Extremal and Probabilistic Graph Theory Lecture 9 April 25th, Tuesday

Recall that:

• Theorem 10 $ex(n, C_4) = (1 + o(1))\frac{1}{2}n^{\frac{3}{2}}$.

Proof: The upper bound is from *Rieman's bound*.

The lower bound is from the construction of $Erd\ddot{o}s$ - $Reny \ polarity \ graph \ ER_q$, where $V(ER_q) = \begin{bmatrix} V \\ 1 \end{bmatrix}_q$ (V is a 3-dim space), and $U, W \in \begin{bmatrix} V \\ 1 \end{bmatrix}_q$ adjacent if and only if $U \perp W$. i.e. $U = Span\{(x_1, x_2, x_3)\}$, and $W = Span\{(y_1, y_2, y_3)\}$, then $x_1y_1 + x_2y_2 + x_3y_3 = 0$ over \mathbb{F}_q . So 1+q vertices of degree $q \& q^2$ vertices of degree 1+q, $\Rightarrow e(ER_q) = \frac{1}{2}q(1+q)^2 \approx \frac{1}{2}n^{\frac{3}{2}} \& v(ER_q) = 1+q+q^2 = n$.

Then,

- 1. ER_q contains triangles.
- 2. Moore graph of girth $6 \Rightarrow ex(n, \{C_3, C_4, C_5\} \ge \left(\frac{n}{2}\right)^{\frac{3}{2}}$.
- 3. Recall the general definition of polarity graphs.
- Theorem 13(Füredi-Naor-Verstrate)

$$0.538n^{\frac{4}{3}} \le ex(n, C_6) \le 0.627n^{\frac{4}{3}}.$$

$$0.58n^{\frac{6}{5}} \approx \frac{4}{5^{6/5}}n^{\frac{6}{5}} \le ex(n, C_{10}) \le O(n^{\frac{6}{5}}).$$

These disprove a conjecture of Erdös-Simonovits that $ex(n, C_{2k}) = \frac{1+o(1)}{2}n^{1+\frac{1}{k}}, \forall k \ge 2$. As we recall,

• Theorem 14

$$(\frac{n}{2})^{\frac{3}{2}} + o(n^{\frac{3}{2}}) \le ex(n, \mathcal{C}_4) \le \frac{n^{\frac{3}{2}}}{2} + o(n^{\frac{3}{2}}).$$

• Conjecture(Erdös)

$$ex(n, \mathcal{C}_4) = (\frac{n}{2})^{\frac{3}{2}} + o(n^{\frac{3}{2}}).$$

Where $C_4 = \{C_3, C_4\}.$

§ 4 Hypergraphs

• **Definition:** A *Berge* k-cycle in r-graphs is a r-graph consisting of distinct hyperedges e_1, e_2, \dots, e_k such that there exist k distinct vertices v_1, v_2, \dots, v_k such that $v_i \in e_i \cap e_{i+1}$ for $1 \leq i \leq k-1$ and $v_k \in e_k \cap e_1$.

- **Definition:** For an integer g, let $C_g = \{C_2, C_3, \cdots, C_g\}$.
 - Similarly, let $ex_r(n, \mathcal{C}_g)$ be the *Turán number*, i.e. the maximum number of edges in an *n*-vertex \mathcal{C}_g -free *r*-graphs.

Fact:

$$ex_r(n, \mathcal{C}_2) = \frac{\binom{n}{2}}{\binom{r}{2}} + o(n^2).$$

• Theorem 15 (Ruzsa-Szemerédi (6,3)-Theorem)

$$\Omega(n^{2-\varepsilon}) = 2^{-c\sqrt{\log n}} n^2 \le ex_r(n, \mathcal{C}_3) \le o(n^2).$$

- Theorem(Lazebrok-Verstrete)
 - (1) $ex_3(n, \mathcal{C}_4) \leq \frac{1}{6}n\sqrt{n-\frac{3}{4}} + \frac{n}{12}.$
 - (2) There exists an 3-graph H on $n = q^3$ vertices, of girth 5 and with $e(H) = \binom{q+1}{3} = \frac{1}{6}n^{\frac{3}{2}} \frac{1}{6}\sqrt{n}$.

