Extremal and Probabilistic Graph Theory Lecture 8 April 20th, Thursday

Recall that:

• Theorem 6(Benson) Let V be a 5-dim space over \mathbb{F}_q . Let $A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$, and

 $\mathcal{S} = \{P \in \begin{bmatrix} V\\1 \end{bmatrix}_q; P = span\{\vec{x}\}, \ \vec{x}A\vec{x}^T = 0\}, \text{ Let } \mathcal{L} = \{L \in \begin{bmatrix} V\\2 \end{bmatrix}_q; L \subseteq \mathcal{S}\}. \text{ Let } G \text{ be the bipartite graph with parts } \mathcal{S} \text{ and } \mathcal{L}, \text{ where } P \in \mathcal{S} \text{ and } L \in \mathcal{L} \text{ are adjacent in } G \text{ if and only if } P \subseteq L. \text{ Then } G \text{ is a } (q+1)\text{-regular Moore graph of girth } 8.$

Remark: Replace A by any non-degenerated 5×5 matrix. Then the same construction will also give a (q + 1)-regular Moore graph of girth 8.

- Theorem 7 Let $k \in \{2, 3, 5\}$ and q be a prime power. Then there exists (q + 1)-regular Moore graph of girth 2k + 2.
- **Definition:** Let $C_k = \{C_3, C_4, \dots, C_k\}$. Let the Zarankiewicz number Z(m, n, F) be the maximum number of edges in an $m \times n$ -bipartite F-free graph.
- **Theorem 8** Let $k \in \{2, 3, 5\}$. If $n = q^k + q^{k-1} + \dots + q + 1$ for some prime power q, then $Z(n, n, \mathcal{C}_{2k}) = (q+1)n$. For general $n, Z(n, n, \mathcal{C}_{2k}) = (1+o(1))n^{1+\frac{1}{k}}$.

Proof: Let x be the unique real such that $n = x^k + x^{k-1} + \dots + x + 1$.

Upper bound: Let G be an $n \times n$ -bipartite graph of girth $\geq 2k + 2$, and average degree $d + 1 \geq 2$.

By Theorem 1, G has $\geq 2n(d+1)d^{i-1}$ non-backtracking (oriented) walks of length $i \geq 1$. So G has $\geq 2n(d+1)\sum_{i=1}^{k+1} d^{i-1}$ non-backtracking oriented walks of length at most k+1. Note that e(G) = n(d+1). Thus, by averaging there is an edge $uv \in E(G)$ such that the number of non-backtracking walks of length $\leq k+1$ with uv as the leading edge is at least $\frac{2n(d+1)\sum_{i=1}^{k+1} d^{i-1}}{e(G)} \geq 2\sum_{i=1}^{k+1} d^{i-1} = 2(1+d+\cdots+d^k)$. Since girth $\geq 2k+2$, the ends of all those walks with leading edge uv are distinct implying that

 $2n = |V(G)| \ge \#$ walks of length at most k + 1 with leading edge $uv \ge 2(1 + d + \dots + d^k)$. So,

$$1 + x + x^2 + \dots + x^k = n \ge 1 + d + d^2 + \dots + d^k$$

So, $x \ge d$, and thus $e(G) = n(d+1) \le (1+x)n$, where $n = 1 + x + x^2 + \dots + x^k$. For $n = 1 + q + \dots + q^k$, then $e(G) \le (1+q)n$.

For general *n*, we have $x = (1 + o(1))n^{\frac{1}{k}}$, so $e(G) \le (1 + o(1))n^{1 + \frac{1}{k}}$.

Lower bound: By the Theorem 7, $\exists (1+q)$ -regular Moore graph of girth 2k+2, which are bipartite and have exactly $2(1+q+\cdots+q^k)$ vertices.

So, this shows that for $n = 1 + q + \dots + q^k$, then $Z(n, n, \mathcal{C}_{2k}) = (q+1)n$. For general n, lat q be the maximal prime such that $n_q \triangleq 1 + q + \dots + q^k \leq n$. Since $\lim_{r \to +\infty} \frac{p_r}{p_{r+1}} = 1$, where $p_r = r^{th}$ prime, we have that $q \sim n^{\frac{1}{k}}$. So,

$$Z(n, n, \mathcal{C}_{2k}) \ge Z(n_q, n_q, \mathcal{C}_{2k}) = (1+q)n_q = (1+o(1))n^{1+\frac{1}{k}}.$$

Theorem 8 is done.

• Corollary:

$$ex(n, C_4) \ge ex(n, C_4) \ge Z(\frac{n}{2}, \frac{n}{2}, C_4) \ge (1 + o(1))(\frac{n}{2})^{\frac{3}{2}},$$

and

$$ex(n, C_6) \ge (1 + o(1))(\frac{n}{2})^{\frac{4}{3}}.$$

• Theorem 9(Reiman)

$$ex(n, C_4) \le \frac{n}{4}(1 + \sqrt{4n-3}) \approx \frac{1}{2}n^{\frac{3}{2}}$$

• Theorem 10

$$ex(n, C_4) = \frac{1}{2}n^{\frac{3}{2}} + o(n^{\frac{3}{2}}).$$

Proof: We define the *Erdös-Renyi polarity graph* ER_q , that is the graph with vertex-set $\begin{bmatrix} V\\1 \end{bmatrix}_q$ (Where V is a 3-dim space over \mathbb{F}_q), where $U, W \in \begin{bmatrix} V\\1 \end{bmatrix}_q$ are adjacent if and only if $U \perp W$.

