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1 Lecture 3

1.1 Blowup Lemma

Given a k-graph F', the t-blowup F'(t) is a k-graph obtained from F by replacing each v € V' (F') by
an independent subset I(v) of size ¢ and replacing every edge {v1,ve, ..., vx} € E(F) by a complete
k-partite k-graph I(vy),I(ve), ..., I(vg). For example, the ¢-blowup of K, is K, (t) = T,(rt).

Theorem 1.1 (Blowup Lemma). For any k-graph F and t > 1, we have w(F(t)) = n(F). In
other words, ex(n, F) < ex(n, F(t)) < ex(n, F) 4 en® for any t,e > 0 and n > n(t,¢).

Proof. Let f = |V(F)|. First, clearly we have ex(n, F') < ex(n,F(t)) since F' C F(t). Then
we can assume that for sufficiently large n, there exist € > 0 and an F(¢)-free k-graph G on n
vertices, with e(G) > ex(n, F') + en®. By supersaturation lemma, G contains at least (5(7}) copies
of F where 0 = (¢, F).

Next we define an anxiliary f-graph G* on V(G) where X € (}‘) is an edge of G* if and only if

G[X] contains a copy of F. So e(G*) > ‘S}L—!f = Q(nf). Take an integer T such that n > T > t, f.
As e(G*) = Q(nf) > ex(n, Kr.r), by hypergraph Kovari-Sés-Turdn theorem, we see G* has at
least one copy of Kr.f.

There are f! possible ways to embed a copy of F' in an edge of K7.;. Now we give f! colores
to the edges of Kr.r. Notice that one color stands for one possible embedding. By pigeonhole
priciple, there is a color whose number of edges is at least TT{ > ex(vT, Ki.f). So Kr.5 contains

a monochromatic copy of Ky.r. This copy of K;.; gives a copy of F(t) in G. |

The chromatic number of a graph G, denoted by x(G), is the minimum integer k& such that
V(@) can be partitioned into k independent sets.

Fact 1.2. x(G) <k < G is is k-partite.

Fact 1.3. From the blowup lemma, for any m > 1,
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w(T.(rm)) =m(K,) =1— 7

1.2 Erdos-Stone-Simonovits Theorem
Theorem 1.4 (Erdés-Stone). If x(F) =r, then n(F) = n(K,) =1— 1.

Proof. There exists an integer m such that £ C T,.(rm). So ex(n, F') < ex(n,T.(rm)), implying
that 7(F) < 7(T,(rm)) = 7(K,) = 1 — ;. For the lower bound, since x(F) = r, we see T,_1(n)
is F-free. Then ex(n, F') > e(T;—-1(n)). Combining them, we get
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r—1 X(F)—1

m(F)=n(K,)=1-



Obviously, the above theorem has the following version.

Theorem 1.5 (Erdds-Stone). For any graph F and n, ex(n,F) = (1 — X(%)_l +0(1)) () where
o(1) - 0 as n — +oo.

Let F be a family of graphs. Let the chromatic number x(F) = minpecr x(F).

Theorem 1.6 (Erdés-Stone; observed by Simonovits). For any family F of graphs,

1

w(]:)zl—W.

Let us see some easy observations.

1. For any family F of graphs, =(F) € {0, 1, %, RIS

2. For any graph F, ex(n,F) = (1 — W)—l +0(1))(3). When x(F) = 2(i.e. F is bipartite),
this becomes ex(n, F) = o(n?).

The problem of finding ex(n, F) for bipartite graphs F' is call degenerate Tudn problem.

1.3 Quantitative Version of Erdds-Stone-Simonovits Theroem

Erdés-Stone-Simonovits theorem says ex(n, T(rm)) < (1 — - +¢)(}). That means for fixed
m, €, it holds for large n. Now we consider the ounterpart that for fixed n, e, how large m can be?

For convenince, let us define a function

f(n,€) = max {m ex(n, T (rm)) < ex(n, Ky) + s(;‘> - 1} :

For functions f, g, we write f < g if lim,_, % <land f~giflim,400 % =1.

The Erdés-Renyi random graph G(n,p) for 0 < p < 1 is a graph on n vertices, where each
pair of vertices forms an edge with probability p, independently at random. In particular, G(n, %)
can be viewed as an equally distributed probability space which consists of all labelled n-vertex

graphs.

Q

Theorem 1.7 (upper bound proved by Bollobéds-Erdés).
logy/en S fa(n,€) S 2logy /. n

Proof. First consider the lower bound. Let m = log; /. n, so n~1/™ = ¢. Thus

en?

ex(n, T (2m)) = ex(n, Kmm) < %(m — 1)l/mp2-tim %(m —1)n< -

This proves log; /. n < fa(n, ).
Second, let t = 2log; /. n. To show fa(n,e) < t, we need to prove ex(n, Kt ) > g(g) —-1. It

suffices to construct a n-vertex K, ;-free graph G with at least 5(72‘) — 1 edges. Consider Erdds-
Renyi random graph G(n,e). Let X be the number of K;; in G(n,e). We have

1 2t
E[X] = @) <t )stz < n?e = (n%")2.
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Since et = £21°€1/e™ = =2 we see E[X] < 1. By average, there exists a graph G such that
e(G) — X > E[e(G) — X] > £(3) — 1. Let G’ be obtained from G by deleting one edge for each
copy of K;; in G. Then G’ is Ky -free with e(G') > e(G) — X > s(g) —1. |

The best general bound is used by Szemeredi’s regularity lemma.
Theorem 1.8 (Ishigami). For any r > 2 and € = o(1), we have fr(n,e) ~ fa(n,e). Thus
IOgl/s n S fr(n7 5) S 210g1/€ n.

Theorem 1.9. For any ¢ € (0, ﬁ) where r is fixed,

fry1(n,e) < fa ([;1,7"(7“ + 1)6) .

Proof. Assume not. Let t = fo([%],7(r + 1)) + 1, then there exists a Kj;-free [ ]-vertex graph

H with e(H) > r(r+ 1)6((?‘) — 1. Let G be obtained from T, (n) by adding H into a part of size
[%]. We claim that G is Ty 11((r + 1)t)-free (prove it as an exercise). Thus we have

ex(n, Tr+1((r+1)t)) > e(G) = e(Ty(n)) + e(H) > ex(n, Ky4+1) + 6(7;)

By definition, f.11(n,e) <t —1= fo([7],r(r+ 1)e). 1



