Extremal and Probabilistic Graph Theory Lecture 5 March 23rd, Thursday

Structure of graphs with high chromatic number

- Theorem1(Erdös): $\forall k, l \ge 0, \exists a \text{ graph } G \text{ with } \chi(G) \ge k \text{ and } girth(G) \ge l.$
- Definition1: We say a graph G is k-critical if $\chi(G) = k$ but for any proper subgraph G' of $G, \chi(G') \leq \chi(G)$.
- Fact1: For any k-critical graph $G, \delta(G) \ge k 1$.

Proof: Suppose $\exists v \in V(G)$, with $d_G(v) \leq k-2$, consider G-v. Since G is k-critical, G-v has a k-1 colouring, and there is a colouring at most k-2 colours in $d_G(v)$, assuming these colours are $1, 2, \dots, j(j \in [k-2])$. We may colour v the (k-1)th colour, then there is a k-1 colouring in G, a contradiction.

• Fact2: Any k-critical graph is 2-connected.

Proof: By Menger Theorem, if G is not 2-connected, there is a cut-vertex say v, s.t. $G = G_1 \bigcup G_2$, $V(G_1) \bigcap V(G_2) = v$, and there is no edge between $G_1 - v$ and $G_2 - v$. Each $G_i \subset G$ has a k - 1 colouring, $\varphi_i \colon V(G_i) \to [k - 1]$. By exchanging the colours, we may assume φ_1 , φ_2 assign the same colour to v. Then $\varphi_1 \bigcup \varphi_2$ gives a k - 1 colouring of G, a contradiction.

- **Definition2:** A k-cut in a graph is a subset of V(G) of size k, s.t. G S is disconnected.
- **Definition3:** Let $\{u, v\}$ be a 2-cut of a k-critical graph G, we say G' is $\{u, v\}$ -component, if there is a component D in $G \{u, v\}$ such that $G' = G[D \bigcup \{u, v\}]$.

We say an $\{u, v\}$ -component G' is of type1, if any k-1-colouring of G' will assign the same colour to u and v, and is of type2, if any k-1-colouring of G' will assign different colours to u and v.

• **Theorem2:** Let G be k-critical $k \ge 3$ and $\{u, v\}$ be a 2-cut of G. Then, (i) $G = G_1 \bigcup G_2$, where G_i is an u, v-component of G of type i, for $i \in 1, 2$; (ii) $H_1 \triangleq G_1 + uv$ and $H_2 \triangleq G_2/\{u, v\}$ both are k-critical.

Proof:Exercise.

- Definition4: (*The Hajos's Construction*) Let G and H be two graphs. Let uu' be an edge in G and vv' be an edge in H. The graph $G \triangle H$ is obtained by identifying u and v, delting uu' and vv', and adding a new edge u'v'.
- Theorem3(Hajos): If G and H are k-critical, then $G \triangle H$ is k-critical.

Proof: Claim1: $\chi(G \triangle H) \leq k$

Proof of claim1: Since G and H are k-critical, $\exists a \ k - 1$ colouring φ in G - uu' where $\varphi(u) = \varphi(u')$, and a k - 1 colouring ϕ in H - vv' where $\phi(v) = \phi(v')$. By exchanging the colours, we may assume φ and ϕ assign the same colour to u(v), and give v' a new colour. Then we find a k colouring of G.

Claim2: $\chi(G \triangle H) \ge k$

Proof of claim2: Suppose $\exists a \ k-1$ colouring f of $G \triangle H$, then one of the vertices u', v' (say v') has a distinct colour from f(v), this means $f|_H$ is a proper k-1 colouring of H, a contradiction.

Claim3: Any proper subgraph M of $\chi(G \triangle H)$ is k-1 colourable.

Proof of claim3: Exercise.

By claim1, 2 and 3, $G \triangle H$ is k-critical.

• **Problem(open)** Determine the longest cycle length (and path length) in an *n*-vertex *k*-critical graph *G*.

• Theorem4(Alon-Krivelevich-Seymour): Any *n*-vertex *k*-critical graph *G* has a path of length at least $C \cdot \frac{\log n}{\log k}$, for some absolute constant C > 0.

• DFS=depth-first-search tree

Any non-tree-edge xy must belong to a branch where x is in the path of T from y to the root.