every positive integer k, every graph contains either k vertex-disjoint members of \mathscr{F} or a transversal of \mathscr{F} of size at most f(k). A celebrated result of Erdős and Pósa [6] in 1965 states that the family of all cycles has the Erdős-Pósa property. Since then it has stimulated a new field of extensive research.

For any integer $\ell \geq 3$, let \mathscr{F}_{ℓ} denote the family of cycles of length at least ℓ . In 2007, Birmelé, Bondy and Reed [2] first proved that for every ℓ , \mathscr{F}_{ℓ} has the Erdős-Pósa property. To be precise, they showed that any graph without k vertex-disjoint cycles in \mathscr{F}_{ℓ} has a transversal of \mathscr{F}_{ℓ} of size at most $O(\ell k^2)$. The bound of the transversal was improved by Fiorini and Herinckx [7] to $O(\ell k \log k)$. In 2017, Mousset, Noever, Škorić and Weissenberger [12] further improved this to $O(\ell k + k \log k)$ and they also provided examples, showing that this is optimal up to the constant factor.

The present paper focuses on the base case k = 2 of the above problem, namely, considering graphs without two vertex-disjoint cycles in \mathscr{F}_{ℓ} . As remarked by Birmelé, Bondy and Reed [2], the case k = 2 is "of particular importance". Indeed, all proofs of the above papers use inductive arguments. Birmelé, Bondy and Reed [2] made the following conjecture.

^{*}School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China. Email: jiema@ustc.edu.cn. Research supported by the National Key R and D Program of China 2020YFA0713100, National Natural Science Foundation of China grant 12125106, and Anhui Initiative in Quantum Information Technologies grant AHY150200.

[†]School of CyberScience and School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China. Email: zucle@mail.ustc.edu.cn

Conjecture 1.1 (Birmelé, Bondy, and Reed [2]). Let $\ell \geq 3$ and let G be a graph containing no two vertex-disjoint cycles of \mathscr{F}_{ℓ} . Then there exists a transversal of \mathscr{F}_{ℓ} of size at most ℓ .

Note that in view of the complete graph on $2\ell - 1$ vertices, the conjectured bound would be best possible. An early result of Lovász [10] implied the case $\ell = 3$. Birmelé [1] confirmed the cases $\ell \in \{4, 5\}$. For general ℓ , Birmelé, Bondy and Reed [2] proved that there exists a transversal of \mathscr{F}_{ℓ} of size at most $2\ell+3$. Later, Meierling, Rautenbach and Sasse [11] improved this to $5\ell/3 + 29/2$. Our main result here gives a further improvement as follows.

Theorem 1.2. Let $\ell \geq 3$ be an integer. Let G be a graph containing no two vertex-disjoint cycles of \mathscr{F}_{ℓ} . Then there exists a transversal of \mathscr{F}_{ℓ} of size at most $3\ell/2 + 7/2$.

For more references on the Erdős-Pósa property, we would like to direct interested readers to the survey of Raymond and Thilikos [13] and [3–5, 8, 9, 14] for some recent developments (by no mean of a comprehensive list). The rest of the paper is organized as follows. In Section 2 we give the notation, while Section 3 is devoted to the proof of Theorem 1.2.

2 The notation

All graphs considered in this paper are finite, undirected and simple. Let X and Y be subgraphs of a graph G. For a vertex x in V(G), we will use the notation $x \in X$ instead of $x \in V(X)$. An (X, Y)-path is a path in G which starts at a vertex of X and ends at a vertex of Y such that no internal vertex is contained in $V(X) \cup V(Y)$. Here we allow the possibility that X = Y. Let P be a path. By the length of P, we mean the number of edges in P. If x and y are two vertices of P, then xPy denotes the subpath of P with initial vertex x and terminal vertex y. We will reserve the term disjoint for vertex-disjoint.

Let C be a cycle with a prescribed orientation. For two vertices $x, y \in V(C)$, the segment xCy denotes the unique subpath of C from x to y following the orientation of C. So xCy and yCx are edge-disjoint whose union forms the cycle C. Consider two disjoint (C, C)-paths P and P' such that P is between u and v and P' is between u' and v'. We say that P and P' are parallel (with respect to C) if u, u', v', v appear in the given cyclic order on C and crossing (with respect to C) otherwise (see Figure 1).

