Extremal and Probabilistic Graph Theory

May 18th, Thursday

Lemma 5. Let $k \ge 3$, let H be an r-graph and let $P = \{e_1, \dots, e_{2^{2l+1}-1}\}$ be a 2^{2l+1} -path in ∂H . If $|L_P(e)| \ge l+1$ for $\forall e \subset P$, then \hat{P} has a P_k .

Def. Let H be a r-graph($r \ge 3$). Let $\psi_t(H)$ be the set of complete (r-1)-partite (r-1)-graphs $G \subset \partial H$ with parts of size t and $\forall e \in G$, $|L_G(e)| \ge l+1$, and if r=3 and k is odd, then in addition for $xy \in G$, there is $xt \alpha \in \hat{G}$ s.t.

- (a) $\min\{d_H(x\alpha), d_H(y\alpha)\} \ge 2$ and
- (b) $\max\{d_H(x\alpha), d_H(y\alpha)\} \ge 3k + 1$.

Def. Given sets S_1, S_2, \dots, S_p , an SDR is a choice of $s_i \in S_i$, $\forall i \in [p]$ s.t. s_1, s_2, \dots, s_p are distinct.

Lemma 6. Let $q \in \{2p, 2p+1\}$ and let S_1, \dots, S_q be sets such that $S_i \cap S_j \neq \emptyset$ for $i \leq p$, $j \geq p+2$ and $|S_i| \geq p+1$ for $i \leq p$, and $|S_i| \geq p$ for $i \geq p+1$. Then $\{S_1, \dots, S_q\}$ has an SDR, unless q = 2p+1 and all $S_i (j \geq p+1)$ are all identical and of size p.

Proof. To have an SDR for $\{S_1, \dots, S_q\}$, it is equivalent to have an SDR for $\{S_{p+1}, S_{p+2}, \dots, S_q\}$. Assume no SDR for $\{S_{p+1}, S_{p+2}, \dots, S_q\}$. Then q = 2p + 1, moreover, $S_{p+1} = S_{p+2} = \dots = S_q$ is of size p.

Lemma 7. Let $r \ge 3$, $k \ge 4$. Then there exists a $t_0 = t(r,k)$ s.t. for all $t \ge t_0$ and for all C_k -free r=graph H, $\psi_t(H) = \emptyset$.

Proof. Suppose $G \in \psi_t(H)$, we want $C_k \in H$.

Let $s = 2^{k-2}(r-1)$. Let M be a set of s pairwise disjoint edges of G.

Case 0. Suppose $\exists \alpha \in L_G(e), \forall e \in M$.

Let $F \subset G$ be a complete (r-1)-partite (r-1)-graph with parts of size 2^{k-2} s.t.

- \bullet $V(F) \subset V(M)$.
- $\forall f \in F, e \in M, |f \cap e| \le 1$.
- $\forall f \in F$, $\exists r 1$ distinct $e \in M$ s.t. $|f \cap e| = 1$.

We will show \hat{F} contains a (k-2)-path avoiding α .

If so, using the color α plus the conditions, we can find a $C_k \subset H$.

If $k \ge 5$, by lemma 5, as F contains a 2^{k-2} -path($|L_F(e) \ge l|$, $\forall e \in F$), we can find a P_{k-2} avoiding α .

So k = 4. Find a 3-path $f_1 f_2 f_3$ in F and $L_P(f_i) \setminus \{\alpha\} = \{\beta_i\}$. If $\beta_1 = \beta_3$, then $\{f_1 \cup \{\beta_1\}, f_3 \cup \{\beta_1\}\}$ is a 2-path. Otherwise $\{f_1 \cup \{\beta_1\}, f_2 \cup \{\beta_2\}\}\}$ or $\{f_2 \cup \{\beta_2\}, f_3 \cup \{\beta_3\}\}$ is a 2-path.

Therefore, no color appears in the list of s pairwise disjoint edges of G.(*)

For $\forall e \in G$, $L'_G(e) \subset L_G(e)$ with $|L'_G(e)| = l+1$. Let $m = \lfloor \frac{i}{s+2} \rfloor \gg \Omega(1)$. Partiting G into m vertex-disjoint complete (r-1)-partite (r-1)-subgraphs F_i , $i \in [m]$, s.t. each part of each F_i is of size at least s+2 and $L'_i = \cup \{L'_G(e) : e \in F_i\}$. So $|L'_i| \leq (l+1)(s+2)^{r-1} \leq (s+2)^r$. For $\forall \alpha \in L'_1$, by (*), there are at most s different i for which $\alpha \in L'_1 \cap L'_i$. So $L'_1 \cap L'_i \neq \emptyset$ for at most $(s+2)^{r+1}$ values $i \in [m]$. Choose t to be big enough s.t. $t \gg (s+2)^{r+1}$. Thus we may assume $L'_2 \cap L'_1 = \emptyset$.

