Extremal and Probabilistic Graph Theory Lecture 1 Instructor Jie Ma Feb 28th, Tuesday

First we review some Min-Max Theorems.

Theorem 1.1 (König Theorem). For a bipartite graph G, the minimum number of a vertex-cover in G =the maximum size of a matching in G

Definition 1.2. A vertex-cover A is a set of V(G), s.t. $V(G)\setminus A$ is a stable set.

Theorem 1.3 (Menger's Theorem). For any graph G and any subset A, $B \subset V(G)$, the minimum size of a cut S separating A from B in G = the maximum number of vertex-disjoint paths from A to B in G

We will investigate some Min-Max relations on packings and coverings in digraphs.

Definition 1.4. A (proper) coloring of digraph D is just a (proper) coloring of its underlying graph G.

Definition 1.5. The chromatic number $\chi(D)$ of digraph D is the chromatic number $\chi(G)$ of graph G.

Definition 1.6. A path or cycle in digraph denotes a directed path or cycle.

Theorem 1.7 (Gallai-Roy Theorem). Every digraph D has a path with $\chi(D)$ vertices.

Proof. We say a path in digraph is a u-path if the first vertex of it is u.

Let k be the number of vertices in a longest path in D, so it will sufficient to show that there exists a k-coloring of D.

Let D' be a maximum acyclic subdigraph of D, and for any $v \in V(D)$, define c(v) to be the number of vertices in a longest v-path in D', then it is easy to see: $1 \le c(v) \le k$.

Then we show that this function $c:V(D)\to [k]$ is a proper coloring of D.

Consider any arc $(u, v) \in A(D)$, we claim that $c(u) \neq c(v)$.

Case $1:(u,v) \in A(D)$

Consider the longest v-path P in D', then $u \notin P$, otherwise we get a cycle! So we have $c(u) \ge c(v) + 1$, done!

Case $2:(u,v) \notin A(D)$

Then (u, v) + D' contains a cycle, for D' is the maximum graph. So D' contains a path P from v to u. Let Q denotes the longest u-path in D', for the similar reason, P and Q are disjoint , except at u. Then $P \cup Q$ is longer than Q, so we have c(v) > c(u), done!

Exercises:

For digraph D, let $\lambda(D)$ = the number of vertices in a longest path in D. Then for graph G, we have $\chi(D) = min\{\lambda(D) : D \text{ is an orientation of G}\}.$

Definition 1.8. A path partition \mathscr{P} of a digraph is a collection of vertex-disjoint paths, s.t. the union of the vertex set of those path is V(D). A single vertex can be viewed as a trivial path.

Definition 1.9. Let $\pi(D) = \min |\mathscr{P}|$, where the minimum is taken for all path partitions, and let $\alpha(D)$ =maximum size of a stable set in D.

Then we have:

Theorem 1.10 (Gallai-Milgram Theorem). For any digraph $D,\pi(D) \leq \alpha(D)$.

Proof. We prove a stronger statement:

We say a stable set S is orthogonal to a path partition $\mathscr{P},$ if every $P\in\mathscr{P}$, has exactly one common vertex in S.

We also need the following lemma:

Let \mathscr{P} be a path partition, suppose no stable set in D orthogonal to \mathscr{P} , then there exists a path partition \mathscr{Q} in D, s.t. $|\mathscr{Q}| = |\mathscr{P}| - 1$, $i(\mathscr{Q}) \subset i(\mathscr{P})$, & $t(\mathscr{Q}) \subset t(\mathscr{P})$. Here, $i(\mathscr{P})$ and $t(\mathscr{P})$ denotes the sets of first vertices and last vertices in the paths of \mathscr{P} respectively.

Proof of the lemma: By induction on the vertices of D.

Base case is trivial when |V(D)| = 1.

General cases: By the hypothesis, $t(\mathscr{P})$ is not stable. So there exists $y, z \in t(\mathscr{P})$, & $(y, z) \in A(D)$.

If $|V(P_z)| = 1$, then \mathcal{Q} is obtained from \mathcal{P} by deleting the path P_z and replace P_y by $P_y \cap (y, z)$, done! Here P_y denotes the path with the end points y.

If $|V(P_z)| \geq 2$, let x be the predecessor of z in P_z . Consider $D' = D \setminus \{z\}, P_z' = P_z \setminus \{z\}, \& \mathscr{P}' = (\mathscr{P} \setminus \{P_z\}) \bigcup \{P_z'\}.$

We should note that $t(P') = (t(P) \setminus \{z\}) \cup \{x\}, i(\mathscr{P}') = i(\mathscr{P})$

And if there is a stable set S' in D' orthogonal to \mathscr{P}' , then clearly this is also a stable set in D and also orthogonal to \mathscr{P} , which leads to a contradiction!

So, there are no such stable set in D'. By induction on D', we can find a new path partition \mathcal{Q}' in D', with $|\mathcal{Q}'| = |\mathcal{P}'| - 1$, $i(\mathcal{Q}') \subset i(\mathcal{P}')$, & $t(\mathcal{Q}') \subset t(\mathcal{P}')$, then either x or $y \in t(\mathcal{Q}')$.

If $x \in t(\mathcal{Q}')$, add the arc (x, z) is ok. Otherwise, add the arc (y, z) is done!

In both cases, we have $|\mathcal{Q}| = |\mathcal{P}| - 1$, $i(\mathcal{Q}) \subset i(\mathcal{P})$, & $t(\mathcal{Q}) \subset t(\mathcal{P})$.

Now we turn to prove the main theorem:

Choose \mathscr{P} to be the minimum partition of D, then by our lemma before, there must be a stable set S orthogonal to \mathscr{P} , so $\pi(D) = |\mathscr{P}| \le |S| \le \alpha(D)$.

Summary:

Gallai-Roy Theorem says that any digraph D has a path with $\chi(D)$ vertices, or equivalently, Minimum number of disjoint stable sets whose union in $V(D) \leq \text{maximum}$ of the number of vertices in a path of D.

Gallai-Milgram Theorem says that for any digraph D we have $\pi(D) \leq \alpha(D)$, or equivalently, Minimum number of disjoint paths whose union in $V(D) \leq \text{maximum}$ of the number of vertices in a stable set of D.

Now we can see that Gallai-Roy Theorem and Gallai-Milgram Theorem have the following dual relation: one can be transformed from another by just interchanging the rolse of paths and $stable\ sets$.