
Extremal and Probabilistic Graph Theory
Lecture 2

Instructor Jie Ma
Mar 2nd, Tuesday

Notation
In this lecture, we use G denotes a graph, and D denotes a digraph.
A k-graph means a k-uniform hypergraph.

Recall
Gallai-Roy Theorem

For any digraph D, there’s a directed path with at least χ(D) vertices.
Gallai-Milgram Theorem

For any digraph D, we have π(D) ≤ α(D).

Definition 2.1. A partial ordered set (or poset) is an ordered pair (X,R),where R is a relation
on X and usually replaced by ⪯, satisfying the following three properties:

• reflexive:x ⪯ x,∀x ∈ X

• antisymmetric: if x ⪯ y and y ⪯ x,then we have x = y

• transitive:if x ⪯ y and y ⪯ z,then we have x ⪯ z

An antichain means that any two elements x, y ∈ X,satisfying neither x ⪯ y nor y ⪯ x.

Theorem 2.2 (Dilworth’s Theorem). For any poset P = (X,⪯), the minimum number of disjoint
chains whose union is X = the maximum number of elements in antichain.

Proof. The proof of Dilworth’s Theorem is left as an exercise, which can be done via Gallai-
Milgram Theorem.

For the relation between cycles and α(D) we cannot hope to partition V (D) into cycles. In
this lecture, we should consider cycle covering.

Theorem 2.3 (Bessy-Thomasse Theorem/Gallai’s Conjecture). For strongly connected digraph

D, V (D) can be covered by at most α(D) cycles, i.e. there exists cycles C1, C2...Cα, s.t.

α∪
i=1

V (Ci) =

V (D).

Proof. The proof of Bessy-Thomasse Theorem is not difficult and we also leave it as an exercise.
Considering the ear-composition may be helpful.

But for graphs G, it is possible to extend Gallai-Milgram Theorem by partition V (G) into
α(D) cycles (instead of paths).

Theorem 2.4 (Pósa’s Theorem). For any graph G, V (G) can be partitioned into at most α(G)
disjoint cycles, edges and vertices.
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Proof. We prove by induction on α(G).
Because when α(G) = 1, then G = Kn is complete, the conclusion is trivial.
Now consider α(G) ≥ 2.
If there is a vertex v with dG(v) = 0, then as α(G− v) = α(G)− 1 (for v is an isolated point),

we can use induction on G − v to get that V (G) − v can be partitioned into at most α(G) − 1
cycles, vertices and edges. Then adding v back, this partition becomes a desired partition of G.

If there is a vertex v with dG(v) = 1, let NG(v) = {u}, consider G− {u, v}.
Claim 1:α(G− {u, v}) ≤ α(G)− 1.
Proof of claim1: This is ture because that any stable set A in G−{u, v} will give a stable set

A∪{v} in G. Take A to be maximum, then we have α(G) ≥ |A∪{v}| = |A|+1 = α(G−{u, v})+1.
By induction on G− {u, v} to get that V (G− {u, v}) can be partitioned into at most α(G−

{u, v}) − 1 cycles, vertices and edges. Then adding the edge (u, v) back, this partition becomes
a desired partition of G.

Therefore, we can assume δ(G) ≥ 2.
Claim 2: There exists a cycle C and a vertex v ∈ V (C), s.t. NG(v) ⊂ V (C).
Proof of claim2: Take a longest path P in G with two endpoints a&b. Then NG(a) ⊂ V (P )

for P is the longest path in G. Take the furthest neighbour w of a on P , then we have a cycle
C = aPw ∪ {aw}.

Now consider G− V (C).
Claim 3:α(G− V (C)) ≤ α(G)− 1.
Proof of claim3: This is ture because that any stable set A in G− V (C) will give a stable set

A∪{v} in G. Take A to be maximum, then we have α(G) ≥ |A∪{v}| = |A|+1 = α(G−V (C))+1.
By induction on G−V (C) to get that G−V (C) can be partitioned into at most α(G−V (C))−1

cycles, vertices and edges. Then adding the cycle C back, this partition becomes a desired
partition of G.

Definition 2.5. For a hypergraph H, a stable set S is a subset of V (H) which spans no hyper-
graphs. Then we use α(H) denotes the maximum of |S|, where the maximum is taken from all
stable sets S.

