Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Mar 2nd 2020, Monday

1 Lecture 3

1.1 Blowup Lemma

Given a k-graph F, the t-blowup F(t) is a k-graph obtained from F by replacing each $v \in V(F)$ by an independent subset I(v) of size t and replacing every edge $\{v_1, v_2, ..., v_k\} \in E(F)$ by a complete k-partite k-graph $I(v_1), I(v_2), ..., I(v_k)$. For example, the t-blowup of K_r is $K_r(t) = T_r(rt)$.

Theorem 1.1 (Blowup Lemma). For any k-graph F and $t \ge 1$, we have $\pi(F(t)) = \pi(F)$. In other words, $ex(n, F) \le ex(n, F(t)) \le ex(n, F) + \varepsilon n^k$ for any $t, \varepsilon > 0$ and $n \ge n(t, \varepsilon)$.

Proof. Let f = |V(F)|. First, clearly we have $ex(n, F) \leq ex(n, F(t))$ since $F \subseteq F(t)$. Then we can assume that for sufficiently large n, there exist $\varepsilon > 0$ and an F(t)-free k-graph G on n vertices, with $e(G) > ex(n, F) + \varepsilon n^k$. By supersaturation lemma, G contains at least $\delta \binom{n}{f}$ copies of F where $\delta = \delta(\varepsilon, F)$.

Next we define an anxiliary f-graph G^* on V(G) where $X \in \binom{n}{f}$ is an edge of G^* if and only if G[X] contains a copy of F. So $e(G^*) \geq \frac{\delta n^f}{f!} = \Omega(n^f)$. Take an integer T such that $n \gg T \gg t, f$. As $e(G^*) = \Omega(n^f) > ex(n, K_{T:f})$, by hypergraph Kövari-Sós-Turán theorem, we see G^* has at least one copy of $K_{T:f}$.

There are f! possible ways to embed a copy of F in an edge of $K_{T:f}$. Now we give f! colores to the edges of $K_{T:f}$. Notice that one color stands for one possible embedding. By pigeonhole priciple, there is a color whose number of edges is at least $\frac{Tf}{f!} > \exp(vT, K_{t:f})$. So $K_{T:f}$ contains a monochromatic copy of $K_{t:f}$. This copy of $K_{t:f}$ gives a copy of F(t) in G.

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum integer k such that V(G) can be partitioned into k independent sets.

Fact 1.2. $\chi(G) \leq k \Leftrightarrow G$ is is k-partite.

Fact 1.3. From the blowup lemma, for any $m \ge 1$,

$$\pi(T_r(rm)) = \pi(K_r) = 1 - \frac{1}{r-1}.$$

1.2 Erdős-Stone-Simonovits Theorem

Theorem 1.4 (Erdős-Stone). If $\chi(F) = r$, then $\pi(F) = \pi(K_r) = 1 - \frac{1}{r-1}$.

Proof. There exists an integer m such that $F \subseteq T_r(rm)$. So $ex(n, F) \leq ex(n, T_r(rm))$, implying that $\pi(F) \leq \pi(T_r(rm)) = \pi(K_r) = 1 - \frac{1}{r-1}$. For the lower bound, since $\chi(F) = r$, we see $T_{r-1}(n)$ is F-free. Then $ex(n, F) \geq e(T_{r-1}(n))$. Combining them, we get

$$\pi(F) = \pi(K_r) = 1 - \frac{1}{r-1} = 1 - \frac{1}{\chi(F) - 1}$$

Obviously, the above theorem has the following version.

Theorem 1.5 (Erdős-Stone). For any graph F and n, $ex(n, F) = (1 - \frac{1}{\chi(F) - 1} + o(1)) \binom{n}{2}$ where $o(1) \to 0$ as $n \to +\infty$.

Let \mathcal{F} be a family of graphs. Let the chromatic number $\chi(\mathcal{F}) = \min_{F \in \mathcal{F}} \chi(F)$.

Theorem 1.6 (Erdős-Stone; observed by Simonovits). For any family \mathcal{F} of graphs,

$$\pi(\mathcal{F}) = 1 - \frac{1}{\chi(\mathcal{F}) - 1}$$

Let us see some easy observations.

- 1. For any family \mathcal{F} of graphs, $\pi(\mathcal{F}) \in \{0, \frac{1}{2}, \frac{2}{3}, ..., \frac{r-1}{r}, ...\}.$
- 2. For any graph F, $ex(n, F) = (1 \frac{1}{\chi(F)-1} + o(1))\binom{n}{2}$. When $\chi(F) = 2$ (i.e. F is bipartite), this becomes $ex(n, F) = o(n^2)$.

The problem of finding ex(n, F) for bipartite graphs F is call degenerate Tuán problem.

