Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Feb 26th, 2020, Wednesday

1 Second Lecture

1.1 Erdös-Moon Theorem

Theorem 1.1 (Erdös-Moon). Let G be an n-vertex graph with more than $\frac{1}{2} s^{1+1 / s} n^{2-1 / s}+2 s n$ edges. Then it has at least $\Omega\left(p^{s^{2}} n^{2 s}\right)$ copies of $K_{s, s}$, where $p=e(G) /\binom{n}{2}$ is the edge-density of G.

Proof. Let M denote the number of stars $K_{1, s}$ in G. We see $M=\sum_{v \in V}\binom{d(v)}{s}$. For a subset $S \subseteq V(G)$ of size s, let $f(S)$ be the number of vertices adjacent to all vertices of S. Then we see $M=\sum_{S \in\binom{V}{s}} f(S)$. And G has $\frac{1}{2} \sum_{S \in\binom{V}{s}}\binom{f(S)}{s}$ copies of $K_{s, s}$. By Jensen's inequality, we also get

$$
\begin{gathered}
\left.\frac{1}{2} \sum_{S \in\binom{V}{s}}\binom{f(S)}{s} \geq \frac{1}{2}\binom{n}{s}\left(\begin{array}{c}
\sum_{S \in\binom{V}{s}} f(S) /\binom{n}{s} \\
=\Omega\left(n^{s-s^{2}}\right)\left(\sum_{v \in V}\binom{d(v)}{s}\right)^{s} \geq \Omega\left(n^{s-s^{2}}\right)\binom{n}{s}\binom{M /\binom{n}{s}}{s}=\Omega\left(n^{s-s^{2}}\right) M^{s} \\
s
\end{array}\right)\right)^{s}=\Omega(v) / n \\
\left.s s^{s^{2}} n^{2 s}\right) .
\end{gathered}
$$

1.2 Hypergraph Kövari-Sós-Turán Theorem

Let $K_{\left(t_{1}, t_{2}, \ldots, t_{k}\right)}^{(k)}$ be the complete k-partite k-graph. For convenience, we denote $K_{t: k}=K_{(t, t, \ldots, t)}^{(k)}$. For a k-graph G and $v \in V(G)$, the link-hypergraph G_{v} is a $(k-1)$-graph on the vertex set $V(G)-\{v\}$ where $e \in E\left(G_{v}\right)$ if and only if $e \cup\{v\} \in E(G)$.

Theorem 1.2 (Erdős). Let $k, t \geq 2$ be integers. Then there exists a constant $c=c(k, t)$ such that any k-graph G with $e(G)=p\binom{n}{k} \geq c n^{k-(1 / t)^{k-1}}$ has at least $\Omega\left(p^{t^{k}} n^{t k}\right)$ copies of $K_{t: k}$.

Proof. We prove this by induction on k. It is clear that the Erdös-Moon theorem gives the case for $k=2$. We may assume it holds for $k-1$ with $k \geq 3$. Suppose G is a k-graph with $c n^{k-(1 / t)^{k-1}}$ edges. Let $V_{1}=\left\{v \in V(G): d(v) \geq c n^{(k-1)-(1 / t)^{k-2}}\right\}$ and $V_{2}=V(G) \backslash V_{1}$. Then $\sum_{v \in V_{2}} d(v) \leq n \cdot c n^{(k-1)-(1 / t)^{k-2}} \ll e(G)$, implying that $\sum_{v \in V_{1}} d(v)=(k-o(1)) e(G)$.

For each $v \in V_{1}$, the link-hypergraph G_{v} is a $(k-1)$-graph with $e\left(G_{v}\right)=d(v)$. By induction,

Let $\vec{S}=\left(S_{1}, \ldots, S_{k-1}\right)$, where $\left|S_{i}\right|=t$. We denote by $f(\vec{S})$ the number of vertices v such that $v \cup S_{1} \cup \cdots \cup S_{k-1}$ induces a copy of $K_{(1, t, \ldots, t)}^{(k)}$ in G. Clearly each copy of $K_{(1, t, \ldots, t)}^{(k)}$ in G associates
with a $K_{t:(k-1)}$ in a unique G_{v} for $v \in V$. Thus the number of $K_{(1, t, \ldots, t)}^{(k)}$ in G is

$$
\sum_{\vec{S}} f(\vec{S}) \geq \Omega\left(n^{t(k-1)-(k-1) t^{k-1}}\right) \sum_{v \in V_{1}} d(v)^{t^{k-1}} .
$$

