
Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

March 4th 2020, Wednesday

1 Lecture 4. Szemerédi’s regularity Lemma

In order to state the regularity lemma precisely, we need some definitions. Let G be a graph. For
disjoint sets X,Y ⊆ V (G), the edge-density between X and Y is d(X,Y ) = e(X,Y )

|X||Y | . A bipartite

graph (A,B) is called ε-regular, if for any A′ ⊆ A and B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we
have |d(A′, B′)− d(A,B)| < ε. A partition of V (G) into sets V1, V2, · · · , Vk is an equipartition if
the sizes of all parts only differ by at most 1. The order of the partition is the number of sets in
it. An equipartition V (G) = V1∪V2∪ · · · ∪Vk is called ε-regular if all but εk2 of the pairs (Vi, Vj)
are ε-regular.

Theorem 1.1 (Szemerédi’s Regularity Lemma, 1975). For any ε > 0, there exists T (ε) such that
any graph G has an ε-regular equipartition of order k, where 1

ε ≤ k ≤ T (ε).

Before proving it, let us introduce some other notation. Assume P = {V1, V2, · · · , Vk} is a
partition of G with sizes a1n, a2n, ..., akn, where 0 ≤ ai ≤ 1, and

∑
i ai = 1. Let q(Vi, Vj) =

aiajd
2(Vi, Vj). Denote the potential function by

q(P ) =
∑
i,j

q(Vi, Vj).

Note that 0 ≤ q(P ) ≤ 1. We say a partition P ′ = {V ′1 , V ′2 , · · · , V ′` } refines the partition P =
{V1, V2, · · · , Vk} if each V ′i is contained in some Vj .

Define a function Tow(·) by Tow(k) = 2Tow(k−1) and Tow(0) = 1. As we will see later on,
the function T (ε) from the statement of the regularity lemma is given by Tow( 4

ε5
). The key in

proving the regularity lemma is the following lemma.

Lemma 1.2 (Key Lemma). If P = {V1, · · · , Vk} is an equipartition of an n-vertex graph which
is not ε-regular and k ≥ 1

ε6
, then there exists a refinement of P of order k∗, say P ∗, such that

q(P ∗) ≥ q(P ) + ε5

2 and k∗ ≤ k24k ≤ 22
k
.

The proof of the regularity lemma now follows easily by repeated applications of the key
lemma.

Proof of regularity lemma. (Assuming the key lemma) We start with an arbitrary equipartition
of V (G) of order 1

ε6
. Then repeatedly apply the key lemma until we get an ε-regular partition.

As 0 ≤ q(P ) ≤ 1 and each application of the key lemma increases q(P ) by at least ε5

2 , this
process must stop after at most 2

ε5
iterations. This will give an ε-regular equipartition of order

k ≤ T (ε) , Tow( 4
ε5

).

All we need now is to prove the key lemma.
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Proposition 1.3. Let A,B be disjoint subsets of sizes an, bn. Let A = A1 ∪ ... ∪ At and B =
B1∪ ...∪Bs, where |Ai| = xian, |Bj | = yibn,

∑
i xi =

∑
j yj = 1 and 0 ≤ xi, yj ≤ 1. Suppose that

d(Ai, Bj) = d(A,B) + εij, then we have∑
i,j

q(Ai, Bj) = q(A,B) + ab
∑
i,j

xiyjε
2
ij .

Proof. Let d = d(A,B). Note that

d =
e(A,B)

|A||B|
=

∑
i,j e(Ai, Bj)

abn2
=

∑
i,j

xiyjd(Ai, Bj) =
∑
i,j

xiyj(d + εij) = d +
∑
i,j

xiyjεij ,

implying that
∑

i,j xiyjεij = 0. Thus we have∑
i,j

q(Ai, Bj) =
∑
i,j

xiayjb · d2(Ai, Bj) = ab
∑
i,j

xiyj(d + εij)
2

= abd2 + 2abd
∑
i,j

xiyjεij + ab
∑
i,j

xiyjε
2
ij = q(A,B) + ab

∑
i,j

xiyjε
2
ij .

