Extremal and Probabilistic Graph Theory

May 16th, Tuesday

Def. BC_k = Berge cycle of length k.

 $\mathscr{C}_k = \text{minimum cycle of length } k \text{ that is a collect of } k \text{ edges } e_1, \cdots, e_k \text{ s.t. } e_i \cap e_j \neq \emptyset \text{ iff } j = i+1 \text{ or } \{i,j\} = \{1,k\}.$

 C_k = linear cycle of length k.

Thm.(Furedi-Tao, Kostochka-Mubayi-Verstraete). $ex_r(n, P_k) = ex_r(n, C_k) = \binom{n}{r} - \binom{n - (\frac{k-1}{2})}{2}$

$$+ \begin{cases} 0, & \text{if } k \text{ is odd} \\ \binom{n - (\frac{k-1}{2}) - 2}{r - 2}, & \text{if } k \text{ is even} \end{cases}$$

Thm.(Asymptotic form). For $r \geq 3$, $k \geq 4$, $ex_r(n, P_k) \sim ex_r(n, C_k) \sim l \cdot \binom{n}{r-1}$, where $l = \lfloor \frac{k-1}{2} \rfloor$.

Def. Given an r-graph H, the shadow ∂H of H is an (r-1)-graph with the same vertex set V(H) and $e \in \partial H$ iff |e| = r - 1 and $e \in f$ for some $f \in H$. And $\forall e \in \partial H$ is called a sub-edge in H.

The co-degree of a set $S = \{x_1, \dots, x_s\}$ is $d_H(S) = |\{e \in H : S \subset e\}|$ where |S| = r - 1, the neighborhood of S in H is $N_H(S) = \{x : S \cup \{x\} \in H\}$, so $|N_H(S)| = d_H(S)$.

We say an (x, y)-path is a linear path $P = e_1 e_2 \cdots e_k$, where $x \in e_1 \setminus e_2$, $y \in e_k \setminus e_{k-1}$.

Def. For $G \subset \partial H$ and $e \in G$, the last of e is $L_G(e) = N_H(e) - V(G)$. And the elements of $L_G(e)$ are called "colors".

Let
$$L_G = \bigcup_{e \in G} L_G(e)$$
 and $\hat{G} = \{e \cup \{x\} : e \in G, x \in L_G(e)\}.$

Def. An r-graph H is d-full if any sub-edge of H has co-degree at least d.

Lemma 1. For $r \ge 2$, $d \ge 1$, every *n*-regular *r*-regular H has a (d+1)-full subgraph F with $|F| \ge |H| - d|H|$.

Proof. Greedily delete those $e \in \partial H$ with co-degree at most d.

Lemma 2. Let $r \ge 3$, $k \ge 3$ and H be a rk-full r-graph (non-empty). Then C_k , $P_{k-1} \subset H$. **Proof. Fact.** $\partial^i H$ is rk-full for $1 \le i \le r-2$.

Claim. If $C_k \subset \partial^{i+1}H$, then $\exists C_k \subset \partial^i H$. This can be done in a greed method.

Lemma 3. For $r, t \ge 2$, there exists $n_0 = n_0(r,t)$, s.t. if an n-vertex r-graph H has $|H| > n^{r-t^{1-r}}$, then the complete r-partite r-graph $K_{t,\dots,t}^r \subset H$.

Def. Fix c > 0, $r, k \ge 3$. An r-graph H is called (t, c)-sparse if every t-set of V(H) lies in at most c edges of H.

If c = 1, then it is *t*-linear.

Lemma 4.(Sarkozy-Selkow) If H is an n-vertex (r-1,c)-sparse r-graph which contains no C_k nor P_k , then $|H| = o(n^{r-3})$.

Lemma 5. Let $k \geq 3$, let H be an r-graph and let $P = e_0 e_1 \cdots e_{2^{2l+1}-1}$ be a 2^{2l+1} -path in ∂H . If $|L_P(e)| \geq l+1$ for $\forall e \in P$, then \hat{P} contains P_k whose first edge contains e_0 . $(l = \lfloor \frac{k-1}{2} \rfloor)$ **Proof.** Since $\lfloor \frac{k-1}{2} \rfloor = \lfloor \frac{k-2}{2} \rfloor$ for even k, it suffices to consider even k.

We prove by induction on k.

Base case: k = 4(l = 1).

We want: 8-path $P \subset \partial H \Rightarrow P_4 \subset \hat{P}$.

Case 1. $L_P(e_0) \cap L_P(e_i) \neq \emptyset$ for some $i \geq 2$.