Let $F = F_1 \cup F_2$ and let X, Y be two parts of F. Let $x \in X \cap F_1$, $y \in Y \cap F_2$ and $e \in G$ s.t. $\{x,y\} \subset e$.

Case 1. r > 3, and r = 3 if k is even.

Let $e \cup \{\alpha\} \subset \hat{G}$. Assume $\alpha \notin L_1'$. Let $U = F_1 \cap X$, $V = F_2 \cap Y$. Let $f \in G$ be any edge with $|f \cap U| = 1 = |f \cap V|$ and $|f \cap F| = 2$. There is a q-path $Q = \{f_1, f_2, \dots, f_q\}$ from x to y s.t. $f_i \subset F_1$ for $i \leq p$ and $f_j \subset F_2$ for $j \geq p+2$ and $f_{p+1} = f$. Let $S_i = L_G'(f_i) - \{\alpha\}$. So S_1, \dots, S_q satisfy lemma 6.

If \exists SDR of $\{S_1, \dots, \S_q\}$, then plus $e \cup \{\alpha\}$, f_1, \dots, f_q will extend to a $C_k \subset H$. So NO SDR of $\{S_1, \dots, S_q\}$. By lemma 6, $S_{p+1} = S_{p+2} = \dots = S_q$ is of size $p \Rightarrow |L_G'(f) = p+1|$ and $\alpha \in L_G'(f)$. But f is arbitrary, so that gives us a matching of size s, whose lists contain the color α , which is a contradiction to (*).

Case 2. r=3 and k is odd.

Let q=k-2 and p=l-1, so q=2p+1. Since $G\in \psi_t(H)$, $\exists xy\alpha\in \hat{G}$ satisfies (a) and (b) in the definition of $\psi_t(H)$. Since $L_1'\cap L_2'=\emptyset$, we may suppose $\alpha\notin L_1'$. By symmetry we may assume $d_H(x\alpha)>3k$ and $d_H(y\alpha)>1$. Choose an edge $y\alpha\beta\in H$ with $\beta\neq x$. Note that possibly $\beta\in V(G)$. For i=1,2, let $X_i=X\cap V(F_i)-\{\alpha,\beta\}$ and $Y_i=Y\cap V(F_i)-\{\alpha,\beta\}$. Let $f\in G$ be such that

$$|f \cap X_1| = 1 = |f \cap Y_2| \text{ if } q \equiv 1 \pmod{4},$$

 $|f \cap X_2| = 1 = |f \cap Y_1| \text{ if } q \equiv 3 \pmod{4}.$

Since q is odd, there is a q-path $Q = \{f_1, f_2, \cdots, f_q\}$ from x to y in G with $f_i \subset F_1$ for $i \leq p, f_i \subset F_2$ for i > p+1 and $f_{p+1} = f$. If Q expands to a q-path $\hat{Q} \subset \hat{G} - \{\alpha, \beta\}$, then select $\gamma \in V(H) - V(\hat{Q}) - \{\alpha, \beta\}$ so that $x\alpha\beta \in H$ and then $\hat{G} \cup \{x\alpha\gamma, y\alpha\beta\}$ is a k-cycle in \hat{G} . So Q does not expand to a q-path in $\hat{G} - \{\alpha, \beta\}$.

Let $S_i = L'_G(f_i) - \{\alpha, \beta\}$. Since $L'_1 \cap L'_2 = \emptyset$, we have $S_i \cap S_j = \emptyset$ for $i \le p$ and j > p + 1, and since $\alpha \notin L'_1$, $|S_i| = |L'_G(f_i) - \{\beta\}| \ge l \ge p + 1$ for $i \le p$ and $|S_i| \ge |L'_G(f_i)| - 2 \ge p$ for i > p. So S_1, \dots, S_q satisfy lemma 6. The same as before, $S_{p+1} = \dots = S_q$ and $\forall i \in [q]$, S_i is of size p, so $\alpha \in S_i$ and then $\alpha \in L'_G f$. Since f is arbitrary, this gives us a matching of size s, whose lists contain the color α , which is a contradiction to (*)

Lemma 8. Let $\delta > 0$, $r \ge 3$ and $k \ge 4$. Let H be an r-graph and $E \subset \partial H$ with $|E| > \delta \cdot n^{r-1}$. Suppose $d_H(f) > l+1$ for $\forall f \in E$ and if r=3 and k is odd, then in addition, for $\forall f=xy \in E$, there is $e_f = xy\alpha \in H$ s.t. $\min\{d_H(x\alpha), d_H(y\alpha)\} \ge 2$ and $\max\{d_H(x\alpha), d_H(y\alpha)\} \ge 3k+1$.