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1 Lecture 5

In this lecture, we are going to prove triangle removal lemma and Roth’s theorem as the applica-
tions of regularity lemma.

1.1 Triangle Removal Lemma

Lemma 1.1. Let (A,B) be an ε-regular pair with d = d(A,B), and let Y ⊆ B have size |Y | ≥
ε|B|. Then, all but fewer than ε|A| of the vertices in A have at least (d− ε)|Y | neighbors in Y .

Proof. Let X ⊆ A be the set of vertices with fewer than (d − ε)|Y | neighbors in Y . Then
d(X,Y ) < d − ε. So |d(X,Y ) − d(A,B)| > ε. Since (A,B) is ε-regular and |Y | ≥ ε|B|, this
implies that |X| < ε|A|.

Applying the above lemma, we can easily get the following one.

Lemma 1.2. Assume A,B,C are disjoint vertex sets such that d(A,B) = c, d(A,C) = b,
d(B,C) = a, where a, b, c ≥ 2ε, and the three bipartite graphs are ε-regular. Then the tripar-
tite graph (A,B,C) has at least (1− 2ε)(a− ε)(b− ε)(c− ε)|A||B||C| triangles.

Theorem 1.3 (Triangle removal lemma). For every ε > 0, there exists δ = δ(ε) > 0 such that if
one has to remove at least εn2 edges from an n-vertex graph G in order to make it triangle-free,
then G has at least δn3 triangles.

Proof. Apply regularity lemma to G with ε/3, we get an (ε/3)-regular partition V1, · · · , Vk, where
ε/3 ≤ k ≤ T (ε/3). Now we remove from G the following 3 types of edges:

(1) Edges that belongs to some Vi.

(2) Edges between non-(ε/3)-regular pairs (Vi, Vj).

(3) Edges between (ε/3)-regular pairs (Vi, Vj) with d(Vi, Vj) ≤ 2ε/3.

So the total number of edges we removed is at most
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By the condiction, the new graph, say G′, still contains some triangles. Let xyz be such a triangle
where x ∈ V1, y ∈ V2 and z ∈ V3. So we see each of (V1, V2), (V1, V3), (V2, V3) is an (ε/3)-regular
pair with density at least 2ε/3. By Lemma 1.2, we see the number of triangles in G is at least(
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1.2 Roth’s Theorem

Theorem 1.4 (Roth’s theorem, 1953). If S ⊆ [n] does not contain any non-trivial 3-term arith-
metic progression, 1 then |S| = o(n).

Proof (by Ruzsa-Szemerédi). We will show that for any ε > 0, such S has size at most εn for
n ≥ n(ε). Therefore, |S| = o(n).

Given any S ⊆ [n] with |S| ≥ εn (for large n), we will show that S contains some non-trivial
3-term arithmetic progression. To see this, we construct a 3-partite graph G = (A,B,C) with
A = [n], B = [2n] and C = [3n]. For any s ∈ S and x ∈ [n], we put a triangle Tx,s in G
on the vertices x ∈ A, x + s ∈ B and x + 2s ∈ C. So we put |S|n ≥ εn2 triangles Tx,s and
we claim that they are all edge-disjoint. It is because given any edge, we can uniquely recover
the corresponding x, s and thus the triangle Tx,s. Therefore, one needs to delete at least εn2

edges to make G triangle-free. By triangle removal lemma, G has at least δn3 triangles. Since
n ≥ n0 is sufficiently large, δn3 � |S|n, thus we have a triangle in G, say xyzx, which is not
of the type Tx,s. The 3 edges of this triangle must come from 3 different Tx,s. Suppose x ∈ A,
y = x+ s1 ∈ B and z = y + s2 ∈ C such that z = x+ 2s3, where s1, s2, s3 are distinct. Then we
have x+ s1 + s2 = z = x+ 2s3, implying that s1 + s2 = 2s3. So this (s1, s2, s3) forms a non-trival
3-term arithmetic progression in S.

1A 3-term arithmetic progression is non-trivial if the common difference is at least one.
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