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Projective k3,3-free norm graphs

Definition: The graph H = H(q, 3) is defined as follows:
Let V (H) = Fq2 × F∗

q .
Two distinct vertices (A, a) and (B, b) are adjacent if and only if N(A+B) =

ab, where N(X) = X1+q for X ∈ Fq2 .

Remark: Norm of Fql : Nl(X) = X ·Xq · · · · ·Xql−1

for X ∈ Fql

(Nl(X))q = Nl(X)

So we have |V (H)| = q3 − q2.
If (A, a) and (B, b) are adjacent, then (A, a) and B 6= −A determine b. So

the degree of each vertex in V (H) is either q2−1 or q2−2 (when N(A+A) = a2).

Theorem 1: The graph H = H(q, 3) contains no subgraph isomorphic to
K3,3. Thus there exists a constant C such that for every n = q3 − q2, where q

is a prime power, ex(n,K3,3) > 1
2n

5
3 + 1

3n
4
3 + C.

Remark: The upper bound of Füredi is ex(n,K3,3) 6 1
2n

5
3 + n

4
3 + 3n. (?)

Lemma 1: Let K be a field, and aij , bi ∈ K for 1 6 i, j 6 2 such that a1j 6= a2j .
Then the system of equations

(x1 − a11)(x2 − a12) = b1 (1)

(x2 − a21)(x2 − a22) = b2 (2)

has at most 2 solutions (x1, x2) ∈ K2.

Proof: (2)−(1), we get (a11−a21)x2 +(a12−a22)x1 +a21a22−a11a22 = b2−b1.
Hence we can express x1 in terms of a linear function of x2.
Substituting this back to (1), we obtain a quadratic equation in x2 with a

nonzero leading coefficient.
This equation has at most 2 solutions in x2, and each one determines x1

uniquely.

Lemma 2: If (D1, d1), (D2, d2), (D3, d3) are distinct elements of V (H), then
the system of equations

N(X + D1) = xd1 (4)

N(X + D2) = xd2 (5)

N(X + D3) = xd3 (6)
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has at most 2 solutions (X,x) ∈ Fq2 × F∗
q .

Proof: Suppose ∃ a solution (X,x), then x 6= −Di for i = 1, 2, 3 and Di 6= Dj

for i 6= j (Since if Di = Dj , we have di = dj).
⇒ N(X + D3) ∈ F∗

q , N(Di −D2) ∈ F∗
q (i = 1, 2)

(4)×(5)
(6) ⇒ N((X + Di)/(X + D3)) = di/d3 (i = 1, 2)

Divide each of the above equation by N(Di − D3), we get N(Y + Ai) =
(Y + Ai)(Y

q + Aq
i ) = bi, where Y = 1/(X + D3), Ai = 1/(Di − D3) and

bi = di/(d3N(Di −D3)) for i = 1, 2. (Using (A + B)q = Aq + Bq for all A, B
in Fq2)

By Lemma 1, it has at most 2 solutions.

Ramsey Numbers

Definition: The k-color Ramsey number Rk(G) is the maximum integer m
such that one can color the edges of the complete graph Km using k colors with
no monochromatic copy of G.

The multicolor Ramsey number of a bipartite graph is strongly related to
its Turán number:

On one hand, we have k · ex(Rk(G), G) >
(
Rk(G)

2

)
(??). Hence an upper

bound on the Turán number can immediately be converted into an upper bound
on the multicolor Ramsey number.

On the other hand, we obtain a lower bound for the Ramsey number from
a lower bound on the Turán number if our construction of a G-free graph can
be used to construct an (almost) complete tiling of the complete graph.

Theorem (Chung, Graham, Spencer): ck3/log3k 6 Rk(K3,3) 6 (2 + o(1))k3

We will use H(q, 3) to obtain an asymptotic formula for Rk(K3,3).

Fact: There is a prime number between n and n + o(n).