Figure 1. parallel and crossing paths

3 Proof of Theorem 1.2

Throughout the rest of this paper, let $\ell \geq 3$ be fixed. A cycle is called **long** if it has length at least ℓ (i.e., a cycle in \mathscr{F}_{ℓ}) and **short** otherwise. We will assume by default that the orientation of any cycle is counterclockwise in all presentations and figures below.

Consider any graph G which contains no two disjoint long cycles. Our goal is to show that there exists a transversal of \mathscr{F}_{ℓ} of size at most $(3\ell + 7)/2$ in G.

We now choose two long cycles C and D in G for the coming proof. Let C be a shortest long cycle of G with length L. It is clear that C intersects every long cycle of G, thus V(C)is a transversal of \mathscr{F}_{ℓ} . If $L \leq (3\ell + 7)/2$, then the result follows. So we may assume that

$$L > (3\ell + 7)/2.$$

We may also assume that there are at least $(3\ell + 7)/2 \ge 8$ long cycles in G (as otherwise, there is a transversal of \mathscr{F}_{ℓ} of size at most $(3\ell + 7)/2$ by taking a vertex from each long cycle). For every long cycle D of G other than C, let C_D denote a shortest segment of C containing all vertices in $V(C) \cap V(D)$. Note that $1 \le |V(C_D)| \le L$. Choose a long cycle D such that $|V(C_D)|$ is minimum. With respect to the given orientation of C, we let x and y be the first and last vertices of C_D , respectively. Clearly, $x, y \in V(C) \cap V(D)$.

The rest of the proof will be divided into two cases depending on whether x = y or not. In each case, using Menger's theorem, we will find either two disjoint long cycles or a transversal of \mathscr{F}_{ℓ} of size at most $(3\ell + 7)/2$, thereby finishing the proof of Theorem 1.2.

3.1 The case when $x \neq y$

Let X_1 be the set of $\lceil \ell/2 \rceil - 1$ vertices of C immediately preceding x, and let X_2 be the set of $\lceil \ell/2 \rceil - 1$ vertices of C immediately following y. Let $B = C \setminus (X_1 \cup X_2 \cup V(C_D))$.

We may assume that $G - (X_1 \cup X_2 \cup \{x, y\})$ contains some long cycle (as otherwise, $X_1 \cup X_2 \cup \{x, y\}$ is a transversal of \mathscr{F}_{ℓ} of size at most $2\lceil \ell/2 \rceil \leq \ell + 1$). Hence every long cycle D' in $G - (X_1 \cup X_2 \cup \{x, y\})$ intersects B by the minimality of C_D . Let $x_{D'}C_{D'}y_{D'}$ be a shortest segment of C containing $V(B) \cap V(D')$. From now on, choose a long cycle D' such that $|V(x_{D'}Cx)|$ is minimum.

Let X_3 be the set of $\lceil \ell/2 \rceil - 1$ vertices of C immediately preceding $x_{D'}$. Clearly, X_1, X_2 and X_3 are pairwise disjoint. Otherwise, $X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}\}$ is a transversal of \mathscr{F}_{ℓ} . Since $|X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}\}| \leq \sum_{i=1}^3 |X_i| + 3 = 3\lceil \ell/2 \rceil \leq 3(\ell + 1)/2$, we obtain the desired result. We know that $B \setminus X_3$ consists of two segments of C, say E_1 and E_2 . One is adjacent to X_1 and another is adjacent to X_2 on C. Without loss of generality, we assume that E_1 is adjacent to X_1 and E_2 is adjacent to X_2 on C. Note that it is possible that $V(E_1)$ or $V(E_2)$ is empty.

Note that $C \setminus (X_1 \cup X_2 \cup X_3)$ consists of three segments of C, namely E_1 , E_2 and E_3 (where $E_3 := C_D$). A (C, C)-path P with two endpoints x_0 and y_0 is called a **special** path between E_i and E_j , if $x_0 \in V(E_i)$, $y_0 \in V(E_j)$ and $i \neq j \in [3]$.

Claim A1. Every special path has length at least $\ell - 1$.

Proof. Let P be a special path between two vertices x_0 and y_0 of C. Let L_P be the length of P. Assume by symmetry that $x_0 \in V(E_1)$ and $y_0 \in V(E_2)$. Since x_0Cy_0 has length at least

 $\ell - 1$, $x_0 C y_0 \cup y_0 P x_0$ forms a long cycle. By the minimality of C, $L_P \ge |X_3| + 1 = \lceil \ell/2 \rceil$. Since $y_0 C x_0$ has length at least $\lceil \ell/2 \rceil$, we have that $y_0 C x_0 \cup x_0 P y_0$ is also a long cycle. Thus the length of P is at least the length of $x_0 C y_0$, that is $L_P \ge |X_1| + |X_2| + 1 = \lceil \ell/2 \rceil \times 2 - 1 \ge \ell - 1$, as desired.

