Extremal and Probabilistic Graph Theory Lecture 4 March 14st, Tuesday

Recall the lecture in the last lesson:

- Lemma.Let H be a 3-graph without linear cycle, and T be a linear tree of H. Let $v \in V(T)$. If $f = (v, a, b) \in E(H)$ is such that $\{a, b\} \cap V(T) \neq \emptyset$, then either $\{a, b\}$ intersects with some edges of E(T) which contains v, or $\{a, b\}$ is an opposite pair to v in T.
- G-S Conjecture. Any k-graph H can be partitioned into at most $\alpha(H)$ linear cycles, vertices or subsets of hyperedges.
- Theorem(G-S). This is true if replacing "linear cycles" with "weak cycles".
- Theorem(Ergemlidze-Györi-Methuku,2017). For 3-graph H, V(H) Can be covered at most $\alpha(H)$ linear cycles, vertices and hyperedges.
- **Definition.** A hypergraph *H* is mixed, if the size of any hyperedge is either 2 or 3. The concept of linear cycles can be easily extended to mixed hypergraph.
- Theorem(E-G-M). For any mixed hypergraph H, V(H) can be covered by $\alpha(H)$ linear cycles, vertices and hyperedges.

Proof: By induction on $\alpha(H)$.

Base case: $\alpha(H) = 1$, then H contains a complete graph, which gives a Hamilton cycle.Done. Let us assume the statement holds for any mixed hypergraph H' with $\alpha(H) < \alpha(H')$. Consider H, Then we may assume $E(H) \neq \phi$. Let P be the longest linear path in H consisting of hyperedges $h_0, h_1, ..., h_l$. If h_i is of size 3, write $h_i = v_i v_{i+1} u_{i+1}$, and if h_i is of size 2, write $h_i = v_i v_{i+1}$. An initial segment of P consisting of $h_0, h_1, ..., h_l$. Let P be a linear cycle in P which contains the longest initial segment of P. If there is no linear cycle containing P0, then we let P1.

An initial segment of P is a linear subpath of P consisting of $h_0, h_1, ..., h_i$. Let $R = \{v_k u_k | \{u_k, v_k\} \subseteq V(P) - V(C), \text{ and } v_0 v_k u_k \in E(H)\}$. Let H' be obtained from H - V(C) by adding the pairs $v_k u_k \in R$ as new edges.

Claim
$$1:\alpha(H') \leq \alpha(H) - 1$$
.

Proof: We in fact can show: for any stable set I in H', $I \cup \{v_0\}$ is also a stable set in H. Suppose by contradiction that there is an edge $h \subseteq I \cup \{v_0\}$ in H. Clearly $v_0 \in h$, next, we consider three cases below:

Case 1:
$$|h \cap (V(P) - V(C))| = 0$$
.

This case is wrong, otherwise, we can find a longest linear path than P.

Case 2:
$$|h \cap (V(P) - V(C))| = 1$$
.

In this case, we can find a linear cycle \widetilde{C} which contains a longest initial segment than C, a contradiction.

Case 3:
$$|h \cap (V(P) - V(C))| = 2$$
.

By the proof of "that lemma", $h \cap (V(P) - V(C))$ must be an opposite pair of P, say $v_k u_k \in R$. But $v_k u_k$ is also belongs to I, a contradiction.

Claim 2: The set of hyperedges of any linear cycle in H' can contain at most one new edge $v_k u_k$ from R.

Proof: Suppose a linear D in H' contains 2 pairs from R. Then, we can find a linear subpath P' of D consisting of edges $h'_0, h'_1, ..., h'_m$, where $h'_0 = v_s u_s, h'_m = v_t u_t$ for s < t.

Let h_i be the edge of P which intersects with P', and subject to this, i is minimum.

Let h'_i be $h'_i \cap h_i \neq \phi$ and subject to this j is minimum.

We consider two cases below:

Case 1: $|h'_j \cap h_i| = 1$. Then we can find a new linear cycle $h_0, h_1, ..., h_i, h'_j, h'_{j-1}, ..., h'_1, v_0 v_s u_s$, which contains a longest initial segment than C.

Case 2: $|h'_j \cap h_i| = 2$. Then $|h'_{j+1} \cap h_i| = 1$., so we have a linear cycle $h_0, h_1, ..., h_i, h'_{j+1}, h'_{j+2}, ..., h'_{m-1}, v_0 v_t u_t$, which also contains a longer initial segment. This is a contradiction.

So claim 2 shows that any linear cycle D' in H' can be extended to a linear cycle D in H, such that $V(D') \subseteq V(D) \subseteq V(D') \bigcup \{v_0\}$. By induction on H', V(H') = V(H) - V(C). And V(H') can be covered by at most $\alpha(H') \leq \alpha(H) - 1$ linear cycle of H', vertices and hyperedges. In view of the above observation, together with the linear cycle C is the desired covering of H.