Let $\alpha \in L_P(e_0) \cap L_P(e_i)$. Let e_i , f, g, $h \in P$ be a subpath of P.

Def $L'(e) = L_P(e) - \{\alpha\}$ for $\forall e \in P$. If \exists distinct $\beta \in L'(f)$, $\gamma \in L'(g)$, then we are done.

Otherwise $L_P(f) = L_P(g) = \{\alpha, \beta\}$. Now replace e_i by f, and repeat the argument, we have to set $L_P(f) = L_P(g) = L_P(h) = \{\alpha, \beta\}$. Then we have a $P_4 \subset \hat{P}$ as $e_0 \cup \{\alpha\}$, $e_i \cup \{\alpha\}$, $f \cup \{\beta\}$, $g \cup \{\beta\}$.

Case 2. $L_P(e_0) \cap L_P(e_i) = \emptyset$ for $\forall i \geq 2$.

Let $L_P(e_0) = \{\alpha, \beta\}$. If $L_P(e_0) \cap L_P(e_1) \neq \emptyset$, say $\beta \in L_P(e_0) \cap L_P(e_1)$, then we may pick distinct $\gamma \in L_P(e_2)$ and $\delta \in L_P(e_3)$ so that $e_0 \cup \{\alpha\}$, $e_1 \cup \{\beta\}$, $e_2 \cup \{\gamma\}$, $e_3 \cup \{\delta\}$ is a 4-path. Suppose $L_P(e_0) \cap L_P(e_1) = \emptyset$. If there is $\gamma \in L_P(e_1) \cap L_P(e_3)$, then choose any $\lambda \in L_P(e_4) - \gamma$, and the edges $e_0 \cup \{\alpha\}$, $e_1 \cup \{\gamma\}$, $e_3 \cup \{\gamma\}$, $e_4 \cup \{\lambda\}$ form a 4-path. Otherwise, as $|L_P(e_i)| \geq 2$ for $i \geq 1$, we can choose all distinct $\alpha_1 \in L_P(e_1)$, $\alpha_2 \in L_P(e_2)$, $\alpha_3 \in L_P(e_3)$, and the edges in the set $\{e_i \cup \{\alpha_i\} : i = 1, 2, 3\}$ together with $e_0 \cup \{\alpha\}$ form a 4-path.

Now suppose $k \geq 6$. If for some i > 1 we have $\beta \in L_P(e_0) \cap L_P(e_i)$, let $P' = \{e_{i+1}, e_{i+2}, \cdots, e_{i+2^{k-3}}\}$ if $i \leq 2^{k-3} + 1$ and $P' = \{e_{i-1}, e_{i-2}, \cdots, e_{i-2^{k-3}}\}$ if $i > 2^{k-3} + 1$ (note that $i - 2^{k-3} \geq 2$). Let $e'_0 = e_{i+1}$ if $i \leq 2^{k-3} + 1$ and $e'_0 = e_{i-1}$ if $i > 2^{k-3} + 1$. Let us remove β from all lists of edges of P'. Then P' is a 2^{k-3} -path all of whose lists have size at least I. So by induction on k, $\hat{P} - \beta$ has a (k-2)-path $\{f_2, f_3, \cdots, f_{k-1}\}$ where $e'_0 \subset f_2$. Set $f_0 = e_0 \cup \{\beta\}$, $f_1 = e_i \cup \{\beta\}$. Then $\{f_0, f_1, \cdots, f_{k-1}\}$ is the required path. So we may assume for all i > 1, $L_P(e_0) \cap L_P(e_i) = \emptyset$. If we find $\gamma \in L_P(e_1) - L_P(e_0)$, then remove γ from all lists $L_P(e_i)$ where $i \geq 2$. Let $\hat{P}' = \hat{P} - L_P(e_0) - \{\gamma\}$ if γ exists and $\hat{P}' = \hat{P} - L_P(e_0)$ otherwise(in this case $L_P(e_1) \subset L_P(e_0)$). By induction, \hat{P}' contains a (k-2)-path $\{f_2, f_3, \cdots, f_{k-1}\}$ with $e_2 \subset f_2$ as the lists sizes have reduced by at most one. Set $f_0 = e_0 \cup \{\alpha\}$, $f_1 = e_1 \cup \{\beta\}$ with $\alpha \neq \beta$, $\alpha \in L_P(e_0)$, and $\beta \in L_P(e_1) \cup \{\gamma\}$ (if γ exists we may choose $\beta = \gamma$). This works since $|L_P(e)| \geq 2$ for $e \in P$. Now $\{f_0, f_1, \cdots, f_{k-1}\} \subset \hat{P}$ is a k-path.