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Projective k3 3-free norm graphs

Definition: The graph H = H (g, 3) is defined as follows:

Let V(H) = Fp x F?.

Two distinct vertices (A, a) and (B, b) are adjacent if and only if N(A+B) =
ab, where N(X) = X't for X € Fe.

Remark: Norm of Fyi: Nj(X) =X - X7 ... X7 for X € F,
(Vi(X))? = Ni(X)

So we have |V (H)| = ¢ — ¢*.
If (A,a) and (B,b) are adjacent, then (A4, a) and B # —A determine b. So
the degree of each vertex in V(H) is either ¢ —1 or ¢ —2 (when N(A+A) = a?).

Theorem 1: The graph H = H(q,3) contains no subgraph isomorphic to
K3 5. Thus there exists a constant C such that for every n = ¢® — ¢%, where ¢
is a prime power, ex(n, K3 3) > %n% + %ng +C.

Remark: The upper bound of Firedi is ex(n, K33) < %nﬁ +n5 + 3n. (%)

Lemma 1: Let K be a field, and a;;,b; € K for 1 < 4,5 < 2 such that a1; # ag;.
Then the system of equations

(331 - Cln)(l"z - alz) =b (1)

(w2 — ag1)(x2 — az2) = bo (2)

has at most 2 solutions (r1,72) € K2.

Proof: (2)7(1), we get (a11 — (121)%2 + (a12 — a22)$1 +ag1a922 — 11020 = b2 — bl.

Hence we can express x1 in terms of a linear function of .

Substituting this back to (1), we obtain a quadratic equation in x5 with a
nonzero leading coefficient.

This equation has at most 2 solutions in x5, and each one determines x
uniquely. O

Lemma 2: If (Dq,d;),(Ds,ds),(Ds3,ds) are distinct elements of V(H), then
the system of equations

N(X + D) = zdy (4)
N(X + Dy) = xdy (5)
N(X + D3) = xds (6)



has at most 2 solutions (X, ) € Fp x F}.

Proof: Suppose 3 a solution (X, z), then « # —D, for i =1,2,3 and D, # D;
for ¢ # j (Since if D; = D;, we have d; = d;).

= N(X + D3) € Fy, N(D; — Do) € Fy (i =1,2)

Wk = N((X + Di)/(X + Dy)) = di/ds (i =1,2)

Divide each of the above equation by N(D; — D3), we get N(Y + 4;) =
(Y + AJ(Y‘I + Ag) = b;, where Y = 1/(X + Dg), A, = 1/(D2 — D3) and
b; = d;/(dsN(D; — D3)) for i = 1,2. (Using (A + B)? = A%+ B? for all A, B
in ]Fq2)

By Lemma 1, it has at most 2 solutions. O

Ramsey Numbers

Definition: The k-color Ramsey number Ry (G) is the maximum integer m
such that one can color the edges of the complete graph K,, using k colors with
no monochromatic copy of G.

The multicolor Ramsey number of a bipartite graph is strongly related to
its Turdn number:

On one hand, we have k - ex(Ri(G),G) > (R’“Q(G)) (xx). Hence an upper
bound on the Turdn number can immediately be converted into an upper bound
on the multicolor Ramsey number.

On the other hand, we obtain a lower bound for the Ramsey number from
a lower bound on the Turdn number if our construction of a G-free graph can
be used to construct an (almost) complete tiling of the complete graph.

Theorem (Chung, Graham, Spencer): ck?/log®k < Ri(Ks3) < (2 + o(1))k3
We will use H(g,3) to obtain an asymptotic formula for Ry (K3 3).

Fact: There is a prime number between n and n + o(n).

Theorem 2: Ry (Ks33) = (1+o(1))k?

Proof: Knowing Fiiredi’s upper bound (x) for the Turdn number of K3 s-free,
inequality (x) provides Ry (G) < (1 + o(1))k3.

For the other direction, we define an almost complete (g — 1)-coloring of the
edges of K(42_1)(q—1) such that there is no monochromatic K3 3. The edges that
are missing from disjoint complete bipartite graphs of order 2¢ — 2 and thus can
be colored recursively.

The vertices are labeled by the elements in Fg: x F;. If A # —B, color
the edge between (A4, a) and (B,b) by N(A + B)/ab. This way, no color class
contains a K3 3. The proof of Theorem 1 works for any fixed color because of



the generality of Lemma 1.

The uncolored edges form (¢* — 1)/2 pairwise disjoint complete bipartite
graphs, each of which has 2(¢ — 1) vertices. Using the same construction re-
cursively, one can color the edges of each such bipartite graph using at most
(1 + 0(1))(29)% additional colors. (Since the uncolored copies of the graphs
K4_1,4-1 are pairwise disjoint, we can use the same set of new colors for each
of them.)

The total number of colors is thus ¢+ o(q), implying the lower bound by the
Fact. U
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General norm-graphs (Kolld, Rényai, and Szabd)

First, we give (but not prove) a generalization of Lemma 1.

Lemma 3: Let K be a field, and a;;,b; € Kfor 1 < ¢,j < t such that a;,; # a4,;.
Then the system of equations

(x1 —a11)(x2 — a12) - (¢ —ayy) = by

(CUl - 021)(@ - a22) s (!Et - a2t) = by

(1 — an ) (w2 — az2) -+ (T4 — a) = by

has at most ¢! solutions (z1,--- ,xz;) € K.

Definition (the general projective norm-graphs): We define the norm
graph G = G+ as follows:

Let V(G) = th.
a? "' = gld'-D/a-1) ¢ F,.

Let a # b € V(G) be adjacent if and only if N(a+b) = 1.

Fact: The number of solutions in Fy: of the equation N(a) = 11is (¢"—1)/(g—1).
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Thus, let n = ¢¢ = v(G), then e(G) > %qt(qt_1 -1 > %n
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Theorem 3: The graph G = G(g,t) contains no subgraph isomorphic to
Kipq1.

Corollary 1: For t > 2 and s > t! + 1, we have ex(n, Kt 5) > ¢ ~n2*%, where
¢t > 0 is a constant depending on ¢, we may choose ¢; = 2%, For every ¢ and
s > t, the inequality holds with ¢ = % for infinitely many values of n.

Proof of Theorem 3: If dy,--- ,d; are ¢ distinct elements from Fg:, and we
i—1

choose K =Ty, aj; = —dj , x; = A b; =1 in Lemma 3, then the system



of equations

N(z +dy) + (z+dy) (@ +df) - (29 +d% )=1

1

N(z+d) + (x+d)(a?+d?) - (a7 +dl )=1
has at most t! solutions = € F. O

Then, with these techniques, Alon et al. gave an improved construction.

Definition(the general projective norm-graphs): For any ¢t > 2, define
H = H,; as follows:

Let V(H) = Fgi-14F.

Two distinct (4, a) and (B, b) € V(H) are adjacent if and only if N(A+B) =

2

ab, where N(X) = X1tat+a""

Note that: (1) |V(H)| = ¢' — ¢'=1; (2) If (4,a) and (B,b) are adjacent, then
(A,a) and B # —A determine b.



