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Lemma 5. Let k ≥ 3, let H be an r-graph and let P = {e1, · · · ,e22l+1−1} be a 22l+1-path in ∂H.
If |LP(e)| ≥ l +1 for ∀e⊂ P, then P̂ has a Pk.

Def. Let H be a r-graph(r ≥ 3). Let ψt(H) be the set of complete (r−1)-partite (r−1)-graphs
G ⊂ ∂H with parts of size t and ∀e ∈ G, |LG(e)| ≥ l + 1, and if r = 3 and k is odd, then in
addition for xy ∈ G, there is xtα ∈ Ĝ s.t.
(a) min{dH(xα),dH(yα)} ≥ 2 and
(b) max{dH(xα),dH(yα)} ≥ 3k+1.

Def. Given sets S1, S2, · · · , Sp, an SDR is a choice of si ∈ Si, ∀i∈ [p] s.t. s1, s2, · · · , sp are distinct.

Lemma 6. Let q ∈ {2p,2p + 1} and let S1, · · · , Sq be sets such that Si ∩ S j 6= /0 for i ≤ p,
j ≥ p+2 and |Si| ≥ p+1 for i ≤ p, and |Si| ≥ p for i ≥ p+1. Then {S1, · · · ,Sq} has an SDR,
unless q = 2p+1 and all S j( j ≥ p+1) are all identical and of size p.
Proof. To have an SDR for {S1, · · · ,Sq}, it is equivalent to have an SDR for {Sp+1,Sp+2, · · · ,Sq}.
Assume no SDR for {Sp+1,Sp+2, · · · ,Sq}. Then q = 2p+1, moreover, Sp+1 = Sp+2 = · · ·= Sq

is of size p.

Lemma 7. Let r ≥ 3, k ≥ 4. Then there exists a t0 = t(r,k) s.t. for all t ≥ t0 and for all Ck-free
r=graph H, ψt(H) = /0.
Proof. Suppose G ∈ ψt(H), we want Ck ∈ H.

Let s = 2k−2(r−1). Let M be a set of s pairwise disjoint edges of G.
Case 0. Suppose ∃α ∈ LG(e), ∀e ∈M.
Let F ⊂ G be a complete (r−1)-partite (r−1)-graph with parts of size 2k−2 s.t.
• V (F)⊂V (M).
• ∀ f ∈ F , e ∈M, | f ∩ e| ≤ 1.
• ∀ f ∈ F , ∃r−1 distinct e ∈M s.t. | f ∩ e|= 1.
We will show F̂ contains a (k−2)-path avoiding α .
If so, using the color α plus the conditions, we can find a Ck ⊂ H.
If k ≥ 5, by lemma 5, as F contains a 2k−2-path(|LF(e) ≥ l|, ∀e ∈ F), we can find a Pk−2

avoiding α .
So k = 4. Find a 3-path f1 f2 f3 in F and LP( fi)\{α}= {βi}. If β1 = β3, then { f1∪{β1}, f3∪

{β1}} is a 2-path. Otherwise { f1∪{β1}, f2∪{β2}} or { f2∪{β2}, f3∪{β3}} is a 2-path.
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Therefore, no color appears in the list of s pairwise disjoint edges of G.(∗)
For ∀e ∈ G, L

′
G(e) ⊂ LG(e) with |L′G(e)| = l + 1. Let m = b t

s+2c � Ω(1). Partiting G into
m vertex-disjoint complete (r−1)-partite (r−1)-subgraphs Fi, i ∈ [m], s.t. each part of each Fi

is of size at least s+ 2 and L
′
i = ∪{L

′
G(e) : e ∈ Fi}. So |L′i| ≤ (l + 1)(s+2)r−1 ≤ (s+2)r. For

∀α ∈ L
′
1, by (∗), there are at most s different i for which α ∈ L

′
1∩L

′
i. So L

′
1∩L

′
i 6= /0 for at most

(s+2)r+1 values i ∈ [m]. Choose t to be big enough s.t. t � (s+2)r+1. Thus we may assume
L
′
2∩L

′
1 = /0.