By the choice of D', we see D' is disjoint from $X_1 \cup X_2 \cup X_3 \cup V(E_2) \cup \{x, y\}$. Note that D' intersects D. It follows that there exists a $(E_1, D \setminus \{x, y\})$ -path sQ_1t in $G - (X_1 \cup X_2 \cup X_3 \cup V(E_2) \cup \{x, y\})$, where $s \in V(E_1)$ and $t \in V(D) \setminus \{x, y\}$.

We may assume that there is still a long cycle D'' in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}, t\})$. This is because that, otherwise, $X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}, t\}$ is a transversal of \mathscr{F}_{ℓ} of size at most $\sum_{i=1}^{3} |X_i| + 4 = \lceil \ell/2 \rceil \times 3 + 1 \leq 3\ell/2 + 5/2$. By the minimality of C_D and the choice of D', we know that D'' intersects E_2 . Moreover, D'' intersects D. So there exists a $(E_2, D \setminus \{x, y, t\})$ -path uQ_2v in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}, t\})$, where $u \in V(E_2)$ and $v \in V(D) \setminus \{x, y, t\}$. We assert that $Q_2 \setminus \{u, v\}$ is disjoint from $C \cup sQ_1t$. Indeed, if not, then there is a special path between E_1 and E_2 from which it is easy to find a long cycle disjoint from D, a contradiction. Next, we show the following.

Claim A2. $v \in V(tDx) \setminus \{x, t\}$.

Proof. We have $v \in V(D) \setminus \{x, y, t\}$ and there are three segments of $D \setminus \{x, y, t\}$, namely $xDy \setminus \{x, y\}, yDt \setminus \{y, t\}$ and $tDx \setminus \{x, t\}$ (see Figure 2). Let $C_1 := sCx \cup tDx \cup sQ_1t$. Clearly, $tDx \cup sQ_1t$ contains a special path between E_1 and E_3 . If $v \in V(xDy) \setminus \{x, y\}$, then $C_2 := yCu \cup uQ_2v \cup vDy$ and $uQ_2v \cup vDy$ contains a special path between E_2 and E_3 , and if $v \in V(yDt) \setminus \{y, t\}$, then $C_2 := yCu \cup uQ_2v \cup vDy$ contains a special path between E_2 and E_3 , and if $v \in V(yDt) \setminus \{y, t\}$, then $C_2 := yCu \cup uQ_2v \cup yDv$ and $uQ_2v \cup yDv$ contains a special path between E_2 and E_3 . By Claim A1, both C_1 and C_2 are long cycles. So in each case, we find two disjoint long cycles, a contradiction.

Figure 2. $v \in V(xDy) \setminus \{x, y\}$ and $v \in V(yDt) \setminus \{y, t\}$.

Figure 3. Two configurations in the proof of Claim A3.

Now, we see that uQ_2v is a $(E_2, tDx \setminus \{x, t\})$ -path in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}, t\})$ which has no internal vertex in $V(D \cup E_1 \cup sQ_1t)$.

Claim A3. One cannot find two disjoint $(E_2, tDx \setminus \{x, t\})$ -paths in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}, t\})$ which has no internal vertex in $V(D \cup E_1 \cup sQ_1t)$.

Proof. Suppose for a contradiction that such two paths exist, say pQq and p'Q'q'. There are two configurations as indicated in Figure 3. In the left configuration of the figure, we have two cycles $C_1 := pCx \cup pQq \cup qDx$ and $C_2 := yCp' \cup p'Q'q' \cup yDq'$. In the right side, we also have two cycles $C_1 := pCs \cup sQ_1t \cup pQq \cup tDq$ and $C_2 := yCp' \cup p'Q'q' \cup q'Dy$. Using Claim A1, we see that in both cases, C_1 and C_2 are two disjoint long cycles, a contradiction.

