Extremal and Probabilistic Graph Theory April 27th, Thursday

Projective $k_{3,3}$ -free norm graphs

Definition: The graph H = H(q, 3) is defined as follows:

Let $V(H) = \mathbb{F}_{q^2} \times \mathbb{F}_q^*$.

Two distinct vertices (A, a) and (B, b) are adjacent if and only if N(A+B) = ab, where $N(X) = X^{1+q}$ for $X \in \mathbb{F}_{q^2}$.

Remark: Norm of \mathbb{F}_{q^l} : $N_l(X) = X \cdot X^q \cdots X^{q^{l-1}}$ for $X \in \mathbb{F}_{q^l}$ $(N_l(X))^q = N_l(X)$

So we have $|V(H)| = q^3 - q^2$.

If (A, a) and (B, b) are adjacent, then (A, a) and $B \neq -A$ determine b. So the degree of each vertex in V(H) is either $q^2 - 1$ or $q^2 - 2$ (when $N(A+A) = a^2$).

Theorem 1: The graph H = H(q, 3) contains no subgraph isomorphic to $K_{3,3}$. Thus there exists a constant C such that for every $n = q^3 - q^2$, where q is a prime power, $ex(n, K_{3,3}) \ge \frac{1}{2}n^{\frac{5}{3}} + \frac{1}{3}n^{\frac{4}{3}} + C$.

Remark: The upper bound of Füredi is $ex(n, K_{3,3}) \leq \frac{1}{2}n^{\frac{5}{3}} + n^{\frac{4}{3}} + 3n$. (*)

Lemma 1: Let \mathbb{K} be a field, and $a_{ij}, b_i \in \mathbb{K}$ for $1 \leq i, j \leq 2$ such that $a_{1j} \neq a_{2j}$. Then the system of equations

$$(x_1 - a_{11})(x_2 - a_{12}) = b_1 \tag{1}$$

$$(x_2 - a_{21})(x_2 - a_{22}) = b_2 \tag{2}$$

has at most 2 solutions $(x_1, x_2) \in \mathbb{K}^2$.

Proof: (2)-(1), we get $(a_{11}-a_{21})x_2 + (a_{12}-a_{22})x_1 + a_{21}a_{22} - a_{11}a_{22} = b_2 - b_1$. Hence we can express x_1 in terms of a linear function of x_2 .

Substituting this back to (1), we obtain a quadratic equation in x_2 with a nonzero leading coefficient.

This equation has at most 2 solutions in x_2 , and each one determines x_1 uniquely.

Lemma 2: If $(D_1, d_1), (D_2, d_2), (D_3, d_3)$ are distinct elements of V(H), then the system of equations

$$N(X+D_1) = xd_1 \tag{4}$$

$$N(X+D_2) = xd_2 \tag{5}$$

$$N(X+D_3) = xd_3 \tag{6}$$

has at most 2 solutions $(X, x) \in \mathbb{F}_{q^2} \times \mathbb{F}_q^*$.

Proof: Suppose \exists a solution (X, x), then $x \neq -D_i$ for i = 1, 2, 3 and $D_i \neq D_j$ for $i \neq j$ (Since if $D_i = D_j$, we have $d_i = d_j$). $\Rightarrow N(X + D_3) \in \mathbb{F}_q^*$, $N(D_i - D_2) \in \mathbb{F}_q^*$ (i = 1, 2)

 $\frac{(4)\times(5)}{(6)} \Rightarrow N((X+D_i)/(X+D_3)) = d_i/d_3 \ (i=1,2)$

Divide each of the above equation by $N(D_i - D_3)$, we get $N(Y + A_i) = (Y + A_i)(Y^q + A_i^q) = b_i$, where $Y = 1/(X + D_3)$, $A_i = 1/(D_i - D_3)$ and $b_i = d_i/(d_3N(D_i - D_3))$ for i = 1, 2. (Using $(A + B)^q = A^q + B^q$ for all A, B in \mathbb{F}_{q^2})

By Lemma 1, it has at most 2 solutions.

Ramsey Numbers

Definition: The k-color Ramsey number $R_k(G)$ is the maximum integer m such that one can color the edges of the complete graph K_m using k colors with no monochromatic copy of G.

The multicolor Ramsey number of a bipartite graph is strongly related to its Turán number:

On one hand, we have $k \cdot ex(R_k(G), G) \ge {\binom{R_k(G)}{2}} (\star \star)$. Hence an upper bound on the Turán number can immediately be converted into an upper bound on the multicolor Ramsey number.

On the other hand, we obtain a lower bound for the Ramsey number from a lower bound on the Turán number if our construction of a G-free graph can be used to construct an (almost) complete tiling of the complete graph.

Theorem (Chung, Graham, Spencer): $ck^3/log^3k \leq R_k(K_{3,3}) \leq (2+o(1))k^3$

We will use H(q, 3) to obtain an asymptotic formula for $R_k(K_{3,3})$.

Fact: There is a prime number between n and n + o(n).

Theorem 2: $R_k(K_{3,3}) = (1 + o(1))k^3$

Proof: Knowing Füredi's upper bound (*) for the Turán number of $K_{3,3}$ -free, inequality (**) provides $R_k(G) \leq (1 + o(1))k^3$.

