Extremal and Probabilistic Graph Theory
Lecture 7
April 18th, Tuesday

§1 Moore Graphs

Definition: A walk vy — v — - -+ — v is non-backtracking if v;1o # v; for V i.

Theorem 1(Alon-Hoory-Linial) For a graph G with average degree d > 2 and n vertices,
there are at least nd(d — 1)*~! non-backtracking (oriented) walks of length i > 1 in G, with
the equality if and only if G is d-regular and d is an integer.

Theorem 2(Moore bound) Let G have n vertices, girth > g and average degree d > 2.
Then
n > no(g,d),

where

r—1

L+dY (d—1)?, g=2r+1
i=0
2> (d-1), g=2r

i=0

with equality if and only if G is d-regular and of diameter (§) + 1.
Remark: For these proofs, see the notes on April 21th, 2016.

Definition: The graph which achieve this Moore bound are called Moore graph.

Theorem 3(Hoffimon-Singleton) If a d-regular Moore graph of girth 5 exists, the d €
{2,3,7,57}.

Theorem(Damerell) For d > 3, if a d-regular Moore graph of girth 2g + 1 exists, then
g <2

Theorem(Feit-Higman) For g,d > 3, if a d-regular Moore graph of girth 2g exists, then
g € {3,4,6}.
We will show the existence of Moore graphs of girth 2¢ for g € {3,4,6}.

Definition: Given a hypergraph H = (V, E), a bigraph G of H is a bipartite graph with
parts V and E, where v € V and e € E are adjacent in G if and only if v € e in H.

Definition: A generalized k-gon of order q is a (¢ + 1)-uniform, (¢ + 1)-regular hypergraph
with ¢* 1 4+ ¢*=2 + ... + ¢ + 1 vertices and No cycle of length at most k — 1.

Definition: A cycle in hypergraphs of length k means a collection of k£ distinct hyperedges
e1, e, ..., e, and k distinct vertices vy, ve, . .., vy such that v; € e;Ne;qq fori € {1,2,--- [ k—
1} and vg € e Nep, we also call it a Berge cycle.



e Proposition 1: The bigraph of a generalized k-gon od order ¢ is a (¢ + 1)-regular Moore
graph of girth 2k.

Proof: It follow by Theorem 2.
So, next, we look for generalized k-gons for k € {3,4,6}.

82 Projective graph
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e Definition: For a n-dimensional vector space V' over F,, let [ 3 ] denote the set of

q
k-dimensional subspace of V.

Define
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where [i], = qu, called Guassion binomical coefficient.

e Proposition 2
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Proof: Note that
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e Definition: We call the element of { ‘1/ ] [ 9
q

\%4 . .
3 as point, lines, planes, respec-
q q

tively.
e Definition: For n > k > [, let Hy[n,k,l] be the hypergraph with vertex set [ ‘l/ ] and
q
with edge set {[ VZV ] , W is a k-dim subgraph of V' }. That is, each k-dim subgraph W
q

defines a hyperedge [ V}/ } .
q

e Proposition3: Hgyn, k,l] is a [ 'I; ] —uniform,[ Z:; ] -regular hypergraph on [ 7 }
q q

q
vertices.

e Definition: The n-dimensional projective space of order g, denoted as PG(n,q), is just
Hyn+1,2,1].

e Note: PG(n,q) has 1 4+ q+ -+ + ¢" vertices. When n = 2, we call PG(2,q) as projective
planes



e Theorem 5 The bigraph of PG(2,q) is a (¢ + 1)-regular Moore graph of girth 6.
Proof: Exercise.

Next, we consider Moore graph of girth 8, and we work in PG(4, q).

e Theorem 6(Benson) Let V be 5-dim space over F,. Let S = {P € [ ‘1/ } ;P =
q

v
2

q
parts S and £, where P € S and L € L are adjacent in G if and only if P C L. Then G is
a (q + 1)-regular Moore graph of girth 8.

span{z}, 7T = 0}. Let £L = {L € { ] ;L C S}. Let G be the bipartite graph with

Proof: It is easy to see that for VL C L, dg(L) = [ ? ] =q+1.
q

. 4—

Claim 1: |S| = ‘1(]_—11 =@+ +q+1

Proof of claim 1: For P = span{(x1, -+ ,25)} € S, we have 23 + 3 + 23 + 2 + 22 = 0.
One can show: there are exactly ¢*—1 non-zero vectors (1, - - - , x5) satisfying this equation.

a_

Therefore, |S| = qq_—ll =@+ +q+1.

Claim 2: VP € S, dg(P)=1+4q.

Proof of claim 2: Let P = span{Z} for & = (z1,...,25), so we want how many L € £
such that P C L.

Let us consider the properties on L.
Suppose L = span{Z,yj} C S. So,
- - - S\ T ST o _ =T =T
MApugeS < A+ uy)(NM+py)” =0& 78 =0=g3y" =2y =0.
Therefore, i should satisfy: 7 = 0 and Zy” = 0.

There are exactly ¢ — ¢ non-zero solutions ¥ ¢ span{Z}. So there are exactly q:_—*lq 1-dim
subspaces P’ = span{y}. But there are exactly ¢ 1-dim subspaces P’, which plus Z results

in the same 2-dim L € L.
Thus, there are exactly 14 q = % many L € £ such that P C L.
This proves claim 2.

Claim 1&2 show that G in (¢ + 1)-regular and
L] =S| =1+q+d¢" +d.

It remains to show G is Cy-free and Cg-free.
Claim 3: G is Cy-free.

Proof of claim 3: For any L,L' € L, dim(L N L") <1, so there is at most 1 common
neighbor of L& L', so G is Cy-free.

Claim 4: G is Cg-free.

Proof of claim 4: Suppose that G has a Cg, say with distinct vertices Py, L1, P», Lo, P, L3,
soPL CLiNLsy, PoCLiNLy & P3C LyNn Ls. Also, P; is self-orthogonal for i € [3], and
any pair of P; and P; is also orthogonal.



Let W = span{Py, P», P3}, then W C W+. But dim(W) + dim(W+) < dim(V) = 5. Also,
dim(W) < dim(W+), so dim(W) < 2. So P; = P;, for some i # j. A contradiction.

This completes the proof of Theorem 6.