By Menger's theorem, Claim A3 shows that there is a vertex z meeting all $(E_2, tDx \setminus \{x, t\})$ -paths in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y, x_{D'}, t\})$ which has no internal vertex in $V(D \cup E_1 \cup sQ_1t)$. Let $X := X_1 \cup X_2 \cup X_3 \cup \{x, y, z, x_{D'}, t\}$. Note that $|X| \leq \sum_{i=1}^3 |X_i| + 5 = 3\lceil \ell/2 \rceil + 2 \leq (3\ell + 7)/2$. So it suffices to show that X is a transversal of \mathscr{F}_{ℓ} . Suppose not. Then there is a long cycle D^* in G - X. Repeating the same proof as above, one can find a $(E_2, tDx \setminus \{x, t\})$ -path in G - X which has no internal vertex in $V(D \cup E_1 \cup sQ_1t)$, a contradiction to the definition of the vertex z. This completes the proof for the case $x \neq y$.

3.2 The case when x = y

In this case, clearly we may assume that $G - \{x\}$ contains at least one long cycle. Every long cycle in $G - \{x\}$ intersects each of the long cycles C and D. Thus there exists at least one (C, D)-path in $G - \{x\}$. We choose a (C, D)-path $y'P_0w$ in $G - \{x\}$, where $y' \in V(C)$ and $w \in V(D)$, such that the distance in C between x and y' is minimum. Without loss of generality, we assume that xCy' is a shortest path in C between x and y'. Let X_1 be the set of $\lceil \ell/2 \rceil - 1$ vertices of C immediately preceding x, and let X_2 be the set of $\lceil \ell/2 \rceil - 1$ vertices of C immediately following y'. Let A = xCy' and $B = C \setminus (X_1 \cup X_2 \cup V(xCy'))$. Since $|X_1 \cup X_2 \cup \{x, y', w\}| \leq \lceil 2\ell/2 \rceil + 1 \leq \ell + 2$, we may assume that there still is a long cycle D' in $G - (X_1 \cup X_2 \cup \{x, y', w\})$, which intersects both C and D. If $V(D' \cap C) \subseteq V(xCy')$, then by passing D', one can find a path from $V(xCy') \setminus \{x, y'\}$ to $V(D) \setminus \{x\}$ internally disjoint from $C \cup D$, a contradiction to the definition of wP_0y' . Therefore, every such cycle D' intersects B. Denote $x_{D'}C_{D'}y_{D'}$ to be a shortest segment of C containing $V(B) \cap V(D')$. From now on, choose a long cycle D' such that $|V(x_{D'}Cx)|$ is minimum. Let X_3 be the set of $\lceil \ell/2 \rceil - 1$ vertices of C immediately preceding $x_{D'}$. As before, we know that $B \setminus X_3$ consists of two segments of C, say E_1 and E_2 . Without loss of generality, we assume that E_1 is adjacent to X_1 and E_2 is adjacent to X_2 on C. Let us call a (C, C)-path P with two endpoints x_0 and y_0 as a **special** path between E_i and E_j , if $x_0 \in V(E_i), y_0 \in V(E_j)$ and $i \neq j \in [3]$. We point out that X_1, X_2 and X_3 are pairwise disjoint, and every special path has length at least $\ell - 1$.

By the choice of wP_0y' , there is no $(A \setminus \{x, y'\}, D \setminus \{x, w\})$ -path internally disjoint from C. It follows from the existence of D' that there is a $(E_1, D \setminus \{x, w\})$ -path sQ_1t in $G - (X_1 \cup X_2 \cup X_3 \cup V(E_2) \cup \{x, y', w\})$, where $s \in V(E_1)$ and $t \in V(D) \setminus \{x, w\}$, internally disjoint from C, D and P_0 .

Since $|X_1 \cup X_2 \cup X_3 \cup \{x, y', x_{D'}, w\}| \leq 3\lceil \ell/2 \rceil + 1 \leq 3\ell/2 + 5/2$, we may assume that there is a long cycle D'' in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y', x_{D'}, w\})$. By the choice of y' and $x_{D'}$, D'' intersects E_2 and $D \setminus \{x, w\}$. So there exists a $(E_2, D \setminus \{x, w\})$ -path uQ_2v in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y', x_{D'}, w\})$, where $u \in V(E_2)$ and $v \in V(D) \setminus \{x, w\}$. We point out that uQ_2v has no internal vertex in $V(C \cup D \cup P_0 \cup (Q_1 \setminus \{t\}))$ (as otherwise, it is easy to find two disjoint long cycles in G as before; see Figure 4). Note that $D \setminus \{x, w\}$ consists of two segments of D, i.e., $xDw \setminus \{x, w\}$ and $wDx \setminus \{x, w\}$.

