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April 20th, Thursday

Recall that:

• Theorem 6(Benson) Let V be a 5-dim space over Fq. Let A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, and

S = {P ∈
[
V
1

]
q

;P = span{~x}, ~xA~xT = 0}, Let L = {L ∈
[
V
2

]
q

;L ⊆ S}. Let G be

the bipartite graph with parts S and L, where P ∈ S and L ∈ L are adjacent in G if and
only if P ⊆ L. Then G is a (q + 1)-regular Moore graph of girth 8.

Remark: Replace A by any non-degenerated 5× 5 matrix. Then the same construction
will also give a (q + 1)-regular Moore graph of girth 8.

• Theorem 7 Let k ∈ {2, 3, 5} and q be a prime power. Then there exists (q + 1)-regular
Moore graph of girth 2k + 2.

• Definition: Let Ck = {C3, C4, · · · , Ck}. Let the Zarankiewicz number Z(m,n, F ) be the
maximum number of edges in an m× n-bipartite F -free graph.

• Theorem 8 Let k ∈ {2, 3, 5}. If n = qk + qk−1 + · · ·+ q + 1 for some prime power q, then

Z(n, n, C2k) = (q + 1)n. For general n, Z(n, n, C2k) = (1 + o(1))n1+
1
k .

Proof: Let x be the unique real such that n = xk + xk−1 + · · ·+ x+ 1.

Upper bound: Let G be an n × n-bipartite graph of girth≥ 2k + 2, and average degree
d+ 1 ≥ 2.

By Theorem 1, G has ≥ 2n(d + 1)di−1 non-backtracking (oriented) walks of length i ≥ 1.
So G has ≥ 2n(d+ 1)

∑k+1
i=1 d

i−1 non-backtracking oriented walks of length at most k + 1.

Note that e(G) = n(d + 1). Thus, by averaging there is an edge uv ∈ E(G) such that the
number of non-backtracking walks of length ≤ k + 1 with uv as the leading edge is at least
2n(d+1)

∑k+1
i=1 d

i−1

e(G) ≥ 2
∑k+1

i=1 d
i−1 = 2(1 + d+ · · ·+ dk). Since girth ≥ 2k + 2, the ends of all

those walks with leading edge uv are distinct implying that

2n = |V (G)| ≥ #walks of length at most k + 1 with leading edge uv ≥ 2(1 + d+ · · ·+ dk).

So,
1 + x+ x2 + · · ·+ xk = n ≥ 1 + d+ d2 + · · ·+ dk.

So, x ≥ d, and thus e(G) = n(d+ 1) ≤ (1 + x)n, where n = 1 + x+ x2 + · · ·+ xk.

For n = 1 + q + · · ·+ qk, then e(G) ≤ (1 + q)n.

For general n, we have x = (1 + o(1))n
1
k , so e(G) ≤ (1 + o(1))n1+

1
k .

Lower bound: By the Theorem 7, ∃(1 + q)-regular Moore graph of girth 2k+ 2, which are
bipartite and have exactly 2(1 + q + · · ·+ qk) vertices.
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So, this shows that for n = 1 + q + · · ·+ qk, then Z(n, n, C2k) = (q + 1)n.

For general n, lat q be the maximal prime such that nq , 1 + q + · · · + qk ≤ n. Since

lim
r→+∞

pr
pr+1

= 1, where pr = rth prime, we have that q v n
1
k .

So,

Z(n, n, C2k) ≥ Z(nq, nq, C2k) = (1 + q)nq = (1 + o(1))n1+
1
k .

Theorem 8 is done.

• Corollary:

ex(n,C4) ≥ ex(n, C4) ≥ Z(
n

2
,
n

2
, C4) ≥ (1 + o(1))(

n

2
)
3
2 ,

and
ex(n,C6) ≥ (1 + o(1))(

n

2
)
4
3 .

• Theorem 9(Reiman)

ex(n,C4) ≤
n

4
(1 +

√
4n− 3) ≈

1

2
n

3
2

• Theorem 10

ex(n,C4) =
1

2
n

3
2 + o(n

3
2 ).

Proof: We define the Erdös-Renyi polarity graph ERq, that is the graph with vertex-set[
V
1

]
q

(Where V is a 3-dim space over Fq), where U,W ∈
[
V
1

]
q

are adjacent if and only

if U⊥W.
In other words, if U = Span{(x, y, z)}, and W = Span{(u, v, w)}, then xu + yv + zw = 0.
It is easy to check:

1. |V (ERq)| =
[

3
1

]
q

= 1 + q + q2.

2. For ∀ U = span{(x, y, z)} ∈
[
V
1

]
q

, there are exactly q2−1 non-zero solutions (u, v, w)

to be equation xu+ yv + zw = 0.

So, there are exactly q2−1
q−1 = 1 + q 1-dim subspace W ∈

[
V
1

]
q

perpendicular to U .

1. # 1-dim self-orthogonal subspaces is 1 + q, so there vertices (self-orthogonal) have
degree q, and other vertices have degree 1 + q.

⇒ e(ERq) =
1

2
(1 + q)q +

1

2
q2(1 + q) =

1

2
q(1 + q)2.

2. ERq is C4-free, as for fixed (x1, y1, z1) & (x2, y2, z2), then there is exactly 1 solution
to xiu+ yiv + ziw = 0 for i = 1, 2.
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Together, ERq is C4-free and has 1 + q + q2 vertices and 1
2q(1 + q)2 edges.

⇒ ex(n,C4) ≥ (1 + o(1))
1

2
n

3
2 .

Remark: ERq contains 1
6q

3 + o(q2) triangles, as each edge is contained in a unique
triangle.

• Theorem 11(Furedi) Let G be an extremal C4-free graph with n = 1 + q + q2 vertices.
Then, e(G) ≤ 1

2q(1 + q)2, with equality if and only if G = ERq.

§3 Polarity graph
Let P and L be distinct sets, the elements of which are called points and lines, respectively.
A subset I ⊆ P × L is called incidence relation on the pair (P,L); and the triple (P,L, I) is

called a rank two geometry.

• Definition: The incidence graph G of (P,L, I) is a bipartite graph on parts P and L,
where P ∈ P and L ∈ L are adjacent if and only if (P,L) ∈ I.

• Definition: A polarity of (P,L, I) is a bijection π: P ∪ L → P ∪ L such that:

(1) Pπ = L & Lπ = P,

(2) ∀ P ∈ P, L ∈ L, we have (P,L) ∈ I ⇐⇒ (Lπ, P π) ∈ I,

(3) π2 = 1.

• Definition: For a polarity π of (P,L, I), the polarity graph Gπ is a graph with vertex-set
P and edge-set E(Gπ) = {P1P2| P1 6= P2 ∈ P, (P1, P

π
2 ) ∈ I}.

• Definition: We say a point P ∈ P is an absolute point, if (P, P π) ∈ I. Let Nπ =
#absolute points (w.r.t. π).

• Theorem 12 Let π be a polarity of (P,L, I). Then,

(i) degGπ(P ) = degG(P ) = 1, if P is an absolute point and degGπ(P ) = degG(P ), other-
wise;

(ii) |V (Gπ)| = 1
2 |V (G)| and |E(Gπ)| = |E(G)| −Nπ;

(iii) If Gπ contains a C2k+1, then G contains a C4k+2;

(iv) If Gπ contains a C2k, then G contains two vertex-disjoint 2k-cycle C and C ′ such that
Cπ = C ′. In particular, if G is C2k-free, then Gπ is C2k-free.

(v) g(Gπ) ≥ 1
2g(G).
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