We already have $\sum_{v \in V_{1}} d(v)=(k-o(1)) e(G)$ and $\left|V_{1}\right| \leq n$. By Jensen's inequality, we can get

$$
\sum_{\vec{S}} f(\vec{S}) \geq \Omega\left(n^{t(k-1)-(k-1) t^{k-1}}\right) \cdot n\left(\frac{d(v)}{n}\right)^{t^{k-1}}=\Omega\left(t^{t^{k-1}} n^{t(k-1)+1}\right)
$$

Finally, the number of $K_{t: k}$ in G is equal to

$$
\frac{1}{k} \sum_{\vec{S}}\binom{f(\vec{S})}{t} \geq \Omega\left(n^{t(k-1)}\right)\left(\frac{\sum_{\vec{S}} f(\vec{S})}{n^{t(k-1)}}\right)^{t} \geq \Omega\left(n^{t(k-1)}\right)\left(p^{t^{k-1}} n\right)^{t}=\Omega\left(p^{t^{k}} n^{t k}\right)
$$

This theorem gives us an upper bound for the extremal number of $K_{t: k}$ as follows, and also implies that $\pi\left(K_{t: k}\right)=0$.
Theorem 1.3 (Hypergraph Kövari-Sós-Turán).

$$
\operatorname{ex}_{k}\left(n, K_{t: k}\right)=O\left(n^{k-(1 / t)^{k-1}}\right)
$$

1.3 Supersaturation lemma

Theorem 1.4 (Supersaturation lemma). Let F be a k-graph with $k \geq 2$. For any $\epsilon>0$, there exist positive constants $\delta=\delta(F, \epsilon)$ and $n_{0}=n_{0}(F, \epsilon)$ such that for any n-vertex k-graph G with $n>n_{0}$, if G has at least ex $(n, F)+\epsilon \cdot n^{k}$ edges, then it contains at least δn^{v} copies of F, where $v=|V(F)|$.
Proof. By the definition of $\pi(F)$, we can find an integer m such that $e x\left(m^{\prime}, F\right)<\left(\pi(F)+\frac{\epsilon}{2}\right)\binom{m^{\prime}}{k}$ for any $m^{\prime} \geq m$. Let $n>n_{0} \gg m$. Assume the n-vertex k-graph G has $(\pi(F)+\epsilon)\binom{n}{k}$ edges. We use T to denote the number of pairs (e, M), where $M \in\binom{V(G)}{m}$ and $e \in G[M]$. On the one hand, we have

$$
T=\sum_{e \in E(G)}\binom{n-k}{m-k}=e(G)\binom{n-k}{m-k}=(\pi(F)+\epsilon)\binom{n}{k}\binom{n-k}{m-k}=(\pi(F)+\epsilon)\binom{n}{m}\binom{m}{k} .
$$

On the other hand, if we let $\mathcal{A}=\left\{M \in\binom{V(G)}{m}: e(G[M])>\left(\pi(F)+\frac{\epsilon}{2}\right)\binom{m}{k}\right\}$, then we get $T=\sum_{M \in\binom{V(G)}{m}} e(G[M])=\sum_{M \in \mathcal{A}} e(G[M])+\sum_{M \notin \mathcal{A}} e(G[M]) \leq|\mathcal{A}|\binom{m}{k}+\left(\binom{n}{m}-|\mathcal{A}|\right)\left(\pi(F)+\frac{\epsilon}{2}\right)\binom{m}{k}$.

The above two inequalities indicate that $(\pi(F)+\epsilon)\binom{n}{m} \leq|\mathcal{A}|+\left(\binom{n}{m}-|\mathcal{A}|\right)\left(\pi(F)+\frac{\epsilon}{2}\right)$. So $|\mathcal{A}| \geq \frac{\epsilon}{2}\binom{n}{m} /\left(1-\frac{\epsilon}{2}-\pi(F)\right)$. Since each $M \in \mathcal{A}$ satisfies $e(G[M])>\left(\pi(F)+\frac{\epsilon}{2}\right)\binom{m}{k}>e x(m, F)$, we know $G[M]$ has at least one copy of F. As each F can be contained in at most $\binom{n-v}{m-v}$ choices of $M \subset \mathcal{A}$, we finally get the number of F-copies in G is at least $\frac{|\mathcal{A}|}{\binom{n-v}{m-v}}=\frac{\frac{\epsilon}{2}\binom{n}{m}}{\left(1-\frac{\epsilon}{2}-\pi(F)\right)\binom{n-v}{m-v}}=\delta n^{v}$.