Figure 4. wP_0y' .

Claim B1. If $t \in V(xDw) \setminus \{x, w\}$, then $v \in V(xDt) \setminus \{x\}$; if $t \in V(wDx) \setminus \{x, w\}$, then $v \in V(tDx) \setminus \{x\}$.

Proof. First, consider $t \in V(xDw) \setminus \{x, w\}$ (see Figure 5). Suppose for a contradiction that $v \notin V(xDt) \setminus \{x\}$. Then either $v \in V(tDw) \setminus \{t, w\}$ or $v \in V(wDx) \setminus \{x, w\}$. Let

 $C_1 := sCx \cup xDt \cup sQ_1t$. If $v \in V(tDw) \setminus \{t, w\}$, then define $C_2 := y'Cu \cup uQ_2v \cup vDw \cup y'P_0w$; otherwise $v \in V(wDx) \setminus \{x, w\}$, define $C_2 := y'Cu \cup uQ_2v \cup wDv \cup y'P_0w$. In both cases, C_1 and C_2 are disjoint long cycles, a contradiction.

Figure 5. $t \in V(xDw) \setminus \{x, w\}$.

It remains to consider $t \in V(wDx) \setminus \{x, w\}$ (see Figure 6). Suppose that $v \notin V(tDx) \setminus \{x\}$. Then either $v \in V(xDw) \setminus \{x, w\}$ or $v \in V(wDt) \setminus \{w, t\}$. Let $C_3 := sCx \cup tDx \cup sQ_1t$. If $v \in V(xDw) \setminus \{x, w\}$, then define $C_4 := y'Cu \cup uQ_2v \cup vDw \cup y'P_0w$; otherwise $v \in V(wDt) \setminus \{w, t\}$, define $C_4 := y'Cu \cup uQ_2v \cup wDv \cup y'P_0w$. Again, in both cases, C_3 and C_4 are two disjoint long cycles, a contradiction.

Figure 6. $t \in V(wDx) \setminus \{x, w\}.$

Let pQq and p'Q'q' be disjoint $(E_2, D \setminus \{x, w\})$ -paths in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y', x_{D'}, w\})$, where $p, p' \in V(E_2)$ and $q, q' \in V(D) \setminus \{x, w\}$, such that they have no internal vertex in $V(C \cup D \cup P_0 \cup (Q_1 \setminus \{t\}))$. Without loss of generality, we assume that p' precedes p on C.

Figure 7. pQq and p'Q'q' are parallel.

Claim B2. If pQq and p'Q'q' are parallel, then $q, q' \in V(xDw) \setminus \{x, w\}$; if pQq and p'Q'q' are crossing, then $q, q' \in V(wDx) \setminus \{x, w\}$;

Proof. If pQq and p'Q'q' are parallel (see Figure 7), then q' precedes q on D. Suppose for a contradiction that at least one of q and q' is not in $V(xDw) \setminus \{x, w\}$. Then $q \in$ $V(wDx) \setminus \{x, w\}$. Let $C_1 := pCx \cup qDx \cup pQq$. If $q' \in V(xDw) \setminus \{x, w\}$, define $C_2 :=$ $y'Cp' \cup p'Q'q' \cup q'Dw \cup y'P_0w$; if $q' \in V(wDx) \setminus \{x, w\}$, define $C_2 := y'Cp' \cup p'Q'q' \cup wDq' \cup y'P_0w$. In both cases, C_1 and C_2 are disjoint long cycles, a contradiction.

Figure 8. pQq and p'Q'q' are crossing.

If pQq and p'Q'q' are crossing (see Figure 8), then q precedes q' on D. Suppose for a contradiction that at least one of q and q' is not in $V(wDx) \setminus \{x, w\}$. Then $q \in V(xDw) \setminus \{x, w\}$. Let $C_3 := pCx \cup xDq \cup pQq$. If $q' \in V(wDx) \setminus \{x, w\}$, let $C_4 := y'Cp' \cup p'Q'q' \cup wDq' \cup y'P_0w$; otherwise $q' \in V(xDw) \setminus \{x, w\}$, let $C_4 := y'Cp' \cup p'Q'q' \cup q'Dw \cup y'P_0w$. In both cases, C_3 and C_4 are disjoint long cycles, a contradiction.

Claim B3. One cannot find two disjoint $(E_2, D \setminus \{x, w\})$ -paths in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y', x_{D'}, w\})$ which has no internal vertex in $V(C \cup D \cup P_0 \cup (Q_1 \setminus \{t\}))$.

