Extremal and Probabilistic Graph Theory Lecture 7 April 18th, Tuesday

§1 Moore Graphs

- **Definition:** A walk $v_1 v_2 \cdots v_k$ is non-backtracking if $v_{i+2} \neq v_i$ for $\forall i$.
- Theorem 1(Alon-Hoory-Linial) For a graph G with average degree $d \geq 2$ and n vertices, there are at least $nd(d-1)^{i-1}$ non-backtracking (oriented) walks of length $i \geq 1$ in G, with the equality if and only if G is d-regular and d is an integer.
- Theorem 2(Moore bound) Let G have n vertices, girth $\geq g$ and average degree $d \geq 2$. Then

$$n \geq n_0(g,d),$$

where

$$n_0(g,d) = \begin{cases} 1 + d \sum_{i=0}^{r-1} (d-1)^2, & g = 2r+1 \\ 2 \sum_{i=0}^{r-1} (d-1)^i, & g = 2r \end{cases}$$

with equality if and only if G is d-regular and of diameter $(\frac{g}{2}) + 1$.

Remark: For these proofs, see the notes on April 21th, 2016.

- **Definition:** The graph which achieve this Moore bound are called *Moore graph*.
- Theorem 3(Hoffimon-Singleton) If a d-regular Moore graph of girth 5 exists, the $d \in \{2, 3, 7, 57\}$.
- Theorem(Damerell) For $d \geq 3$, if a d-regular Moore graph of girth 2g + 1 exists, then q < 2.
- Theorem(Feit-Higman) For $g, d \ge 3$, if a d-regular Moore graph of girth 2g exists, then $g \in \{3, 4, 6\}$.

We will show the existence of Moore graphs of girth 2g for $g \in \{3, 4, 6\}$.

- **Definition:** Given a hypergraph H = (V, E), a bigraph G of H is a bipartite graph with parts V and E, where $v \in V$ and $e \in E$ are adjacent in G if and only if $v \in e$ in H.
- **Definition:** A generalized k-gon of order q is a (q+1)-uniform, (q+1)-regular hypergraph with $q^{k-1} + q^{k-2} + \cdots + q + 1$ vertices and No cycle of length at most k-1.
- **Definition:** A cycle in hypergraphs of length k means a collection of k distinct hyperedges e_1, e_2, \ldots, e_k and k distinct vertices v_1, v_2, \ldots, v_k such that $v_i \in e_i \cap e_{i+1}$ for $i \in \{1, 2, \cdots, k-1\}$ and $v_k \in e_k \cap e_1$, we also call it a Berge cycle.

• **Proposition 1:** The bigraph of a generalized k-gon od order q is a (q + 1)-regular Moore graph of girth 2k.

Proof: It follow by Theorem 2.

So, next, we look for generalized k-gons for $k \in \{3, 4, 6\}$.

§2 Projective graph

• **Definition:** For a *n*-dimensional vector space V over \mathbb{F}_q , let $\begin{bmatrix} V \\ k \end{bmatrix}_q$ denote the set of k-dimensional subspace of V.

Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q[n-1]_q \cdots [n-k+1]_q}{[k]_q[k-1]_q \cdots [1]_q},$$

where $[i]_q = \frac{q^i - 1}{q - 1}$, called Guassion binomical coefficient.

• Proposition 2

$$\left| \left[\begin{array}{c} V \\ k \end{array} \right]_q \right| = \left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{(q^n - 1)(q^{n-1} - 1) \cdots (q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q - 1)}$$

Proof: Note that

$$\left| \left[\begin{array}{c} V \\ k \end{array} \right]_{q} \right| = \frac{(q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{k-1})}{(q^{k} - 1)(q^{k} - q) \cdots (q^{k} - q^{k-1})}$$

- **Definition:** We call the element of $\begin{bmatrix} V \\ 1 \end{bmatrix}_q \begin{bmatrix} V \\ 2 \end{bmatrix}_q \begin{bmatrix} V \\ 3 \end{bmatrix}_q$ as *point*, *lines*, *planes*, respectively.
- **Definition:** For $n \geq k \geq l$, let $H_q[n,k,l]$ be the hypergraph with vertex set $\begin{bmatrix} V \\ l \end{bmatrix}_q$ and with edge set $\{\begin{bmatrix} W \\ l \end{bmatrix}_q, W$ is a k-dim subgraph of V $\}$. That is, each k-dim subgraph W defines a hyperedge $\begin{bmatrix} W \\ l \end{bmatrix}_q$.
- **Proposition3:** $H_q[n, k, l]$ is a $\begin{bmatrix} k \\ l \end{bmatrix}_q$ -uniform, $\begin{bmatrix} n-l \\ k-l \end{bmatrix}_q$ -regular hypergraph on $\begin{bmatrix} n \\ l \end{bmatrix}_q$ vertices.
- **Definition:** The *n*-dimensional projective space of order q, denoted as PG(n,q), is just $H_q[n+1,2,1]$.
- Note: PG(n,q) has $1+q+\cdots+q^n$ vertices. When n=2, we call PG(2,q) as projective planes

• **Theorem 5** The bigraph of PG(2,q) is a (q+1)-regular Moore graph of girth 6. **Proof:** Exercise.