In other words, if $U = Span\{(x, y, z)\}$, and $W = Span\{(u, v, w)\}$, then xu + yv + zw = 0. It is easy to check:

- 1. $|V(ER_q)| = \begin{bmatrix} 3\\1 \end{bmatrix}_q = 1 + q + q^2.$
- 2. For $\forall U = span\{(x, y, z)\} \in \begin{bmatrix} V \\ 1 \end{bmatrix}_q$, there are exactly $q^2 1$ non-zero solutions (u, v, w) to be equation xu + yv + zw = 0.

So, there are exactly $\frac{q^2-1}{q-1} = 1 + q$ 1-dim subspace $W \in \begin{bmatrix} V \\ 1 \end{bmatrix}_q$ perpendicular to U.

1. # 1-dim self-orthogonal subspaces is 1 + q, so there vertices (self-orthogonal) have degree q, and other vertices have degree 1 + q.

$$\Rightarrow e(ER_q) = \frac{1}{2}(1+q)q + \frac{1}{2}q^2(1+q) = \frac{1}{2}q(1+q)^2.$$

2. ER_q is C_4 -free, as for fixed (x_1, y_1, z_1) & (x_2, y_2, z_2) , then there is exactly 1 solution to $x_i u + y_i v + z_i w = 0$ for i = 1, 2.

Together, ER_q is C_4 -free and has $1 + q + q^2$ vertices and $\frac{1}{2}q(1+q)^2$ edges.

$$\Rightarrow ex(n, C_4) \ge (1 + o(1))\frac{1}{2}n^{\frac{3}{2}}.$$

Remark: ER_q contains $\frac{1}{6}q^3 + o(q^2)$ triangles, as each edge is contained in a unique triangle.

• Theorem 11(Furedi) Let G be an extremal C_4 -free graph with $n = 1 + q + q^2$ vertices. Then, $e(G) \leq \frac{1}{2}q(1+q)^2$, with equality if and only if $G = ER_q$.

§3 Polarity graph

Let \mathcal{P} and \mathcal{L} be distinct sets, the elements of which are called *points* and *lines*, respectively. A subset $I \subseteq \mathcal{P} \times \mathcal{L}$ is called *incidence relation* on the pair $(\mathcal{P}, \mathcal{L})$; and the triple $(\mathcal{P}, \mathcal{L}, I)$ is called a *rank two geometry*.

- **Definition:** The *incidence graph* G of $(\mathcal{P}, \mathcal{L}, I)$ is a bipartite graph on parts \mathcal{P} and \mathcal{L} , where $P \in \mathcal{P}$ and $L \in \mathcal{L}$ are adjacent if and only if $(P, L) \in I$.
- **Definition:** A *polarity* of $(\mathcal{P}, \mathcal{L}, I)$ is a bijection $\pi: \mathcal{P} \cup \mathcal{L} \to \mathcal{P} \cup \mathcal{L}$ such that:
 - (1) $\mathcal{P}^{\pi} = \mathcal{L} \& \mathcal{L}^{\pi} = \mathcal{P},$
 - (2) $\forall P \in \mathcal{P}, L \in \mathcal{L}$, we have $(P, L) \in I \iff (L^{\pi}, P^{\pi}) \in I$,
 - (3) $\pi^2 = 1.$
- **Definition:** For a polarity π of $(\mathcal{P}, \mathcal{L}, I)$, the *polarity graph* G^{π} is a graph with vertex-set \mathcal{P} and edge-set $E(G^{\pi}) = \{P_1P_2 | P_1 \neq P_2 \in \mathcal{P}, (P_1, P_2^{\pi}) \in I\}.$
- Definition: We say a point $P \in \mathcal{P}$ is an absolute point, if $(P, P^{\pi}) \in I$. Let $N_{\pi} =$ #absolute points (w.r.t. π).
- Theorem 12 Let π be a polarity of $(\mathcal{P}, \mathcal{L}, I)$. Then,
 - (i) $deg_{G^{\pi}}(P) = deg_G(P) = 1$, if P is an absolute point and $deg_{G^{\pi}}(P) = deg_G(P)$, otherwise;
 - (ii) $|V(G^{\pi})| = \frac{1}{2}|V(G)|$ and $|E(G^{\pi})| = |E(G)| N_{\pi};$
 - (iii) If G^{π} contains a C_{2k+1} , then G contains a C_{4k+2} ;
 - (iv) If G^{π} contains a C_{2k} , then G contains two vertex-disjoint 2k-cycle C and C' such that $C^{\pi} = C'$. In particular, if G is C_{2k} -free, then G^{π} is C_{2k} -free.
 - (v) $g(G^{\pi}) \ge \frac{1}{2}g(G)$.