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Recall the Definition of the general projective norm-graphs H = H(q, t).
Note that the degree of each vertex in H is either qt−1 − 1 or qt−1 − 2.

Use Lemma 3 instead of Lemma 1, we have:

Theorem 4: The graph H = H(q, t) contains no subgraph isomorphic to
Kt,(t−1)!+1.

Corollary 1: For every fixed t > 2 and s > (t− 1)! + 1, we have:

ex(n,Kt,s) > 1
2n

2− 1
t −O(n2− 1

t−c), where c > 0 is an absolute constant.

Corollary 2: ex(n,K4,7) = Θ(n
7
4 )

Remark: Upper bound: Double counting.

lim
s→∞

(lim inf
n→∞

ex(n,Kt,s)n
−(2− 1

t )) =∞, which is a stronger version of Erdös’s

conjecture.
Next, we will construct another graph, using these techniques, to show the

above conjecture to be right.

Theorem 5: Let t > 2 be fixed, there is a constant ct such that for any
s > (t− 1)! + 1, we have ex(n,Kt,s) > (1 + o(1)) ct

2 (s− 1)
1
t n2− 1

t .

Proof: Let r be a positive integer which divides q − 1. Let Qr denote the
subgroup of F∗q of order r.

Define Hr(q, t) as follows: V (Hr) = Fqt−1 × (Fq/Qr); (A, aQr) is adjacent
to (B, bQr) iff N(A + B) ∈ abQr.

Then, Hr has (qt − qt−1)/r vertices and each vertex has degree qt−1 − 1 or
qt−1 − 2.

It suffices to prove that Hr is Kt,(t−1)!rt−1+1-free.
Similar to the proof of Theorem 1, the problem can be reduced to bound-

ing the number of solutions of the following system of equations:

N(Y + A1) ∈ b1Qr

...

N(Y + At−1) ∈ bt−1Qr

For any choice of elements from b1Qr, · · · , bt−1Qr, there are at most (t− 1)!
solutions.

Since we have rt−1 choices on the right hand side, the total number of solu-
tions is not more than (t− 1)!rt−1.
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Zarankiewicz Problem

z(n,m, s, t) (m > t > 1, n > s > 1) denotes the maximumu possible number
of 1 entries in an n×m matrix M with 0-1 entries such that M does not contain
an s× t submatrix consisting entirely of entries 1.

Proposition: z(n, n, s, t) > 2ex(n,Kt,s)

Proof: Let G be a graph with vertex set [n] and ex(n,Kt,s) edges containing
no copy of Kt,s.

Consider n× n 0-1 matrix M such that Mij = 1 iff i is adjacent to j in G.
Then, the number of ’1’ in M is 2ex(n,Kt,s), and M doesn’t contain as s× t

all 1 submatrix.

Theorem 6: z(n,m, s, t) 6 (s− 1)
1
t mn1− 1

t + (t− 1)n

Proof: Double counting the number of ’s-star’s.

Remark: See Note on Mar,3,2016.

Theorem 7: Let t > 2 and s > t! be fixed. If n
1
t 6 m 6 n1+ 1

t , then
z(n,m, s, t) = Θ(mn1− 1

t ).

Proof: First we prove the lower bound for n = qt, where q is a prime power,
and for m = (1 + o(1)n1+ 1

t ).
Label the rows of the matrix with the element of Fqt and the columns with

the element of Fqt × F∗q .
Let the entry at (A, (B, b)) be 1 iff N(A + B) = b.
In this construction, every row contains qt − 1 entries 1 and every column

contains qt−1 + qt−2 + · · ·+ q + 1 entries 1.
It suffices to show this matrix doesn’t contain a (t! + 1) × t matrix all of

whose entries are 1.
Choose t distinct columns (D1, d1), · · · , (Dt, dt). If they have a row where

each of their entries is a 1, then all the Dis must be distinct.
By Lemma 3, the number of solutions X of the equation system N(X +

Di) = di (i = 1, · · · , t) is at most t!.

Since each row contains the same number of 1 entries for m 6 (1+o(1))n1+ 1
t ,

we just choose a submatrix of the above construction.
The upper bound is from Theorem 6, where mn1− 1

t is the dominating term
for m > n

1
t .

Remark: The construction provides us with a family Ft of Θ(n1+ 1
t ) subsets

of an n element set X, where each subset is of size Θ(n1− 1
t ) and no t subsets

have intersection of cardinality exceeding t!.

Matousĕk’s Question
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Theorem 8: Let t > 2 and s > (t− 1)! + 1 be fixed integers, then Rk(Kt,s) =
Θ(kt).

Theorem 9 (Furedi) : z(m,n, s, t) 6 (s− t + 1)
1
t nm1− 1

t + tn + tn2− 2
t holds

for all m > s, n > t, s > t > 1.
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