Next, we consider Moore graph of girth 8, and we work in PG(4,q).

• Theorem 6(Benson) Let V be 5-dim space over \mathbb{F}_q . Let $\mathcal{S} = \{P \in \begin{bmatrix} V \\ 1 \end{bmatrix}_q; P = span\{\vec{x}\}, \vec{x}\vec{x}^T = 0\}$. Let $\mathcal{L} = \{L \in \begin{bmatrix} V \\ 2 \end{bmatrix}_q; L \subseteq \mathcal{S}\}$. Let G be the bipartite graph with parts \mathcal{S} and \mathcal{L} , where $P \in \mathcal{S}$ and $L \in \mathcal{L}$ are adjacent in G if and only if $P \subseteq L$. Then G is a (q+1)-regular Moore graph of girth 8.

Proof: It is easy to see that for $\forall L \subseteq \mathcal{L}, d_G(L) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}_q = q + 1.$

Claim 1: $|S| = \frac{q^4 - 1}{q - 1} = q^3 + q^2 + q + 1$.

Proof of claim 1: For $P = span\{(x_1, \dots, x_5)\} \in \mathcal{S}$, we have $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 0$. One can show: there are exactly $q^4 - 1$ non-zero vectors (x_1, \dots, x_5) satisfying this equation. Therefore, $|\mathcal{S}| = \frac{q^4 - 1}{q - 1} = q^3 + q^2 + q + 1$.

Claim 2: $\forall P \in \mathcal{S}, d_G(P) = 1 + q$.

Proof of claim 2: Let $P = span\{\vec{x}\}$ for $\vec{x} = (x_1, \dots, x_5)$, so we want how many $L \in \mathcal{L}$ such that $P \subseteq L$.

Let us consider the properties on L.

Suppose $L = span\{\vec{x}, \vec{y}\} \subseteq \mathcal{S}$. So,

$$\lambda \vec{x} + \mu \vec{y} \in \mathcal{S} \iff (\lambda \vec{x} + \mu \vec{y})(\lambda \vec{x} + \mu \vec{y})^T = 0 \& \vec{x} \vec{x}^T = 0 = \vec{y} \vec{y}^T \Rightarrow \vec{x} \vec{y}^T = 0.$$

Therefore, \vec{y} should satisfy: $\vec{y}\vec{y}^T = 0$ and $\vec{x}\vec{y}^T = 0$.

There are exactly $q^3 - q$ non-zero solutions $\vec{y} \notin span\{\vec{x}\}$. So there are exactly $\frac{q^3 - q}{q - 1}$ 1-dim subspaces $P' = span\{\vec{y}\}$. But there are exactly q 1-dim subspaces P', which plus \vec{x} results in the same 2-dim $L \in \mathcal{L}$.

Thus, there are exactly $1 + q = \frac{q^3 - q}{q(q-1)}$ many $L \in \mathcal{L}$ such that $P \subseteq L$.

This proves claim 2.

Claim 1&2 show that G in (q+1)-regular and

$$|\mathcal{L}| = |\mathcal{S}| = 1 + q + q^2 + q^3.$$

It remains to show G is C_4 -free and C_6 -free.

Claim 3: G is C_4 -free.

Proof of claim 3: For any $L, L' \in \mathcal{L}$, $dim(L \cap L') \leq 1$, so there is at most 1 common neighbor of L&L', so G is C_4 -free.

Claim 4: G is C_6 -free.

Proof of claim 4: Suppose that G has a C_6 , say with distinct vertices $P_1, L_1, P_2, L_2, P_3, L_3$, so $P_1 \subseteq L_1 \cap L_3$, $P_2 \subseteq L_1 \cap L_2$ & $P_3 \subseteq L_2 \cap L_3$. Also, P_i is self-orthogonal for $i \in [3]$, and any pair of P_i and P_j is also orthogonal.

Let $W = span\{P_1, P_2, P_3\}$, then $W \subseteq W^{\perp}$. But $dim(W) + dim(W^{\perp}) \le dim(V) = 5$. Also, $dim(W) \le dim(W^{\perp})$, so $dim(W) \le 2$. So $P_i = P_j$, for some $i \ne j$. A contradiction. This completes the proof of Theorem 6.