Extremal and Probabilistic Graph Theory
May b5th, Tuesday

Recall the Definition of the general projective norm-graphs H = H(q,t).
Note that the degree of each vertex in H is either ¢*~' — 1 or ¢*~% — 2.

Use Lemma 3 instead of Lemma 1, we have:

Theorem 4: The graph H = H(q,t) contains no subgraph isomorphic to
Ky (t—1y141-

Corollary 1: For every fixed t > 2 and s > (t — 1)! 4+ 1, we have:
ex(n, K s) > %nQ_% - 0(712_%_0)7 where ¢ > 0 is an absolute constant.

Corollary 2: ex(n, Ky7) = O(n#)
Remark: Upper bound: Double counting.

lim (lim inf ez(n, Kt7s)n_(2_%)) = 00, which is a stronger version of Erdds’s
S§—00 n—oo

conjecture.
Next, we will construct another graph, using these techniques, to show the

above conjecture to be right.

Theorem 5: Let ¢ > 2 be fixed, there is a constant ¢; such that for any
1

5= (t—1)! 41, we have ex(n, Ki ) > (14+0(1)) % (s — 1)in2t.

Proof: Let r be a positive integer which divides ¢ — 1. Let Q, denote the
subgroup of Fy of order r.

Define H,(q,t) as follows: V(H,) = Fy-1 x (F;/Q,); (A,aQ;) is adjacent
to (B,bQ,) iff N(A+ B) € abQ,.

Then, H, has (¢ — ¢*~!)/r vertices and each vertex has degree q'~
qtfl —9.

It suffices to prove that H, is K _1y1t-141-free.

Similar to the proof of Theorem 1, the problem can be reduced to bound-
ing the number of solutions of the following system of equations:

L_1or

N(Y + Al) S bl@'r'

N(Y + Atfl) S btfl(@r

For any choice of elements from b;Q;,., - - - , b;—1Q,, there are at most (t —1)!
solutions.

Since we have 7*~! choices on the right hand side, the total number of solu-
tions is not more than (¢ — 1)!rt=1. O



Zarankiewicz Problem

z(n,m,s,t) (m>t>1,n>s > 1) denotes the maximumu possible number
of 1 entries in an n x m matrix M with 0-1 entries such that M does not contain
an s X t submatrix consisting entirely of entries 1.

Proposition: z(n,n,s,t) > 2ex(n, K ;)

Proof: Let G be a graph with vertex set [n] and ex(n, K, s) edges containing
no copy of Ky .
Consider n x n 0-1 matrix M such that M;; = 1 iff 7 is adjacent to j in G.
Then, the number of ’1” in M is 2ex(n, K, ), and M doesn’t contain as s x ¢
all 1 submatrix. O

Theorem 6: z(n,m,s,t) < (s — 1)imn'~t + (t — 1)n
Proof: Double counting the number of ’s-star’s. O

Remark: See Note on Mar,3,2016.
Theorem 7: Let ¢ > 2 and s > t! be fixed. If ni <m < nH%, then
z(n,m, s,t) = O(mn'~1).

Proof: First we prove the lower bound for n = ¢, where ¢ is a prime power,
and for m = (1 + o(1)n'*+).

Label the rows of the matrix with the element of F,: and the columns with
the element of Fy: x Fy.

Let the entry at (A, (B,b)) be 1 iff N(A+ B) =b.

In this construction, every row contains ¢* — 1 entries 1 and every column
contains ¢' ' 4+ ¢' 72 +--- + ¢+ 1 entries 1.

It suffices to show this matrix doesn’t contain a (¢! + 1) x ¢ matrix all of
whose entries are 1.

Choose t distinct columns (D1,dy), -+, (Dy,d;). If they have a row where
each of their entries is a 1, then all the D;s must be distinct.

By Lemma 3, the number of solutions X of the equation system N (X +
D;))=d; (i=1,---,t) is at most t!.

Since each row contains the same number of 1 entries for m < (1+o0(1))n!*7,
we just choose a submatrix of the above construction.

The upper bound is from Theorem 6, where mnl~7 is the dominating term
for m > nt. O

Remark: The construction provides us with a family .%; of @(nl"’%) subsets
of an n element set X, where each subset is of size @(nl_%) and no t subsets

have intersection of cardinality exceeding t!.

Matousek’s Question



Theorem 8: Let t > 2 and s > (¢ — 1)! + 1 be fixed integers, then Ry (K, s) =
O(kY).

Theorem 9 (Furedi) : z(m,n,s,t) < (s —t + 1)Tnm! =% + tn + tn2~ % holds
forallm>s,n>ts>t>1.