Let F = F1 ∪F2 and let X , Y be two parts of F. Let x ∈ X ∩F1, y ∈ Y ∩F2 and e ∈ G s.t.
{x,y} ⊂ e.

Case 1. r > 3, and r = 3 if k is even.
Let e∪{α} ⊂ Ĝ. Assume α /∈ L

′
1. Let U = F1∩X , V = F2∩Y . Let f ∈ G be any edge with

| f ∩U | = 1 = | f ∩V | and | f ∩F | = 2. There is a q-path Q = { f1, f2, · · · , fq} from x to y s.t.
fi ⊂ F1 for i≤ p and f j ⊂ F2 for j ≥ p+2 and fp+1 = f . Let Si = L

′
G( fi)−{α}. So S1, · · · , Sq

satisfy lemma 6.
If ∃ SDR of {S1, · · · ,§q}, then plus e∪{α}, f1, · · · , fq will extend to a Ck ⊂ H. So NO

SDR of {S1, · · · ,Sq}. By lemma 6, Sp+1 = Sp+2 = · · · = Sq is of size p⇒ |L′G( f ) = p+ 1| and
α ∈ L

′
G( f ). But f is arbitrary, so that gives us a matching of size s, whose lists contain the color

α , which is a contradiction to (∗).
Case 2. r=3 and k is odd.
Let q = k−2 and p = l−1, so q = 2p+1. Since G ∈ ψt(H), ∃xyα ∈ Ĝ satisfies (a) and (b)

in the definition of ψt(H). Since L
′
1∩L

′
2 = /0, we may suppose α /∈ L

′
1. By symmetry we may

assume dH(xα)> 3k and dH(yα)> 1. Choose an edge yαβ ∈H with β 6= x. Note that possibly
β ∈V (G). For i = 1, 2, let Xi = X ∩V (Fi)−{α,β} and Yi = Y ∩V (Fi)−{α,β}. Let f ∈ G be
such that

| f ∩X1|= 1 = | f ∩Y2| if q≡ 1(mod 4),
| f ∩X2|= 1 = | f ∩Y1| if q≡ 3(mod 4).

Since q is odd, there is a q-path Q = { f1, f2, · · · , fq} from x to y in G with fi ⊂ F1 for
i≤ p, fi ⊂ F2 for i > p+1 and fp+1 = f . If Q expands to a q-path Q̂⊂ Ĝ−{α,β}, then select
γ ∈ V (H)−V (Q̂)−{α,β} so that xαβ ∈ H and then Ĝ∪{xαγ,yαβ} is a k-cycle in Ĝ. So Q
does not expand to a q-path in Ĝ−{α,β}.

Let Si = L
′
G( fi)−{α,β}. Since L

′
1∩L

′
2 = /0, we have Si∩S j = /0 for i≤ p and j > p+1, and

since α /∈ L
′
1, |Si| = |L

′
G( fi)−{β}| ≥ l ≥ p+1 for i ≤ p and |Si| ≥ |L

′
G( fi)|−2 ≥ p for i > p.

So S1, · · · , Sq satisfy lemma 6. The same as before, Sp+1 = · · ·= Sq and ∀i ∈ [q], Si is of size p,
so α ∈ Si and then α ∈ L

′
G f . Since f is arbitrary, this gives us a matching of size s, whose lists

contain the color α , which is a contradiction to (∗)

Lemma 8. Let δ > 0, r ≥ 3 and k ≥ 4. Let H be an r-graph and E ⊂ ∂H with |E| > δ · nr−1.
Suppose dH( f )> l +1 for ∀ f ∈ E and if r = 3 and k is odd, then in addition, for ∀ f = xy ∈ E,
there is e f = xyα ∈ H s.t. min{dH(xα),dH(yα)} ≥ 2 and max{dH(xα),dH(yα)} ≥ 3k+1.

2