Theorem 2: Rk(K3,3) = (1 + o(1))k3

Proof: Knowing Füredi’s upper bound (?) for the Turán number of K3,3-free,
inequality (??) provides Rk(G) 6 (1 + o(1))k3.

For the other direction, we define an almost complete (q− 1)-coloring of the
edges of K(q2−1)(q−1) such that there is no monochromatic K3,3. The edges that
are missing from disjoint complete bipartite graphs of order 2q−2 and thus can
be colored recursively.

The vertices are labeled by the elements in Fq2 × F∗
q . If A 6= −B, color

the edge between (A, a) and (B, b) by N(A + B)/ab. This way, no color class
contains a K3,3. The proof of Theorem 1 works for any fixed color because of
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the generality of Lemma 1.
The uncolored edges form (q2 − 1)/2 pairwise disjoint complete bipartite

graphs, each of which has 2(q − 1) vertices. Using the same construction re-
cursively, one can color the edges of each such bipartite graph using at most
(1 + o(1))(2q)

1
3 additional colors. (Since the uncolored copies of the graphs

Kq−1,q−1 are pairwise disjoint, we can use the same set of new colors for each
of them.)

The total number of colors is thus q+o(q), implying the lower bound by the
Fact.

General norm-graphs (Kollá, Rónyai, and Szabó)

First, we give (but not prove) a generalization of Lemma 1.

Lemma 3: Let K be a field, and aij , bi ∈ K for 1 6 i, j 6 t such that ai1j 6= ai2j .
Then the system of equations

(x1 − a11)(x2 − a12) · · · (xt − a1t) = b1

(x1 − a21)(x2 − a22) · · · (xt − a2t) = b2

...

(x1 − at1)(x2 − at2) · · · (xt − att) = bt

has at most t! solutions (x1, · · · , xt) ∈ Kt.

Definition (the general projective norm-graphs): We define the norm
graph G = Gq,t as follows:

Let V (G) = Fqt .
For a ∈ Fqt , let N(a) denote the Fqt/Fq-norm of a. i.e. N(a) = a · aq · · · · ·

aq
t−1

= a(q
t−1)/(q−1) ∈ Fq.

Let a 6= b ∈ V (G) be adjacent if and only if N(a + b) = 1.

Fact: The number of solutions in Fqt of the equation N(a) = 1 is (qt−1)/(q−1).

Thus, let n = qt = v(G), then e(G) > 1
2q

t( qt−1
q−1 − 1) > 1

2q
2t−1 = 1

2n
2− 1

t .

Theorem 3: The graph G = G(q, t) contains no subgraph isomorphic to
Kt,t!+1.

Corollary 1: For t > 2 and s > t! + 1, we have ex(n,Kt,s) > ct · n2− 1
t , where

ct > 0 is a constant depending on t, we may choose ct = 2−t. For every t and
s > t, the inequality holds with c = 1

2 for infinitely many values of n.

Proof of Theorem 3: If d1, · · · , dt are t distinct elements from Fqt , and we

choose K = Fqt , aij = −dq
i−1

j , xj = xqj−1

, bj = 1 in Lemma 3, then the system
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of equations

N(x + d1) + (x + d1)(xq + dq1) · · · (xqt−1

+ dq
t−1

1 ) = 1

...

N(x + dt) + (x + dt)(x
q + dqt ) · · · (xqt−1

+ dq
t−1

t ) = 1

has at most t! solutions x ∈ Fqt .

Then, with these techniques, Alon et al. gave an improved construction.

Definition(the general projective norm-graphs): For any t > 2, define
H = Hq,t as follows:

Let V (H) = Fqt−1×F∗
q .

Two distinct (A, a) and (B, b) ∈ V (H) are adjacent if and only if N(A+B) =

ab, where N(X) = X1+q+···+qt−2

.

Note that: (1) |V (H)| = qt − qt−1; (2) If (A, a) and (B, b) are adjacent, then
(A, a) and B 6= −A determine b.
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