1.3 Quantitative Version of Erdős-Stone-Simonovits Theorem

Erdős-Stone-Simonovits theorem says $\exp(n, T_r(rm)) \leq (1 - \frac{1}{r-1} + \varepsilon)\binom{n}{2}$. That means for fixed m, ϵ , it holds for large n. Now we consider the ounterpart that for fixed n, ε , how large m can be?

For convenince, let us define a function

$$f_r(n,\varepsilon) = \max\left\{m : \exp(n, T_r(rm)) \le \exp(n, K_r) + \varepsilon \binom{n}{2} - 1\right\}.$$

For functions f, g, we write $f \leq g$ if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} \leq 1$ and $f \sim g$ if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 1$.

The Erdős-Renyí random graph G(n,p) for $0 \le p \le 1$ is a graph on n vertices, where each pair of vertices forms an edge with probability p, independently at random. In particular, $G(n, \frac{1}{2})$ can be viewed as an equally distributed probability space which consists of all labelled n-vertex graphs.

Theorem 1.7 (upper bound proved by Bollobás-Erdős).

$$\log_{1/\varepsilon} n \lesssim f_2(n,\varepsilon) \lesssim 2 \log_{1/\varepsilon} n$$

Proof. First consider the lower bound. Let $m = \log_{1/\varepsilon} n$, so $n^{-1/m} = \varepsilon$. Thus

$$ex(n, T_2(2m)) = ex(n, K_{m,m}) \le \frac{1}{2}(m-1)^{1/m}n^{2-1/m} + \frac{1}{2}(m-1)n \le \frac{\varepsilon n^2}{2}.$$

This proves $\log_{1/\varepsilon} n \lesssim f_2(n,\varepsilon)$.

Second, let $t = 2 \log_{1/\varepsilon} n$. To show $f_2(n, \varepsilon) < t$, we need to prove $\exp(n, K_{t,t}) > \varepsilon {n \choose 2} - 1$. It suffices to construct a *n*-vertex $K_{t,t}$ -free graph *G* with at least $\varepsilon {n \choose 2} - 1$ edges. Consider Erdős-Renyí random graph $G(n, \varepsilon)$. Let *X* be the number of $K_{t,t}$ in $G(n, \varepsilon)$. We have

$$\mathbb{E}[X] = \frac{1}{2} \binom{n}{2t} \binom{2t}{t} \varepsilon^{t^2} < n^{2t} \varepsilon^{t^2} = (n^2 \varepsilon^t)^2.$$

Since $\varepsilon^t = \varepsilon^{2\log_{1/\varepsilon} n} = n^{-2}$, we see $\mathbb{E}[X] < 1$. By average, there exists a graph G such that $e(G) - X \ge \mathbb{E}[e(G) - X] > \varepsilon {n \choose 2} - 1$. Let G' be obtained from G by deleting one edge for each copy of $K_{t,t}$ in G. Then G' is $K_{t,t}$ -free with $e(G') \ge e(G) - X > \varepsilon {n \choose 2} - 1$.

The best general bound is used by Szemeredi's regularity lemma.

Theorem 1.8 (Ishigami). For any $r \ge 2$ and $\varepsilon = o(1)$, we have $f_r(n, \varepsilon) \sim f_2(n, \varepsilon)$. Thus

$$\log_{1/\varepsilon} n \lesssim f_r(n,\varepsilon) \lesssim 2 \log_{1/\varepsilon} n$$

Theorem 1.9. For any $\varepsilon \in (0, \frac{1}{r(r+1)})$ where r is fixed,

$$f_{r+1}(n,\varepsilon) \le f_2\left(\lceil \frac{n}{r} \rceil, r(r+1)\varepsilon\right).$$

Proof. Assume not. Let $t = f_2(\lceil \frac{n}{r} \rceil, r(r+1)\varepsilon) + 1$, then there exists a $K_{t,t}$ -free $\lceil \frac{n}{r} \rceil$ -vertex graph H with $e(H) > r(r+1)\varepsilon \binom{\lceil \frac{n}{r} \rceil}{2} - 1$. Let G be obtained from $T_r(n)$ by adding H into a part of size $\lceil \frac{n}{r} \rceil$. We claim that G is $T_{r+1}((r+1)t)$ -free (prove it as an exercise). Thus we have

$$ex(n, T_{r+1}((r+1)t)) \ge e(G) = e(T_r(n)) + e(H) \ge ex(n, K_{r+1}) + \varepsilon \binom{n}{2}$$

By definition, $f_{r+1}(n,\varepsilon) \leq t-1 = f_2(\lceil \frac{n}{r} \rceil, r(r+1)\varepsilon).$

1		