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Def. BCk = Berge cycle of length k.
Ck = minimum cycle of length k that is a collect of k edges e1, · · · , ek s.t. ei ∩ e j 6= /0 iff

j = i+1 or {i, j}= {1,k}.
Ck = linear cycle of length k.

Thm.(Furedi-Tao, Kostochka-Mubayi-Verstraete). exr(n,Pk) = exr(n,Ck) =
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r

)
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(n−( k−1
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2

)
+


0 , i f k is odd(
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r−2

)
, i f k is even

.

Thm.(Asymptotic form). For r ≥ 3, k ≥ 4, exr(n,Pk)∼ exr(n.Ck)∼ l ·
( n

r−1

)
, where l = b k−1

2 c.

Def. Given an r-graph H, the shadow ∂H of H is an (r−1)-graph with the same vertex set V (H)
and e ∈ ∂H iff |e|= r−1 and e ∈ f for some f ∈ H. And ∀e ∈ ∂H is called a sub-edge in H.

The co-degree of a set S = {x1, · · · , xs} is dH(S) = |{e ∈ H : S ⊂ e}| where |S| = r− 1, the
neighborhood of S in H is NH(S) = {x : S∪{x} ∈ H}, so |NH(S)|= dH(S).

We say an (x,y)-path is a linear path P = e1e2 · · ·ek, where x ∈ e1\e2, y ∈ ek\ek−1.

Def. For G⊂ ∂H and e ∈ G, the last of e is LG(e) = NH(e)−V (G). And the elements of LG(e)
are called “colors”.

Let LG =
⋃

e∈G
LG(e) and Ĝ = {e∪{x} : e ∈ G, x ∈ LG(e)}.

Def. An r-graph H is d-full if any sub-edge of H has co-degree at least d.

Lemma 1. For r ≥ 2, d ≥ 1, every n-regular r-regular H has a (d + 1)-full subgraph F with
|F | ≥ |H|−d|H|.
Proof. Greedily delete those e ∈ ∂H with co-degree at most d.

Lemma 2. Let r ≥ 3, k ≥ 3 and H be a rk-full r-graph (non-empty). Then Ck, Pk−1 ⊂ H.
Proof. Fact. ∂ iH is rk-full for 1≤ i≤ r−2.

Claim. If Ck ⊂ ∂ i+1H, then ∃Ck ⊂ ∂ iH. This can be done in a greed method.
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Lemma 3. For r, t ≥ 2, there exists n0 = n0(r, t), s.t. if an n-vertex r-graph H has |H|> nr−t1−r
,

then the complete r-partite r-graph Kr
t,··· , t ⊂ H.

Def. Fix c > 0, r, k≥ 3. An r-graph H is called (t,c)-sparse if every t-set of V (H) lies in at most
c edges of H.
If c = 1, then it is t-linear.

Lemma 4.(Sarkozy-Selkow) If H is an n-vertex (r−1,c)-sparse r-graph which contains no Ck
nor Pk, then |H|= o(nr−3).

Lemma 5. Let k ≥ 3, let H be an r-graph and let P = e0e1 · · ·e22l+1−1 be a 22l+1-path in ∂H. If
|LP(e)| ≥ l +1 for ∀e ∈ P, then P̂ contains Pk whose first edge contains e0. (l = b k−1

2 c.)
Proof. Since b k−1

2 c= b
k−2

2 c for even k, it sufficec to consider even k.
We prove by induction on k.
Base case: k = 4(l = 1).
We want: 8-path P⊂ ∂H⇒ P4 ⊂ P̂.
Case 1. LP(e0)∩LP(ei) 6= /0 for some i≥ 2.
Let α ∈ LP(e0)∩LP(ei). Let ei, f , g, h ∈ P be a subpath of P.
Def L

′
(e) = LP(e)−{α} for ∀e ∈ P. If ∃distinct β ∈ L

′
( f ), γ ∈ L

′
(g), then we are done.

Otherwise LP( f ) = LP(g) = {α, β}. Now replace ei by f , and repeat the argument, we have
to set LP( f ) = LP(g) = LP(h) = {α, β}. Then we have a P4 ⊂ P̂ as e0∪{α}, ei∪{α}, f ∪{β},
g∪{β}.

Case 2. LP(e0)∩LP(ei) = /0 for ∀i≥ 2.
Let LP(e0) = {α, β}. If LP(e0)∩LP(e1) 6= /0, say β ∈ LP(e0)∩LP(e1), then we may pick

distinct γ ∈ LP(e2) and δ ∈ LP(e3) so that e0 ∪{α}, e1 ∪{β}, e2 ∪{γ}, e3 ∪{δ} is a 4-path.
Suppose LP(e0)∩LP(e1) = /0. If there is γ ∈ LP(e1)∩LP(e3), then choose any λ ∈ LP(e4)− γ ,
and the edges e0∪{α}, e1∪{γ}, e3∪{γ}, e4∪{λ} form a 4-path. Otherwise, as |LP(ei)| ≥ 2
for i≥ 1, we can choose all distinct α1 ∈ LP(e1), α2 ∈ LP(e2), α3 ∈ LP(e3), and the edges in the
set {ei∪{αi} : i = 1,2,3} together with e0∪{α} form a 4-path.

Now suppose k≥ 6. If for some i> 1 we have β ∈LP(e0)∩LP(ei), let P
′
= {ei+1,ei+2, · · · ,ei+2k−3}

if i ≤ 2k−3 + 1 and P
′
= {ei−1,ei−2, · · · ,ei−2k−3} if i > 2k−3 + 1(note that i− 2k−3 ≥ 2). Let

e
′
0 = ei+1 if i ≤ 2k−3 + 1 and e

′
0 = ei−1 if i > 2k−3 + 1. Let us remove β from all lists of edges

of P
′
. Then P

′
is a 2k−3-path all of whose lists have size at least l. So by induction on k, P̂−β

has a (k− 2)-path { f2, f3, · · · , fk−1} where e
′
0 ⊂ f2. Set f0 = e0 ∪{β}, f1 = ei ∪{β}. Then

{ f0, f1, · · · , fk−1} is the required path. So we may assume for all i > 1, LP(e0)∩ LP(ei) = /0.
If we find γ ∈ LP(e1)− LP(e0), then remove γ from all lists LP(ei) where i ≥ 2. Let P̂

′
=

P̂− LP(e0)− {γ} if γ exists and P̂
′
= P̂− LP(e0) otherwise(in this case LP(e1) ⊂ LP(e0)).

By induction, P̂
′

contains a (k− 2)-path { f2, f3, · · · , fk−1} with e2 ⊂ f2 as the lists sizes have
reduced by at most one. Set f0 = e0 ∪ {α}, f1 = e1 ∪ {β} with α 6= β , α ∈ LP(e0), and
β ∈ LP(e1)∪{γ}(if γ exists we may choose β = γ). This works since |LP(e)| ≥ 2 for e ∈ P.
Now { f0, f1, · · · , fk−1} ⊂ P̂ is a k-path.
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