Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Mar 9th 2020, Monday

1 Lecture 5

In this lecture, we are going to prove triangle removal lemma and Roth's theorem as the applications of regularity lemma.

1.1 Triangle Removal Lemma

Lemma 1.1. Let (A, B) be an ε-regular pair with $d=d(A, B)$, and let $Y \subseteq B$ have size $|Y| \geq$ $\varepsilon|B|$. Then, all but fewer than $\varepsilon|A|$ of the vertices in A have at least $(d-\varepsilon)|Y|$ neighbors in Y.
Proof. Let $X \subseteq A$ be the set of vertices with fewer than $(d-\varepsilon)|Y|$ neighbors in Y. Then $d(X, Y)<d-\varepsilon$. So $|d(X, Y)-d(A, B)|>\varepsilon$. Since (A, B) is ε-regular and $|Y| \geq \varepsilon|B|$, this implies that $|X|<\varepsilon|A|$.

Applying the above lemma, we can easily get the following one.
Lemma 1.2. Assume A, B, C are disjoint vertex sets such that $d(A, B)=c, d(A, C)=b$, $d(B, C)=a$, where $a, b, c \geq 2 \varepsilon$, and the three bipartite graphs are ε-regular. Then the tripartite graph (A, B, C) has at least $(1-2 \varepsilon)(a-\varepsilon)(b-\varepsilon)(c-\varepsilon)|A||B||C|$ triangles.
Theorem 1.3 (Triangle removal lemma). For every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that if one has to remove at least εn^{2} edges from an n-vertex graph G in order to make it triangle-free, then G has at least δn^{3} triangles.
Proof. Apply regularity lemma to G with $\varepsilon / 3$, we get an $(\varepsilon / 3)$-regular partition V_{1}, \cdots, V_{k}, where $\varepsilon / 3 \leq k \leq T(\varepsilon / 3)$. Now we remove from G the following 3 types of edges:
(1) Edges that belongs to some V_{i}.
(2) Edges between non- $(\varepsilon / 3)$-regular pairs $\left(V_{i}, V_{j}\right)$.
(3) Edges between $(\varepsilon / 3)$-regular pairs $\left(V_{i}, V_{j}\right)$ with $d\left(V_{i}, V_{j}\right) \leq 2 \varepsilon / 3$.

So the total number of edges we removed is at most

$$
k\binom{n / k}{2}+\frac{\varepsilon}{3}\left(\frac{n}{k}\right)^{2}\binom{k}{2}+\frac{2 \varepsilon}{3}\left(\frac{n}{k}\right)^{2}\binom{k}{2} \leq \frac{n^{2}}{2 k}+\frac{\varepsilon n^{2}}{3}+\frac{\varepsilon n^{2}}{3} \leq \frac{5 \varepsilon}{6} n^{2} .
$$

By the condiction, the new graph, say G^{\prime}, still contains some triangles. Let $x y z$ be such a triangle where $x \in V_{1}, y \in V_{2}$ and $z \in V_{3}$. So we see each of $\left(V_{1}, V_{2}\right),\left(V_{1}, V_{3}\right),\left(V_{2}, V_{3}\right)$ is an $(\varepsilon / 3)$-regular pair with density at least $2 \varepsilon / 3$. By Lemma 1.2 , we see the number of triangles in G is at least

$$
\left(1-\frac{2 \varepsilon}{3}\right)\left(\frac{\varepsilon}{3}\right)^{3}\left|V_{1}\right|\left|V_{2}\right|\left|V_{3}\right| \geq \frac{1}{2}\left(\frac{\varepsilon}{3}\right)^{3}\left(\frac{n}{k}\right)^{3} \geq \frac{1}{2}\left(\frac{\varepsilon}{3 T(\varepsilon / 3)}\right)^{3} n^{3} \triangleq \delta(\varepsilon) n^{3} .
$$

1.2 Roth's Theorem

Theorem 1.4 (Roth's theorem, 1953). If $S \subseteq[n]$ does not contain any non-trivial 3 -term arithmetic progression, ${ }^{1}$ then $|S|=o(n)$.

Proof (by Ruzsa-Szemerédi). We will show that for any $\varepsilon>0$, such S has size at most εn for $n \geq n(\varepsilon)$. Therefore, $|S|=o(n)$.

Given any $S \subseteq[n]$ with $|S| \geq \varepsilon n$ (for large n), we will show that S contains some non-trivial 3 -term arithmetic progression. To see this, we construct a 3 -partite graph $G=(A, B, C)$ with $A=[n], B=[2 n]$ and $C=[3 n]$. For any $s \in S$ and $x \in[n]$, we put a triangle $T_{x, s}$ in G on the vertices $x \in A, x+s \in B$ and $x+2 s \in C$. So we put $|S| n \geq \varepsilon n^{2}$ triangles $T_{x, s}$ and we claim that they are all edge-disjoint. It is because given any edge, we can uniquely recover the corresponding x, s and thus the triangle $T_{x, s}$. Therefore, one needs to delete at least εn^{2} edges to make G triangle-free. By triangle removal lemma, G has at least δn^{3} triangles. Since $n \geq n_{0}$ is sufficiently large, $\delta n^{3} \gg|S| n$, thus we have a triangle in G, say $x y z x$, which is not of the type $T_{x, s}$. The 3 edges of this triangle must come from 3 different $T_{x, s}$. Suppose $x \in A$, $y=x+s_{1} \in B$ and $z=y+s_{2} \in C$ such that $z=x+2 s_{3}$, where s_{1}, s_{2}, s_{3} are distinct. Then we have $x+s_{1}+s_{2}=z=x+2 s_{3}$, implying that $s_{1}+s_{2}=2 s_{3}$. So this $\left(s_{1}, s_{2}, s_{3}\right)$ forms a non-trival 3 -term arithmetic progression in S.

[^0]
[^0]: ${ }^{1}$ A 3-term arithmetic progression is non-trivial if the common difference is at least one.

