Extremal and Probabilistic Graph Theory

May 9th, Tuesday

Def. ex(n, H)=max # edges in an n-vertex H-free graph.
Def. ex(n,n, H)=max # edges in a bipartite H-free graph G C K, ,,.

Def. The Zarankiewicz function Z(m,n,s,t)= max # edges in a bipartite graph G, G C K »,, s.t.
G has no K;; where the s-part of K, is in the m-part of G and the t-part is in the n-part of G.

Fact. 2ex(n,Ky;) < ex(n,n,K;,;) < Z(n,n,s,t).
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(1) Z(myn,s,t) < (s—1)r (n—t+ l)mlf% +(@t—1)m

(2) ex(n,Kyy) < A(s— 1)%;12_% +3(t—1)n.

Proof. (1) Count the number of K, where the center of K, is in the m-part. Call this number

as S, and we have:
x(x—=1)-(x—1+1)

Y (%) =5< (")(s—1), where (%) = 1 A
i€{m] 0 X<t
. Zd/m e/m
Asthefunctlon()lsconvex lzm() ( . ):(/t)
> (-5 >(s—1 ()>m(e/m) n(fftﬂ) = (=D >m(&—t+1).
1

So e(G )—e< (s—1)rnm' =1 +(t— Dm.

(2) Prove in the same way by counting the number of Kj ; in the whole graph G.
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Brown. ex(n,K33) > %
Alon-Romyar-Szabv. ex(n,K3 3) > 1 3n n3 + %n
Furedi. ex(n, K3 3) <1 3N ni4n

Therefore ex(n.K33) = 4n n3 + O(n

Thm 1. (Furedi) Z(m,n,s,t) < (s—t+1)n- ml=t+t-n+t-miform>s,n>tands>t> 1.



This is the best bound for ex(n,K33).

1
-1

_2.2
(Behmun-Keerash) 3 ¢y, ¢, ¢, ¢;(log n)cn2 < ex(n,K,,) <cy-n

Def.
x(x—=1)--(x—k+1)

(x)z 0 ,x>k—1,
k 0 X <k—1

) is convex.

X

k is an integer, so (;

Lemma 1. Let v, k > 1 be integers and ¢, xo, -+, x, > 0. If ¥ (}) <c(7), then
1<i<v
Y x<xp-ck-vliTk +(k—1)-v.
1<i<v
Proof. Just by Jensen’s inequality.

Lemma 2. Letf > 2, v > 1 be integers and yy, ---, y, >t — 2. Then

[1<§<v (tilz)] ’ [1<§< (yi - (t - 2))] < V(t - 1) ZI: , (tyzll)

Proof. The case t = 2 is trivial. So let ¢ > 3.

Let (a), =a(a—1)---(a—k+1). Then for Va, b € R, [(a),_, — (b),_,]- (a—b) > 0.

This implies (,,) (b— (¢ —2))+ (,,) (a— (1 =2)) < (t = 1)((,*)) + (,")).

Adding up the above inequality with (a,b) = (y;,y;) forall 1 <i, j <v, we have the desired

inequality.

Proof of Thm 1. We may integrate the function Z(m,n,s,t) in another way, i.e. the maximum
number of 1’s in a 0-1 matrix M with m-rows and n-columns, containing NO submatrix with s

rows and t columns consisting of 1’s.
By induction on t.

It is trivial when t = 1. And when ¢ = 2, we also know this by Kovari-Sos-Turan. So assume

t>3.
LetR; = {j:Mij = 1}, ande = {i:Mij = 1}
We may assume |R;|, |Cj| >t (otherwise we can induction on m +n).
We count the number of (r —2) x ¢ submatrixes of all 1’s.
Fixt—2rows,say 1 <ij <--- <i;—p» <m,consider all t-sets T C R;; N---NR

Let us consider the number N* of pairs (T,Ry), where R C R;N---NR; ,, |T| =1¢, and

x ¢ {ij,-+ it but T C T,

Since M has no s x t submatrix of all 1’s, for fixed T, there are at most s — ¢ + 1 many such

pairs (T, Ry), so

y (’Ril M- ORi, me|> = Nipoiip < (s—1+1) (’Rh AR ﬁRm)
x @ {iy, i} ! !

xXe|m



By Lemma 1,

Y Ry N NRy MR < (s— 14 1)1 (m—t4+2)[Ry NN T |+ (1 —2)(m—142).
x g {i, 2}

X € |m|

Addup forall 1 <ij <--- <i;—p <m,then RHS counts the number of (r —2) x 1 submatrixs
with all 1 entries. 1 1
So(t—1) L () <(s—t+ 1)1 (m—1+2)""7 ¥ (9D +@—Dm—r+2)(,").
jeln) Jj€[n]
By Lemma 2, the LHS is at least 1 [ ()] - [E(/C;| — (t —2))]
J J
0)

= (E (16l =nt=2)) < (=t 1) n—1+2)" " (= D —1+2) 2

J

Case 1. ("’CZ) <m'~

(%)
Then easily we have what we want.

Case 2. (’%)‘
(%)

So%(f@) < mL( " ). By Lemma 1, g\Cﬂ <n( "ﬂ;)f*2 -n1_$+(t—3)n:n-m1*% +

™

>m1_r.

1-2 \r=2 !
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(t—=3)-n< (s7t+1)n-ml_%+t-n+t-m2_r



