Extremal and Probabilistic Graph Theory

June 1st, Thursday

Lemma 8. Let $\delta > 0$, $r \ge 3$ and $k \ge 4$. Let H be an r-graph and $E \subset \partial H$ with $|E| > \delta \cdot n^{r-1}$. Suppose $d_H(f) > l+1$ for $\forall f \in E$ and if r=3 and k is odd, then in addition, for $\forall f=xy \in E$, there is $e_f = xy\alpha \in H$ s.t. $\min\{d_H(x\alpha), d_H(y\alpha)\} \ge 2$ and $\max\{d_H(x\alpha), d_H(y\alpha)\} \ge 3k+1$. Then for large $n, C_k \subset H, P_k \subset H$.

Proof. By lemma 7, it suffices to show $\psi_t(H) \neq \emptyset$.

Let T be a random subset of V(H) obtained by picking each vertex of V(H) with probability $p = \frac{1}{2}$. Let $F = \{ f \in E | f \subset T, |N_H(f) - T| \ge m = l + 1, e_f - f \notin T \}$.

For $f \in E$, fix the m edges $e_1, \dots, e_m \in H$ containing f s,t, $e_1 = e_f$. The probability that $f \subset T$ and $e_i - f \notin T$ for $\forall i \in [m]$ is exactly $(\frac{1}{2})^{r-1+m}$, so $E[|F|] \ge |E|(\frac{1}{2})^{r+l} \ge \delta n^{r-1}2^{-(r+l)}$, so there is a subset $T \subset V(H)$ with $|F| > \delta 2^{-(r+l)}n^{r-1}$.

By lemma 3, there is a complete (r-1)-partite (r-1)-graph $G \subset F$ with each part of size t. Since $|L_G(f)| \ge |N_H(f) - T| \ge l+1$ for $\forall f \in G$, we prove that $\psi_t(H) \ne \emptyset$.

Recall

Def. An *n*-vertex *r*-graph *H* is (t,c)-sparse if \forall t-subset of vertices lies in at most *c* edges of *H*. **Lemma 4.** Fix c > - and $r, k \ge 3$. Let *H* be an *n*-vertex (r-1,c)-sparse *r*-graph not containing P_k . Then $|H| = o(n^{r-3})$.

Main Thm(Asymptotics). Let $r \ge 3$, $k \ge 4$.

(a) If H is an n-vertex (l+1)-full r-graph and H is C_k -free or P_k -free. Then $|H| = o(n^{r-1})$. (b) $ex_r(n, P_k) \sim ex_r(n, C_k) \sim l \cdot \binom{n}{r-1}$.

Proof. (a) We claim $|\partial H| = o(n^{r-1})$.

Suppose not that $|\partial H| \ge \delta \cdot n^{r-1}$ where $\delta > 0$ and n is large.

If $r \ge 4$ or r = 3&k is even, by lemma 8, H contains C_k and P_k , a contradiction.

So assume r=3 and k is odd. Let H^* be the set of edges of H containg NO pairs of codegree at least 3k. So H^* is (2,3k)-sparse. By lemma4, $|H^*| = o(n^2)$.

Let $F = \partial H - \partial H^*$. So for $\forall f \in F$, there is an $e \in H$ containing f and containing a pair f' with $d_H(f') \ge 3k + 1$. Then $|F| \ge |\partial H| - |\partial H^*| \ge \delta \cdot n^2 - o(n^2) \ge \frac{\delta}{2}n^2$ (for large n).

Define $E \subset F$ to be the set as in lemma 8. Fix $f \in F$, we want to map f to some $f' \in E$.

Case 1. If all edges, say $xyz \in H$, containing f, satisfy that $d_H(xy) \ge 3k+1$, $d_H(xz) \ge 3k+1$, $d_H(yz) \ge 3k+1$, we can just map f to itself.

Case 2. \exists an edge $xyz \in H$ containing f s.t. one of the pairs f' has codegree at most 3k and one of the pairs has codegree at least 3k+1, we can map f to $f' \in E$.

Claim. There are at most 6k + 1 subedges $f \in F$ which can be mapped to the same $f' \in E$. If f is in Case 1, then it is 1 to 1 mapping.

If f is in Case 2, then $d_H(f') \le 3k$, therefore there are at most 6k + 1 pairs can lie in an edge containing f'

This claim shows $|E| \ge |F|/(6k+1) \ge (\delta/(12k+2)) \cdot n^2$. Then by lemma 8, we can find C_k and P_k . This proves the claim that $|\partial H| \leq o(n^{r-1})$. By lemma 1, H has a r(k+1)-full subgraph H' with $|H'| \geq |H| - r(k+1)|\partial H|$. By lemma 2, if $H' \neq \emptyset$, then $H' \supset C_k$, a contradiction. Then $H' = \emptyset \Rightarrow |H| \leq r(k+1)|\partial H| = o(n^{r-1})$.