This proposition gives the following facts.

Fact 1.4. For A = A1 ∪ ... ∪At and B = B1 ∪ ... ∪Bs, we have∑
i,j

q(Ai, Bj) ≥ q(A,B).

Fact 1.5. Assume (A,B) is not ε-regular, where |A| = |B| = n
k . Then there exist A1 ⊆ A,B1 ⊆ B

with |A1| ≥ ε|A|, |B1| ≥ ε|B| such that |d(A1, B1)−d(A,B)| > ε. Set A2 = A\A1 and B2 = B\B1.
Then we have ∑

1≤i,j≤2
q(Ai, Bj) ≥ q(A,B) +

ε4

k2
.

Now we are ready to prove the key lemma.

Proof of the key lemma. Assume P = {V1, · · · , Vk} is not ε-regular. Let I be the set of pairs (i, j)
such that (Vi, Vj) is not ε-regular. So |I| ≥ εk2.

First we show there exists a partition (not equipartition) of order k1, say P1, which refines
P with q(P1) ≥ q(P ) + ε5 and k1 ≤ k2k−1. Let (i, j) ∈ I. As (Vi, Vj) is not ε-regular, there

exist V i,j
1 ⊆ Vi, V j,i

1 ⊆ Vj witnessing Fact 1.5. Set V i,j
2 = Vi\V i,j

1 and V j,i
2 = Vj\V j,i

1 . Define

Ai,j = {V i,j
1 , V i,j

2 } and Aj,i = {V j,i
1 , V j,i

2 }. We see Ai,j is a partition of Vi for (i, j) ∈ I. Let Ai

be the unique minimal partition of Vi, which refines each Ai,j for (i, j) ∈ I. Thus Ai has at most
2k−1 parts. Let P1 = ∪ki=1Ai be the partition. For (i, j) 6∈ I, by Fact 1.4, we know∑

A∈Ai,B∈Aj

q(A,B) ≥ q(A,B).
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For (i, j) ∈ I, as Ai refines Ai,j and Aj refines Aj,i, we see

∑
A∈Ai,B∈Aj

q(A,B) ≥
∑

A∈Ai,j ,B∈Aj,i

q(A,B) ≥ q(Vi, Vj) +
ε4

k2
.

Putting the above together, we obtain

q(P1) =
∑

A,B∈P1

q(A,B) ≥
∑
i,j

q(Vi, Vj) +
ε4

k2
|I| ≥ q(P ) + ε5.

In the remaining step, we will turn P ′ in to an equipartition P ∗ with q(P ∗) ≥ q(P1)− 10/k1,
where k1 is the order of P1 and 1/ε6 ≤ k ≤ k1 ≤ k2k. We start by partitioning each A ∈ P1

into subsets of size exactly n
k21

(with at most one exceptional subset of size at most n
k21

). Let P2

be the resulting refinement of P1, say P2 = {V1, V2, ..., Vk2 , U1, U2, ..., Uk1}, where |Vj | = n
k21

and

|Ui| ≤ n
k21

. Note that
∑

i |Ui| ≤ n
k1

and k21 ≥ k2 ≥ k21 − k1. Check that, one can turn P2 into an

equipartition P ∗ of order k2 by simply “distribute” the vertices of U1 ∪ ... ∪ Uk1 equally among
the sets V1, ..., Vk2 such that q(P ∗) ≥ q(P2)− 10/k1 ≥ q(P1)− 10/k1.

Finally, we conclude that P ∗ is the desired equipartition in the key lemma, since

q(P ∗) ≥ q(P1)−
10

k1
≥ q(P1)− 10ε6 ≥ q(P ) + ε5 − 10ε6 ≥ q(P ) +

ε5

2
,

and the order k2 satisfies k2 ≤ k21 ≤ (k2k)2 = k24k.
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