Therefore, $ex_3(n, C_4) = (\frac{1}{6} + o(1))n^{\frac{3}{2}}$.

Proof: Upper Bound: We prove a stronger result:

• **Theorem** Let *H* be an *r*-graph on *n* vertices and of girth ≥ 5 , then

$$e(H) \leq \frac{1}{r(r-1)}n^{\frac{3}{2}} + \frac{r-2}{2r(r-1)}n + O(\sqrt{n})$$

Proof: Let m = |E(H)|, for a fixed $v \in V(H)$ and for any unordered pair of edges A, B that contain v, let v(A, B) be the set of unordered pair (a, b) of vertices, where $a \in A - v$, $b \in B - v$.

Note that for any $A, B \neq C, D, v(A, B) \cap v(C, D) = \phi$.

Define

$$D_v = \bigcup_{\{A,B\}, v \in A \cap B} v(A,B).$$

So $|D_v| = {d_v \choose 2}(r-1)^2$, where d_v denotes the degree of v in H.

Claim 1: For $u \neq v$, $D_u \cap D_v = \phi$.(Otherwise $\exists C_4$.)

Claim 2: No pairs in D_v is contained in an edge.(Otherwise $\exists C_{3.}$)

Since H contains No 2-cycles, and the number of pairs of vertices contained in edges is exactly $\binom{r}{2}m$, by claim 2,

$$\binom{n}{2} - \binom{r}{2}m \ge \#\{a, u, b\} \text{ where } au, bu \text{ are in different edges}$$
$$= \sum_{v} |D_{v}|$$
$$= (r-1)^{2} \sum_{v} \binom{d_{v}}{2}$$
$$\ge (r-1)^{2} (\frac{r^{2}m^{2}}{2n} - \frac{rm}{2}).$$

as $\sum_{v} d_v = rm$.

$$\Rightarrow r^{2}(r-1)^{2}m^{2} - r(r-1)(r-2)nm - n^{2}(n-1) \le 0$$
$$\Rightarrow e(H) = m \le \frac{n}{r(r-1)}\sqrt{n + \frac{r^{2} - 4r}{4}} + \frac{r-2}{2r(r-1)}n.$$

Lower bound:

Consider ER_q , we say a vertex $U \in \begin{bmatrix} V \\ 1 \end{bmatrix}_q$ is *isotropic* if $U \perp U$.

Recall a *non-degenerate* orthogonal geometry on $V = \mathbb{F}_q^3$ corresponding to the bilinear form $\vec{x}\vec{y} = x_1y_1 + x_2y_2 + x_3y_3$.

The non-degenerate means that No non-zero vertex of V is orthogonal to all vertices of V.

Claim 1: Any isotropic vertex is not contained in triangles.

Proof: $\vec{x} \cdot \vec{x} = 0$, $\vec{x} \perp span\{\vec{x}, \vec{y}, \vec{z}\} = V$, so $\vec{x} = 0$. A contradiction.

Claim 2: No edges of ER_q which has 2 isotropic vertices.

Proof: Suppose not, $\vec{x} \cdot \vec{x} = 0$, $\vec{y} \cdot \vec{y} = 0$ & $\vec{x} \cdot \vec{y} = 0$, assume $span\{\vec{x}\} \neq span\{\vec{y}\}$.

Consider the 2-dim subspace $W = span\{\vec{x}, \vec{y}\}$. $\Rightarrow \vec{x} \perp W$, $\vec{y} \perp W$. Since the geometry is non-degenerate, the orthogonal complement of 2-dim subspace is a 1-dim subspace. So, $span\{\vec{x}\} = span\{\vec{y}\}$, a contradiction.

Let H be a 3-graph obtained from the set of non-isotropic of ER_q , such that $\{U_1, U_2, U_3\} \in E(H)$ if and only if $U_1U_2U_3$ is a triangle of ER_q .

It is easy to see that H is C_4 -free.

#edges in the induced subgraph of ER_q on the non-isotropic vertices

$$= e(ER_q) - q(q+1) = \frac{(q+1)q(q-1)}{2}.$$

Since each such edge is in one triangle, we get that,

$$e(H) = \#$$
triangles in $ER_q = \frac{(1+q)q(q-1)}{6} = \binom{q+1}{3}.$

And H contains 5-cycle $(q \ge 27)$.