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Lemma 5. Let k > 3, let H be an r-graph and let P = {ey,--- ,ep:1_, } be a 22 _path in 9H.
If |Lp(e)| > 1+ 1 for Ve C P, then P has a P.

Def. Let H be a r-graph(r > 3). Let y,(H) be the set of complete (r — 1)-partite (r — 1)-graphs
G C JdH with parts of size ¢t and Ve € G, |[Lg(e)| > [+ 1, and if » = 3 and k is odd, then in
addition for xy € G, there is xta € G s.t.

(@) min{dy (xa),dy(ya)} > 2 and

(b) max{dy(xat),dp(yot)} > 3k+1.

Def. Given sets Sy, S, - -+, S, an SDR is a choice of 5; € S;, Vi € [p] s.t. 51, 52, - - -, 5, are distinct.

Lemma 6. Let ¢ € {2p,2p+ 1} and let Sy, ---, S, be sets such that S;NS; # 0 for i < p,
j>p+2and|S;| > p+1fori<p,and |S;| > pfori> p+ 1. Then {S;,---,S,} has an SDR,
unless ¢ =2p+ 1 and all S;(j > p+ 1) are all identical and of size p.

Proof. To have an SDR for {S,---,S,}, itis equivalent to have an SDR for {S,.1,Sp42, -+ ,54}.
Assume no SDR for {S,1,5,42,---,8;}. Then g =2p+ 1, moreover, S,;1 =S,10=---=85,
is of size p.

Lemma 7. Let r > 3, k > 4. Then there exists a o = #(r,k) s.t. for all # > y and for all Cy-free
r=graph H, y,(H) = 0.
Proof. Suppose G € y,(H), we want Cy, € H.

Let s = 25=2(r — 1). Let M be a set of s pairwise disjoint edges of G.

Case 0. Suppose Ja € Lg(e), Ve € M.

Let F C G be a complete (r — 1)-partite (r — 1)-graph with parts of size 272 s.t.

o V(F) C V(M).

eVfeF,ecM,|fNnel <1.

eVfeF,3r—1distincte € Ms.t. |[fNe|=1.

We will show £ contains a (k —2)-path avoiding a.

If so, using the color & plus the conditions, we can find a Cy C H.

If k > 5, by lemma 5, as F contains a 2¥~2-path(|Lr(e) > 1|, Ve € F), we can find a P,_»
avoiding «.

So k=4. Find a 3-path fi fof3 in F and Lp(f;)\{a} = {Bi}. If Bi = B3, then { f1U{B1}, KU
{B1}} is a 2-path. Otherwise {fi U{B1}, LU{B:2}} or {U{Ba}, 3U{B3}} is a 2-path.



Therefore, no color appears in the list of s pairwise disjoint edges of G.(x)

For Ve € G, Lg(e) C Lg(e) with |Lg(e)| =1+ 1. Let m = | 55| >> Q(1). Partiting G into
m vertex-disjoint complete (r — 1)-partite (r — 1)-subgraphs F;, i € [m], s.t. each part of each F;
is of size at least s +2 and L; = U{Lg(e) : e € F;}. So |L;| < (I+1)(s+2)"" < (s+2)". For
Ya € Ly, by (%), there are at most s different i for which o € L, NL;. So L, N L; # 0 for at most
(s+2)""" values i € [m]. Choose t to be big enough s.t. 7> (s+2)""'. Thus we may assume
L,NL, =0.

Let F=FUF,and let X, Y betwo parts of F. Let xe XNF,ye YNF, and e € G s.t.
{x,y} Ce.

Case 1. r> 3, and r =3 if k is even.

LeteU{a} C G. Assume o ¢ L’l. LetU =F NX,V=F,NY. Let f € G be any edge with
|fNU|=1=|fNV]and |[fNF|=2. There is a g-path Q = {fi, f»,---, fy} from x to y s.t.
fiCFfori<pandf; CFfor j>p+2and f,y1 = f. Let S; = L(f;) — {a}. So Sy, -, S,
satisfy lemma 6.

If 3 SDR of {Si,---,§}, then plus eU{a}, fi, ---, f, will extend to a Cx C H. So NO
SDR of {Sy,--,S,}. By lemma 6, S, 1 =S, =--- =S, is of size p= |L;(f) = p+1| and
ac L’G( f). But f is arbitrary, so that gives us a matching of size s, whose lists contain the color
o, which is a contradiction to ().

Case 2. r=3 and k is odd.

Letg=k—2and p=1—1,s0¢=2p+1. Since G € y,(H), Ixya € G satisfies (a) and (b)
in the definition of y;(H). Since Lll ﬂle = (0, we may suppose & ¢ L/l. By symmetry we may
assume dy (xot) > 3k and dy(yor) > 1. Choose an edge ya 8 € H with 3 # x. Note that possibly
BeV(G). Fori=1,2letX,=XNV(F)—{a,f}andY; =Y NV (F)—{a,B}. Let f € G be
such that

IfNXi|=1=|fNY]if g= I(mod 4),
IfNXs| = 1 = |f Y] if ¢ = 3(mod 4).

Since q is odd, there is a g-path Q = {fi, f>, -+, f;} from x to y in G with f; C F; for
i<pfiCFfori>p+1and f,,1 = f. If Q expands to a g-path Q c G—{a,B}, then select
y€V(H)—V(Q)—{a,B} so that xa € H and then GU {xay,ya} is a k-cycle in G. So Q
does not expand to a g-path in G — {a, B}.

Let S; = L;(f;) — {@,B}. Since L, NL, = 0, we have S;NS; =0 for i < pand j > p+1, and
since o ¢ L, |Si| = |Lg(fi) — {B}| > 1> p+1fori<pand S| > |L;(f)| —2> p fori> p.
So Sy, ---, S, satisfy lemma 6. The same as before, ;1 =--- =5, and Vi € [g], S is of size p,
so o € S; and then o € LlG f. Since f is arbitrary, this gives us a matching of size s, whose lists
contain the color ¢, which is a contradiction to (x)

Lemma 8. Let § >0, r >3 and k > 4. Let H be an r-graph and E C dH with |E| > & -n"" !
Suppose dy(f) > 1+ 1 for Vf € E and if r = 3 and k is odd, then in addition, for Vf = xy € E,
there is ey = xya € H s.t. min{dy (xa),dp(ya)} > 2 and max{dy (x@),dy(yor)} > 3k +1.



