Extremal and Probabilistic Graph Theory
Lecture 9
April 25th, Tuesday

Recall that:

e Theorem 10 ex(n,Cy) = (1 + 0(1))%n%.
Proof: The upper bound is from Rieman’s bound.

The lower bound is from the construction of Erdds-Reny polarity graph ER,, where V(ER,) =

[ ‘1/ ] (V is a 3-dim space), and U, W € { ‘1/ } adjacent if and only if ULW. i.e.

q q

U = Span{(w1,z2,23)}, and W = Span{(y1,y2,y3)}, then z1y1 + T2y2 + x3y3 = 0 over
3

F,. So 1+ ¢ vertices of degree q & ¢* vertices of degree 1+q, = ¢(ER,) = %q(l—l—q)2 ~ %ni

&v(ER) =1+q+ ¢ =n.

Then,
1. FR, contains triangles.

2. Moore graph of girth 6 = ex(n,{C3,Cy,C5} > (5)2.
3. Recall the general definition of polarity graphs.
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e Theorem 13(Firedi-Naor-Verstrate)

0.538n3 < ex(n, Cg) < 0.627n3.
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These disprove a conjecture of Erdds-Simonovits that ex(n, Cox) = Ho(l)nHE, vk > 2.

As we recall,

e Theorem 14

(g)% +o(n3) < ex(n,Cy) < ”7 +o(n3)
e Conjecture(Erdos)
ex(n,Cy) = (%)3 +o(n3).

Where Cy = {C3, C4}.

§ 4 Hypergraphs

e Definition: A Berge k-cycle in r-graphs is a r-graph consisting of distinct hyperedges
e1,e2, - ,e; such that there exist k distinct vertices vy, vs,--- , v such that v; € e; Ne;j11
for1<i<k—1anduv €eNey.



Definition: For an integer g, let Cg = {C2,C3,--- ,Cy}.
Similarly, let ex,(n,Cy) be the Turdan number, i.e. the maximum number of edges in an
n-vertex Cy-free r-graphs.
Fact:
(3) , o
= Fo(n?).
()

Theorem 15 (Ruzsa-Szemerédi (6,3)-Theorem)

ex,y(n,Cy) =

Q(n?) = 27evloenp2 < op (n,C3) < o(n?).

Theorem(Lazebrok-Verstrete)

(1) ex3(n,Cq) < gnyfn— 2 4+ 1.
(2) There exists an 3-graph H on n = ¢ vertices, of girth 5 and with e(H) = (q'gl) =
6”2 — gV
Therefore, ex3(n,Cs) = (3 + 0(1))n%.
Proof: Upper Bound: We prove a stronger result:

Theorem Let H be an r-graph on n vertices and of girth > 5, then
1 3 r—2
H) < 2 O .
e(H) < r(r— l)n2 + 2r(r — 1)n+ (Vi)

Proof: Let m = |E(H)|, for a fixed v € V(H) and for any unordered pair of edges A,B
that contain v, let v(A, B) be the set of unordered pair (a,b) of vertices, where a € A — v,
be B—w.

Note that for any A, B # C, D, v(A, B) Nv(C, D) = ¢.

Define

D,= |J vA4B).

{A,B},veANB
So |Dy| = (‘12“) (r —1)2, where d, denotes the degree of v in H.
Claim 1: For u # v, D, N D,, = ¢.(Otherwise 3Cy.)
Claim 2: No pairs in D, is contained in an edge.(Otherwise 3C5.)

Since H contains No 2-cycles, and the number of pairs of vertices contained in edges is
exactly ( )m by claim 2,

(n) - <T>m > #{a,u,b} where au, bu are in different edges
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as y., dy =rm.
= r2(r — 1)2m2 —r(r—1)(r—2)nm— n2(n -1)<0

= o(H) < n +r2—4r+ r—2
e =m< ———1/n n.
—r(r—1) 4 2r(r—1)

Lower bound:

Consider ER,;, we say a vertex U € [ ‘1/ } is isotropic if U_LU.
q

Recall a non-degenerate orthogonal geometry on V = ]Fg corresponding to the bilinear form
TY = 21y1 + T2y2 + T3Y3.
The non-degenerate means that No non-zero vertex of V' is orthogonal to all vertices of V.
Claim 1: Any isotropic vertex is not contained in triangles.
Proof: ¥ ¥ =0, ZLspan{Z,y,Z} =V, so &£ =0. A contradiction.
Claim 2: No edges of FR, which has 2 isotropic vertices.
Proof: Suppose not, - Z=0,¢-y=0 & &y =0, assume span{Z} # span{y}.

Consider the 2-dim subspace W = span{Z,y}. = ZLW, yLW. Since the geometry is
non-degenerate, the orthogonal complement of 2-dim subspace is a 1-dim subspace. So,
span{Z} = span{y}, a contradiction.

Let H be a 3-graph obtained from the set of non-isotropic of ER,, such that {U;,Us, Us} €
E(H) if and only if U UsUs is a triangle of ER,.

It is easy to see that H is Cy-free.

#edges in the induced subgraph of ER, on the non-isotropic vertices

= e(ER,) —qlg + 1) = TTDMZL),

Since each such edge is in one triangle, we get that,

(1+q9gla—-1) _ <q+1>‘

e(H) = #triangles in ER, = ; :

And H contains 5-cycle (¢ > 27).