Proof. Suppose for a contradiction that such paths exist, say pQq and p'Q'q', where $p, p' \in V(E_2)$, $q, q' \in V(D) \setminus \{x, w\}$ and p' precedes p on C. By Claims B1 and B2, there are two configurations (see Figure 9). Be aware that there might be q = t. In the left configuration of Figure 9, pQq, p'Q'q' and sQ_1t are pairwise crossing, and let $C_1 := pCs \cup sQ_1t \cup tDq \cup pQq$ and $C_2 := xCp' \cup p'Q'q' \cup q'Dx$. In the right configuration, pQq, p'Q'q' and sQ_1t are pairwise parallel, and let $C_1 := pCs \cup sQ_1t \cup qDt \cup pQq$ and $C_2 := xCp' \cup p'Q'q' \cup xDq'$. It is easy to check that C_1 and C_2 are disjoint long cycles in both cases.

Figure 9. Two configurations in the proof of Claim B3.

By Menger's theorem, Claim B3 shows that there is a vertex z meeting all $(E_2, D \setminus \{x, w\})$ -paths in $G - (X_1 \cup X_2 \cup X_3 \cup \{x, y', x_{D'}, w\})$ which has no internal vertex in $V(C \cup D \cup P_0 \cup (Q_1 \setminus \{t\}))$. Let $X := X_1 \cup X_2 \cup X_3 \cup \{x, y', z, x_{D'}, w\}$. Note that $|X| \leq \sum_{i=1}^3 |X_i| + 5 = [\ell/2] \times 3 + 2 \leq 3\ell/2 + 7/2$. So it is enough to show that X is a transversal of \mathscr{F}_{ℓ} . Suppose not, then there is a long cycle D^* in G - X. As the same proof, one can show that there exists a $(E_2, D \setminus \{x, w\})$ -path in G - X which has no internal vertex in $V(C \cup D \cup P_0 \cup (Q_1 \setminus \{t\}))$. This is a contradiction to the definition of the vertex z. We have completed the proof of the case x = y and thereby the proof of Theorem 1.2.

References

[1] E. Birmelé, Thèse de doctorat, Université de Lyon 1, 2003.

- [2] E. Birmelé, J. A. Bondy, and B. A. Reed, The Erdős-Pósa property for long circuits, Combinatorica 27 (2) (2007), 135–145.
- [3] H. Bruhn, M. Heinlein, and F. Joos, Long cycles have the edge-Erdős-Pósa property, Combinatorica 39 (2019), no.1, 1–36.
- [4] H. Bruhn, F. Joos, and O. Schaudt, Long cycles through prescribed vertices have the Erdős-Pósa property, J. Graph Theory 87 (2018), no.3, 275–284.
- [5] W. Cames Van Batenburg, G. Joret, and A. Ulmer, Erdős-Pósa from ball packing, SIAM J. Discrete Math. 34 (2020), no.3, 1609–1619.
- [6] P. Erdős and L. Pósa, On independent circuits contained in a graph, Canad. J. Math. 17 (1965), 347–352.
- [7] S. Fiorini and A. Herinckx, A tighter Erdős-Pósa function for long cycles, J. Graph Theory 77 (2014), no.2, 111–116.
- [8] M. Kang, O. Kwon, and M. Lee, Graphs without two vertex-disjoint S-cycles. Discrete Math. 343 (2020), no.10, 111997, 18 pp.
- [9] E. Kim and O. Kwon, Erdős-Pósa property of chordless cycles and its applications. J. Combin. Theory Ser. B 145 (2020), 65–112.
- [10] L. Lovász, On graphs not containing independent circuits (Hungarian), Mat. Lapok 16 (1965), 289–299.
- [11] D. Meierling, D. Rautenbach, and T. Sasse, The Erdős-Pósa property for long circuits, J. Graph Theory 77 (2014), no.4, 251–259.
- [12] F. Mousset, A. Noever, N. Škorić, and F. Weissenberger, A tight Erdős-Pósa function for long cycles, J. Combin. Theory Ser. B 125 (2017), 21–32.
- [13] J.-F. Raymond and D. M. Thilikos, Recent techniques and results on the Erdős-Pósa property, Discrete Appl. Math. 231 (2017), 25–43.
- [14] D. Weißauer, In absence of long chordless cycles, large tree-width becomes a local phenomenon. J. Combin. Theory Ser. B 139 (2019), 342–352.