For the other direction, we define an almost complete (q-1)-coloring of the edges of $K_{(q^2-1)(q-1)}$ such that there is no monochromatic $K_{3,3}$. The edges that are missing from disjoint complete bipartite graphs of order 2q-2 and thus can be colored recursively.

The vertices are labeled by the elements in $\mathbb{F}_{q^2} \times \mathbb{F}_q^*$. If $A \neq -B$, color the edge between (A, a) and (B, b) by N(A + B)/ab. This way, no color class contains a $K_{3,3}$. The proof of **Theorem 1** works for any fixed color because of the generality of Lemma 1.

The uncolored edges form $(q^2 - 1)/2$ pairwise disjoint complete bipartite graphs, each of which has 2(q - 1) vertices. Using the same construction recursively, one can color the edges of each such bipartite graph using at most $(1 + o(1))(2q)^{\frac{1}{3}}$ additional colors. (Since the uncolored copies of the graphs $K_{q-1,q-1}$ are pairwise disjoint, we can use the same set of new colors for each of them.)

The total number of colors is thus q + o(q), implying the lower bound by the **Fact**.

General norm-graphs (Kollá, Rónyai, and Szabó)

First, we give (but not prove) a generalization of Lemma 1.

Lemma 3: Let \mathbb{K} be a field, and $a_{ij}, b_i \in \mathbb{K}$ for $1 \leq i, j \leq t$ such that $a_{i_1j} \neq a_{i_2j}$. Then the system of equations

$$(x_1 - a_{11})(x_2 - a_{12}) \cdots (x_t - a_{1t}) = b_1$$

$$(x_1 - a_{21})(x_2 - a_{22}) \cdots (x_t - a_{2t}) = b_2$$

$$\vdots$$

$$(x_1 - a_{t1})(x_2 - a_{t2}) \cdots (x_t - a_{tt}) = b_t$$

has at most t! solutions $(x_1, \cdots, x_t) \in \mathbb{K}^t$.

Definition (the general projective norm-graphs): We define the norm graph $G = G_{q,t}$ as follows:

Let $V(G) = \mathbb{F}_{q^t}$.

For $a \in \mathbb{F}_{q^t}$, let N(a) denote the $\mathbb{F}_{q^t}/\mathbb{F}_q$ -norm of a. i.e. $N(a) = a \cdot a^q \cdot \cdots \cdot a^{q^{t-1}} = a^{(q^t-1)/(q-1)} \in \mathbb{F}_q$.

Let $a \neq b \in V(G)$ be adjacent if and only if N(a+b) = 1.

Fact: The number of solutions in \mathbb{F}_{q^t} of the equation N(a) = 1 is $(q^t - 1)/(q - 1)$.

Thus, let $n = q^t = v(G)$, then $e(G) \ge \frac{1}{2}q^t(\frac{q^t-1}{q-1}-1) \ge \frac{1}{2}q^{2t-1} = \frac{1}{2}n^{2-\frac{1}{t}}$.

Theorem 3: The graph G = G(q, t) contains no subgraph isomorphic to $K_{t,t!+1}$.

Corollary 1: For $t \ge 2$ and $s \ge t! + 1$, we have $ex(n, K_{t,s}) \ge c_t \cdot n^{2-\frac{1}{t}}$, where $c_t > 0$ is a constant depending on t, we may choose $c_t = 2^{-t}$. For every t and $s \ge t$, the inequality holds with $c = \frac{1}{2}$ for infinitely many values of n.

Proof of Theorem 3: If d_1, \dots, d_t are t distinct elements from \mathbb{F}_{q^t} , and we choose $\mathbb{K} = \mathbb{F}_{q^t}$, $a_{ij} = -d_j^{q^{i-1}}$, $x_j = x^{q^{j-1}}$, $b_j = 1$ in **Lemma 3**, then the system

of equations

$$N(x+d_1) + (x+d_1)(x^q+d_1^q)\cdots(x^{q^{t-1}}+d_1^{q^{t-1}}) = 1$$

$$\vdots$$

$$N(x+d_t) + (x+d_t)(x^q+d_t^q)\cdots(x^{q^{t-1}}+d_t^{q^{t-1}}) = 1$$

has at most t! solutions $x \in \mathbb{F}_{q^t}$.

Then, with these techniques, Alon et al. gave an improved construction.

Definition(the general projective norm-graphs): For any t > 2, define

 $\begin{aligned} H &= H_{q,t} \text{ as follows:} \\ \text{Let } V(H) &= \mathbb{F}_{q^{t-1} \times} \mathbb{F}_q^*. \\ \text{Two distinct } (A,a) \text{ and } (B,b) \in V(H) \text{ are adjacent if and only if } N(A+B) = \\ ab, \text{ where } N(X) &= X^{1+q+\dots+q^{t-2}}. \end{aligned}$

Note that: (1) $|V(H)| = q^t - q^{t-1}$; (2) If (A, a) and (B, b) are adjacent, then (A, a) and $B \neq -A$ determine b.