Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Mar 11th 2020, Wednesday

1 Lecture 6. Graph Embedding Lemma.

Let G be a graph and $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be an ε-regular equipartition with $\left|V_{i}\right| \in\{\ell, \ell+1\}$. Given $d \in[0,1]$, let R be the graph with the vertex set $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ where $V_{i} V_{j} \in E(R)$ if and only if $\left(V_{i}, V_{j}\right)$ is an ε-regular pair in G with $d\left(V_{i}, V_{j}\right) \geq d$. We call such R a regularity graph (or reduce graph) of G with parameters ε, ℓ and d.

The following lemma says that if some blowup $R(S)$ of R contains a given graph H, then assuming each V_{i} is large enough, G also contains a copy of H.
Theorem 1.1 (Graph Embedding Lemma). For every $d \in(0,1]$ and $\Delta \geq 1$, there exists an ε_{0} such that the following holds: if G is any graph, H is a graph with $\Delta(H) \leq \Delta$, and R is a regularity graph of G with parameter $\varepsilon \leq \varepsilon_{0}, \ell \geq 2 s / d^{\Delta}$ and d, then

$$
H \subseteq R(s) \Rightarrow H \subseteq G
$$

Proof. Given d and Δ, we choose $\varepsilon_{0}>0$ small enough such that $\varepsilon_{0}<d$ and

$$
\left(d-\varepsilon_{0}\right)^{\Delta}-\Delta \varepsilon_{0} \geq \frac{1}{2} d^{\Delta}
$$

Note that such ε_{0} exists, as $\left(d-\varepsilon_{0}\right)^{\Delta}-\Delta \varepsilon_{0} \rightarrow d^{\Delta}$ as $\varepsilon_{0} \rightarrow 0$. Let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be the ε-regular partition of G with $\varepsilon \leq \varepsilon_{0}$. Let R be the corresponding regularity graph of G with the above parameters ε, ℓ, d. By condition, H is contained in some blowup $R(s)$ of R, where each vertex V_{i} in R is replaced by an s-set V_{i}^{s}. Suppose H has vertices $u_{1}, u_{2}, \ldots, u_{h}$ where each u_{i} lies in the s-set $V_{\sigma(i)}^{s}$ of $R(s)$. In this way, we define a mapping $\sigma:[h] \rightarrow[k]$.

Our goal is to define an embedding $u_{i} \mapsto v_{i} \in V_{\sigma(i)}$ such that $v_{1}, v_{2}, \ldots, v_{h}$ are distinct, and $v_{i} v_{j} \in E(G)$ when $u_{i} u_{j} \in E(H)$. We will choose the vertices $v_{1}, v_{2}, \ldots, v_{h}$ in a recursive process, where we pick one vertex v_{i} in the $i^{t h}$ iteration. Throughout this process, we shall maintain a "target set" $Y_{i} \subseteq V_{\sigma(i)}$ assigned to each u_{i} : this contains the vertices that are still candidates for the choice of v_{i}. Initially, we let $Y_{i}=V_{\sigma(i)}$. The set Y_{i} will evolve as

$$
V_{\sigma(i)}=Y_{i}^{0} \supseteq Y_{i}^{1} \supseteq \ldots \supseteq Y_{i}^{i}=\left\{v_{i}\right\} .
$$

As the embedding proceeds, $\left\{Y_{i}^{j}\right\}_{i \geq j}$ will be updated simultaneously for each j. After we choose v_{j} at the end of the $j^{t h}$ iteration, we update $Y_{i}^{j-1} \rightarrow Y_{i}^{j}$ for all $i \geq j$ as follows.

$$
Y_{i}^{j}= \begin{cases}\left\{v_{j}\right\} & \text { if } i=j \\ N\left(v_{j}\right) \cap Y_{i}^{j-1} & \text { if } i>j \text { and } u_{j} u_{i} \in E(H) \\ Y_{i}^{j-1} & \text { otherwise }\end{cases}
$$

