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1 Lecture 3
1.1 Blowup Lemma
Given a k-graph F , the t-blowup F (t) is a k-graph obtained from F by replacing each v ∈ V (F ) by
an independent subset I(v) of size t and replacing every edge {v1, v2, ..., vk} ∈ E(F ) by a complete
k-partite k-graph I(v1), I(v2), ..., I(vk). For example, the t-blowup of Kr is Kr(t) = Tr(rt).

Theorem 1.1 (Blowup Lemma). For any k-graph F and t ≥ 1, we have π(F (t)) = π(F ). In
other words, ex(n, F ) ≤ ex(n, F (t)) ≤ ex(n, F ) + εnk for any t, ε > 0 and n ≥ n(t, ε).

Proof. Let f = |V (F )|. First, clearly we have ex(n, F ) ≤ ex(n, F (t)) since F ⊆ F (t). Then
we can assume that for sufficiently large n, there exist ε > 0 and an F (t)-free k-graph G on n
vertices, with e(G) > ex(n, F ) + εnk. By supersaturation lemma, G contains at least δ

(
n
f

)
copies

of F where δ = δ(ε, F ).
Next we define an anxiliary f -graph G∗ on V (G) where X ∈

(
n
f

)
is an edge of G∗ if and only if

G[X] contains a copy of F . So e(G∗) ≥ δnf

f ! = Ω(nf ). Take an integer T such that n ≫ T ≫ t, f .
As e(G∗) = Ω(nf ) > ex(n,KT :f ), by hypergraph Kövari-Sós-Turán theorem, we see G∗ has at
least one copy of KT :f .

There are f ! possible ways to embed a copy of F in an edge of KT :f . Now we give f ! colores
to the edges of KT :f . Notice that one color stands for one possible embedding. By pigeonhole
priciple, there is a color whose number of edges is at least T f

f ! > ex(vT,Kt:f ). So KT :f contains
a monochromatic copy of Kt:f . This copy of Kt:f gives a copy of F (t) in G.

The chromatic number of a graph G, denoted by χ(G), is the minimum integer k such that
V (G) can be partitioned into k independent sets.

Fact 1.2. χ(G) ≤ k ⇔ G is is k-partite.

Fact 1.3. From the blowup lemma, for any m ≥ 1,

π(Tr(rm)) = π(Kr) = 1− 1

r − 1
.

1.2 Erdős-Stone-Simonovits Theorem
Theorem 1.4 (Erdős-Stone). If χ(F ) = r, then π(F ) = π(Kr) = 1− 1

r−1 .

Proof. There exists an integer m such that F ⊆ Tr(rm). So ex(n, F ) ≤ ex(n, Tr(rm)), implying
that π(F ) ≤ π(Tr(rm)) = π(Kr) = 1− 1

r−1 . For the lower bound, since χ(F ) = r, we see Tr−1(n)
is F -free. Then ex(n, F ) ≥ e(Tr−1(n)). Combining them, we get

π(F ) = π(Kr) = 1− 1

r − 1
= 1− 1

χ(F )− 1
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Obviously, the above theorem has the following version.

Theorem 1.5 (Erdős-Stone). For any graph F and n, ex(n, F ) = (1− 1
χ(F )−1 + o(1))

(
n
2

)
where

o(1) → 0 as n → +∞.

Let F be a family of graphs. Let the chromatic number χ(F) = minF∈F χ(F ).

Theorem 1.6 (Erdős-Stone; observed by Simonovits). For any family F of graphs,

π(F) = 1− 1

χ(F)− 1
.

Let us see some easy observations.

1. For any family F of graphs, π(F) ∈ {0, 12 ,
2
3 , ...,

r−1
r , ...}.

2. For any graph F , ex(n, F ) = (1 − 1
χ(F )−1 + o(1))

(
n
2

)
. When χ(F ) = 2(i.e. F is bipartite),

this becomes ex(n, F ) = o(n2).

The problem of finding ex(n, F ) for bipartite graphs F is call degenerate Tuán problem.

1.3 Quantitative Version of Erdős-Stone-Simonovits Theroem
Erdős-Stone-Simonovits theorem says ex(n, Tr(rm)) ≤ (1 − 1

r−1 + ε)
(
n
2

)
. That means for fixed

m, ϵ, it holds for large n. Now we consider the ounterpart that for fixed n, ε, how large m can be?
For convenince, let us define a function

fr(n, ε) = max

{
m : ex(n, Tr(rm)) ≤ ex(n,Kr) + ε

(
n

2

)
− 1

}
.

For functions f, g, we write f ≲ g if limn→+∞
f(n)
g(n) ≤ 1 and f ∼ g if limn→+∞

f(n)
g(n) = 1.

The Erdős-Renyí random graph G(n, p) for 0 ≤ p ≤ 1 is a graph on n vertices, where each
pair of vertices forms an edge with probability p, independently at random. In particular, G(n, 12)
can be viewed as an equally distributed probability space which consists of all labelled n-vertex
graphs.

Theorem 1.7 (upper bound proved by Bollobás-Erdős).

log1/ε n ≲ f2(n, ε) ≲ 2 log1/ε n

Proof. First consider the lower bound. Let m = log1/ε n, so n−1/m = ε. Thus

ex(n, T2(2m)) = ex(n,Km,m) ≤ 1

2
(m− 1)1/mn2−1/m +

1

2
(m− 1)n ≤ εn2

2
.

This proves log1/ε n ≲ f2(n, ε).

Second, let t = 2 log1/ε n. To show f2(n, ε) < t, we need to prove ex(n,Kt,t) > ε
(
n
2

)
− 1. It

suffices to construct a n-vertex Kt,t-free graph G with at least ε
(
n
2

)
− 1 edges. Consider Erdős-

Renyí random graph G(n, ε). Let X be the number of Kt,t in G(n, ε). We have

E[X] =
1

2

(
n

2t

)(
2t

t

)
εt

2
< n2tεt

2
= (n2εt)2.
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Since εt = ε2 log1/ε n = n−2, we see E[X] < 1. By average, there exists a graph G such that
e(G) −X ≥ E[e(G) −X] > ε

(
n
2

)
− 1. Let G′ be obtained from G by deleting one edge for each

copy of Kt,t in G. Then G′ is Kt,t-free with e(G′) ≥ e(G)−X > ε
(
n
2

)
− 1.

The best general bound is used by Szemeredi’s regularity lemma.

Theorem 1.8 (Ishigami). For any r ≥ 2 and ε = o(1), we have fr(n, ε) ∼ f2(n, ε). Thus

log1/ε n ≲ fr(n, ε) ≲ 2 log1/ε n.

Theorem 1.9. For any ε ∈ (0, 1
r(r+1)) where r is fixed,

fr+1(n, ε) ≤ f2

(
⌈n
r
⌉, r(r + 1)ε

)
.

Proof. Assume not. Let t = f2(⌈nr ⌉, r(r+ 1)ε) + 1, then there exists a Kt,t-free ⌈nr ⌉-vertex graph
H with e(H) > r(r+1)ε

(⌈n
r
⌉

2

)
− 1. Let G be obtained from Tr(n) by adding H into a part of size

⌈nr ⌉. We claim that G is Tr+1((r + 1)t)-free (prove it as an exercise). Thus we have

ex(n, Tr+1((r + 1)t)) ≥ e(G) = e(Tr(n)) + e(H) ≥ ex(n,Kr+1) + ε

(
n

2

)
.

By definition, fr+1(n, ε) ≤ t− 1 = f2(⌈nr ⌉, r(r + 1)ε).

3


