
Extremal and Probabilistic Graph Theory
Lecture 7

April 18th, Tuesday

§1 Moore Graphs

• Definition: A walk v1 − v2 − · · · − vk is non-backtracking if vi+2 6= vi for ∀ i.

• Theorem 1(Alon-Hoory-Linial) For a graph G with average degree d ≥ 2 and n vertices,
there are at least nd(d− 1)i−1 non-backtracking (oriented) walks of length i ≥ 1 in G, with
the equality if and only if G is d-regular and d is an integer.

• Theorem 2(Moore bound) Let G have n vertices, girth ≥ g and average degree d ≥ 2.
Then

n ≥ n0(g, d),

where

n0(g, d) =


1 + d

r−1∑
i=0

(d− 1)2, g =2r + 1

2
r−1∑
i=0

(d− 1)i, g =2r

with equality if and only if G is d-regular and of diameter (g2) + 1.

Remark: For these proofs, see the notes on April 21th, 2016.

• Definition: The graph which achieve this Moore bound are called Moore graph.

• Theorem 3(Hoffimon-Singleton) If a d-regular Moore graph of girth 5 exists, the d ∈
{2, 3, 7, 57}.

• Theorem(Damerell) For d ≥ 3, if a d-regular Moore graph of girth 2g + 1 exists, then
g ≤ 2.

• Theorem(Feit-Higman) For g, d ≥ 3, if a d-regular Moore graph of girth 2g exists, then
g ∈ {3, 4, 6}.
We will show the existence of Moore graphs of girth 2g for g ∈ {3, 4, 6}.

• Definition: Given a hypergraph H = (V,E), a bigraph G of H is a bipartite graph with
parts V and E, where v ∈ V and e ∈ E are adjacent in G if and only if v ∈ e in H.

• Definition: A generalized k-gon of order q is a (q+ 1)-uniform, (q+ 1)-regular hypergraph
with qk−1 + qk−2 + · · ·+ q + 1 vertices and No cycle of length at most k − 1.

• Definition: A cycle in hypergraphs of length k means a collection of k distinct hyperedges
e1, e2, . . . , ek and k distinct vertices v1, v2, . . . , vk such that vi ∈ ei∩ei+1 for i ∈ {1, 2, · · · , k−
1} and vk ∈ ek ∩ e1, we also call it a Berge cycle.
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• Proposition 1: The bigraph of a generalized k-gon od order q is a (q + 1)-regular Moore
graph of girth 2k.

Proof: It follow by Theorem 2.

So, next, we look for generalized k-gons for k ∈ {3, 4, 6}.

§2 Projective graph

• Definition: For a n-dimensional vector space V over Fq, let

[
V
k

]
q

denote the set of

k-dimensional subspace of V .

Define [
n
k

]
q

=
[n]q[n− 1]q · · · [n− k + 1]q

[k]q[k − 1]q · · · [1]q
,

where [i]q = qi−1
q−1 , called Guassion binomical coefficient.

• Proposition 2 ∣∣∣∣∣
[
V
k

]
q

∣∣∣∣∣ =

[
n
k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

Proof: Note that ∣∣∣∣∣
[
V
k

]
q

∣∣∣∣∣ =
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

• Definition: We call the element of

[
V
1

]
q

[
V
2

]
q

[
V
3

]
q

as point, lines, planes, respec-

tively.

• Definition: For n ≥ k ≥ l, let Hq[n, k, l] be the hypergraph with vertex set

[
V
l

]
q

and

with edge set {
[
W
l

]
q

, W is a k-dim subgraph of V }. That is, each k-dim subgraph W

defines a hyperedge

[
W
l

]
q

.

• Proposition3: Hq[n, k, l] is a

[
k
l

]
q

-uniform,

[
n− l
k − l

]
q

-regular hypergraph on

[
n
l

]
q

vertices.

• Definition: The n-dimensional projective space of order q, denoted as PG(n, q), is just
Hq[n+ 1, 2, 1].

• Note: PG(n, q) has 1 + q + · · · + qn vertices. When n = 2, we call PG(2, q) as projective
planes
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• Theorem 5 The bigraph of PG(2, q) is a (q + 1)-regular Moore graph of girth 6.

Proof: Exercise.

Next, we consider Moore graph of girth 8, and we work in PG(4, q).

• Theorem 6(Benson) Let V be 5-dim space over Fq. Let S = {P ∈
[
V
1

]
q

;P =

span{~x}, ~x~xT = 0}. Let L = {L ∈
[
V
2

]
q

;L ⊆ S}. Let G be the bipartite graph with

parts S and L, where P ∈ S and L ∈ L are adjacent in G if and only if P ⊆ L. Then G is
a (q + 1)-regular Moore graph of girth 8.

Proof: It is easy to see that for ∀L ⊆ L, dG(L) =

[
2
1

]
q

= q + 1.

Claim 1: |S| = q4−1
q−1 = q3 + q2 + q + 1.

Proof of claim 1: For P = span{(x1, · · · , x5)} ∈ S, we have x21 +x22 +x23 +x24 +x25 = 0.
One can show: there are exactly q4−1 non-zero vectors (x1, · · · , x5) satisfying this equation.

Therefore, |S| = q4−1
q−1 = q3 + q2 + q + 1.

Claim 2: ∀P ∈ S, dG(P ) = 1 + q.

Proof of claim 2: Let P = span{~x} for ~x = (x1, . . . , x5), so we want how many L ∈ L
such that P ⊆ L.
Let us consider the properties on L.
Suppose L = span{~x, ~y} ⊆ S. So,

λ~x+ µ~y ∈ S ⇐⇒ (λ~x+ µ~y)(λ~x+ µ~y)T = 0 & ~x~xT = 0 = ~y~yT ⇒ ~x~yT = 0.

Therefore, ~y should satisfy: ~y~yT = 0 and ~x~yT = 0.

There are exactly q3 − q non-zero solutions ~y /∈ span{~x}. So there are exactly q3−q
q−1 1-dim

subspaces P ′ = span{~y}. But there are exactly q 1-dim subspaces P ′, which plus ~x results
in the same 2-dim L ∈ L.

Thus, there are exactly 1 + q = q3−q
q(q−1) many L ∈ L such that P ⊆ L.

This proves claim 2.

Claim 1&2 show that G in (q + 1)-regular and

|L| = |S| = 1 + q + q2 + q3.

It remains to show G is C4-free and C6-free.

Claim 3: G is C4-free.

Proof of claim 3: For any L,L′ ∈ L, dim(L ∩ L′) ≤ 1, so there is at most 1 common
neighbor of L&L′, so G is C4-free.

Claim 4: G is C6-free.

Proof of claim 4: Suppose thatG has a C6, say with distinct vertices P1, L1, P2, L2, P3, L3,
so P1 ⊆ L1 ∩ L3, P2 ⊆ L1 ∩ L2 & P3 ⊆ L2 ∩ L3. Also, Pi is self-orthogonal for i ∈ [3], and
any pair of Pi and Pj is also orthogonal.
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Let W = span{P1, P2, P3}, then W ⊆W⊥. But dim(W ) + dim(W⊥) ≤ dim(V ) = 5. Also,
dim(W ) ≤ dim(W⊥), so dim(W ) ≤ 2. So Pi = Pj , for some i 6= j. A contradiction.

This completes the proof of Theorem 6.
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