To make this approach work, we have to choose v_{j} carefully to make sure that the target sets Y_{i}^{j} are not small. This can be solved by using Lemma 1.1 from the last lecture. Provided that
$\left|Y_{i}^{j-1}\right| \geq \varepsilon \ell, i>j$ and $u_{i} u_{j} \in E(H)$, applying this lemma for $A=V_{\sigma(j)}, B=V_{\sigma(i)}$ and $Y=Y_{i}^{j-1}$, we see that all but at most $\varepsilon \ell$ of vertices x in $V_{\sigma(j)}$ satisfy $\left|N(x) \cap Y_{i}^{j-1}\right| \geq(d-\varepsilon)\left|Y_{i}^{j-1}\right|$. Since there are at most Δ such i, we know all but $\Delta \varepsilon \ell$ of vertices v_{j} in $V_{\sigma(j)}$ satisfy $\left|N\left(v_{j}\right) \cap Y_{i}^{j-1}\right| \geq$ $(d-\varepsilon)\left|Y_{i}^{j-1}\right|$ for all such i. Therefore, as long as $\left|Y_{j}^{j-1}\right|-\Delta \varepsilon \ell \geq s$, we have a good choice of v_{j} in Y_{j}^{j-1} such that v_{j} is distinct from $\left\{v_{1}, \ldots, v_{j-1}\right\}$, and $\left|Y_{i}^{j}\right|=\left|N\left(v_{j}\right) \cap Y_{i}^{j-1}\right| \geq(d-\varepsilon)\left|Y_{i}^{j-1}\right|$ for all $i>j$ with $u_{i} u_{j} \in E(H)$. We have $\left|Y_{i}^{0}\right|=\left|V_{\sigma(i)}\right| \geq \ell$ and each Y_{i} shrinks by at most Δ times by a factor of $(d-\varepsilon)$. Thus

$$
\left|Y_{i}^{j-1}\right|-\Delta \varepsilon \ell \geq \ell(d-\varepsilon)^{\Delta}-\Delta \varepsilon \ell \geq \ell\left(d-\varepsilon_{0}\right)^{\Delta}-\Delta \varepsilon_{0} \ell \geq \frac{\ell}{2} d^{\Delta} \geq s .
$$

for all $j \leq i$. In particular, we have $\left|Y_{i}^{j-1}\right| \geq \varepsilon \ell$ for all $i \geq j$ and $\left|Y_{j}^{j-1}\right|-\Delta \varepsilon \ell \geq s$ as desired.
Now we can give a new proof of Erdős-Stone-Simonivits Theorem.
Theorem 1.2 (Erdős-Stone-Simonivits). For any graph H with $\chi(H)=r+1$,

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2} .
$$

Proof. For a graph H with $\chi(H)=r+1$, there exists an integer h such that $H \subseteq K_{r+1}(h)$. So it suffices to show for every $\delta>0$, there exists $n_{0}=n_{0}(\delta, r, h)$ such that if G has $n \geq n_{0}$ vertices and at least $\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}$ edges, it contains a $K_{r+1}(h)$.

Let $d=\delta / 4$ and $\Delta=r$. Then let ε_{0} be from the embedding lemma for d and Δ. Let $\varepsilon=\min \left\{\varepsilon_{0}, \delta / 4\right\}$. Applying regularity lemma to G with ε, we get an ε-regular partition $\left(V_{1}, \ldots, V_{k}\right)$ with $1 / \varepsilon \leq k \leq T(\varepsilon)$ and $\left|V_{i}\right|=n / k \triangleq \ell \geq n / T(\varepsilon)$. Remove the following 3 types of edges:
(1) Edges inside each V_{i}.
(2) Edges between non- ε-regular pairs $\left(V_{i}, V_{j}\right)$.
(3) Edges between ε-regular pairs $\left(V_{i}, V_{j}\right)$ with $d\left(V_{i}, V_{j}\right) \leq \frac{\delta}{4}$.

So the total number of edges deleted is at most

$$
k\binom{n / k}{2}+\varepsilon\binom{k}{2}\left(\frac{n}{k}\right)^{2}+\frac{\delta}{4}\binom{k}{2}\left(\frac{n}{k}\right)^{2} \leq \frac{n^{2}}{2 k}+\varepsilon n^{2}+\frac{\delta}{8} n^{2} \leq \frac{\delta}{2} n^{2} .
$$

Thus the remaining graph G^{\prime} still has at least $\left(1-\frac{1}{r}\right)\binom{n}{2}$ edges. By Turán's Theorem, G^{\prime} contains a copy of K_{r+1}. We may assume K_{r+1} has vertices x_{1}, \ldots, x_{r+1}, where $x_{i} \in V_{i}$. Then all $1 \leq i, j \leq$ $r+1,\left(V_{i}, V_{j}\right)$ is ε-regular with $d\left(V_{i}, V_{j}\right) \geq \delta / 4$. Apply the embedding lemma with $d=\delta / 4$ and $\Delta=r$. If every $\left|V_{i}\right|$ is sufficiently large, then we get $K_{r+1}(h) \subseteq R(h) \subseteq G$. Now all we need is to make sure the size of V_{i} is large as

$$
\varepsilon n \geq \frac{n}{k}=\ell \geq \frac{2 h}{d^{\Delta}} \Leftrightarrow n \geq \frac{2 h}{\varepsilon d^{\Delta}} \geq \frac{2 h}{\min \left\{\varepsilon_{0}, \delta / 4\right\}(\delta / 4)^{r}} .
$$