Definition 2.6. A linear cycle in a hypergraph H is a sequences of hyperedges e1, e2...er, s.t.

for any i < j, |ei ∩ ej | =

{
1, if j = i+ 1 or (i, j) = (1, r);

0, otherwise.

Theorem 2.7 (Gyárfás-Sarközy Conjecture(Open)). For any k-graph H, V (H) can be partitioned
into at most α(H) linear cycles ,vertex and subsets of hyperedges.

Remark
To see why we consider subsets of hyperedges instead of hyperedges, K

(3)
5 (the complete

3-graph) is just an example.
Exercise

If is easy to prove the conjecture by replacing linear cycles to linear paths, and this is left
as an exercises.

Definition 2.8. A weak cycle in a hypergraph H is a sequences of hyperedges e1, e2...er, s.t.

for any i < j, ei ∩ ej

{̸
= ∅, if j = i+ 1 or (i, j) = (1, r);

= ∅, otherwise.
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Theorem 2.9 (Gyárfás-Sarközy). For any k-graph H, V (H) can be partitioned into at most
α(H) weak cycles ,vertex and subsets of hyperedges.

Remark
Recall the proof the P ósa′s Theorem we should notice that the KEY is to find a suitable

part C and show that
α(G− V (C)) ≤ α(G)− 1

Proof. By induction on α(H).
Base case when α(H) = 1 is trivial, because when this happens it means that H has no edges

and has only one vertex.
So we consider α(H) ≥ 2.
If H has no edges which means that α(H) = |V (H)|, which is also trivial. So we can assume

that H has at least 1 edge.
Take a maximal weak path P in H .Let V (P ) = {1, 2, ..., s} , E(P ) = {e1, e2, ..., et}, M =

et−1 ∩ et, Y = V (P )− et,and F1 = {e ∈ E(H) : e ∩M ̸= ∅, s ∈ e}.
Claim 1: F1 = ∅.
Suppose that F1 ̸= ∅, then clearly that ∀f ∈ F1 must intersect with Y for P is maximal. For

each f ∈ F1, let xf ∈ f ∩Y be the maximum integer, and choose f∗ ∈ F1 s.t. xf∗ is the minimum
among the xf ’s. We also let g be the unique edge of P containing xf∗ and closer to S.

Let C be the weak cycle formed by edges (f∗, g, ..., et),we will show that α(H − V (C)) ≤
α(H)− 1.

Claim that for any stable set A in H − V (C), we see A ∪ {s} is stable in H. If there exists
f0 ⊂ A∪{s}, then f0 ∈ F1 and f0∩(V (P )−V (C)) = ∅, which is a contradiction to the minimality
of xf∗ .

Then by induction on H − V (C) to get that H − V (C) can be partitioned into at most
α(H − V (C)) − 1 weak cycles, vertices and subsets of hyperedges. Then adding the weak cycle
C back, this partition becomes a desired partition of H, and claim 1 is proved.

Let F2 = {e ∈ E(H) : s ∈ e, e ̸= et}.
Claim 2: F2 = ∅.
Suppose that F2 ̸= ∅, then clearly that ∀f ∈ F2 has f ∩M ̸= ∅. Let C = et ∪ f be a weak

cycle on 2 edges. Then we show again that α(H − V (C)) ≤ α(H)− 1.
Because any stable set A inH−V (C) gives a stable set A∪{s} in H. If there exists f0 ⊂ A∪{s},

then f0 ∈ F1 while F1 = ∅, which also leads to a contradiction!
Then by induction on H − V (C) to get that H − V (C) can be partitioned into at most

α(H − V (C)) − 1 weak cycles, vertices and subsets of hyperedges. Then adding the weak cycle
C back, this partition becomes a desired partition of H, and claim 2 is proved.

Therefore, the only edge in H containing s is et, and it is obviously right that α(H − et) ≤
α(H) − 1. Then by induction on H − et to get that H − et can be partitioned into at most
α(H − et) − 1 weak cycles, vertices and subsets of hyperedges. Then adding the hyperedge et
back, this partition becomes a desired partition of H. Done!
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