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1 Lecture 6. Graph Embedding Lemma.

Let G be a graph and {Vi, Vs, ..., Vi} be an e-regular equipartition with |V;| € {¢,¢ + 1}. Given
d € [0,1], let R be the graph with the vertex set {Vi, Vs, ...,V } where V;V; € E(R) if and only if
(Vi,V;) is an e-regular pair in G with d(V;, V;) > d. We call such R a regularity graph (or reduce
graph) of G with parameters ¢, ¢ and d.

The following lemma says that if some blowup R(S) of R contains a given graph H, then
assuming each V; is large enough, G also contains a copy of H.

Theorem 1.1 (Graph Embedding Lemma). For every d € (0,1] and A > 1, there exists an
go such that the following holds: if G is any graph, H is a graph with A(H) < A, and R is a
regularity graph of G with parameter ¢ < gq, £ > 2s/d® and d, then

HCR(s) = HCG.

Proof. Given d and A, we choose €y > 0 small enough such that ¢y < d and
1
(d — Eo)A — A&O > §dA.

Note that such gg exists, as (d —9)® — Agg — d> as g — 0. Let {V1, V5, ..., Vi } be the e-regular
partition of G with ¢ < g¢. Let R be the corresponding regularity graph of G with the above
parameters ¢, £, d. By condition, H is contained in some blowup R(s) of R, where each vertex V;
in R is replaced by an s-set V;°. Suppose H has vertices uy,us, ...,u; where each u; lies in the
s-set V;(l.) of R(s). In this way, we define a mapping o : [h] — [k].

Our goal is to define an embedding u; — v; € V,(;) such that vy, vs,...,v5 are distinct, and
viv; € E(G) when uu; € E(H). We will choose the vertices v1,v2, ..., v; in a recursive process,
where we pick one vertex v; in the i** iteration. Throughout this process, we shall maintain a
“target set” Y; C V;(;) assigned to each u;: this contains the vertices that are still candidates for
the choice of v;. Initially, we let Y; = V,;). The set Y; will evolve as

Vo =Y 2V 2. 2V = {ui).

As the embedding proceeds, {Yz] }i>; will be updated simultaneously for each j. After we choose
v; at the end of the j iteration, we update Yij_1 — Y/ for all i > j as follows.

‘ {Uj} A if i = ]
Y/ = N(vj) N YZ.]_1 if i > j and wju; € E(H)
Y/ -1 otherwise

To make this approach work, we have to choose v; carefully to make sure that the target sets
Y are not small. This can be solved by using Lemma 1.1 from the last lecture. Provided that



\Yi‘j_1| > el,i > jand wju; € E(H), applying this lemma for A = V), B =V, and Y = Yij_l7
we see that all but at most e/ of vertices z in V,; satisfy |N(x) N Yij_l\ > (d— 5)|Y;j_1]. Since
there are at most A such i, we know all but Ael of vertices v; in V,;y satisfy [N (v;) N Y;j71| >
(d— 5)|Yij_1| for all such i. Therefore, as long as |ij_1\ — Ael > s, we have a good choice of v;
in ij*l such that v; is distinct from {v1,...,v;_1}, and |YZJ| = |N(v;) ﬂYij71| > (d— €)|Yij71| for
all i > j with uju; € E(H). We have |Y| = |V, ;| > ¢ and each Y; shrinks by at most A times
by a factor of (d — ¢). Thus

Y77 = Acl > (d — )2 — Ael > £(d — e0)® — Aol > gdA > s.

for all j <. In particular, we have |Yij71| > el for all ¢ > § and |ij71| — Ael > s as desired. 1
Now we can give a new proof of Erdds-Stone-Simonivits Theorem.

Theorem 1.2 (Erdds-Stone-Simonivits). For any graph H with x(H) =r+1,

ex(n, H) = (1 — % +o(1)) <Z>

Proof. For a graph H with x(H) = r + 1, there exists an integer h such that H C K,1(h). So
it suffices to show for every § > 0, there exists ng = no(d, 7, h) such that if G has n > ng vertices
and at least (1 — 1 4 0(1))(}) edges, it contains a Ky41(h).

Let d = 6/4 and A = r. Then let gy be from the embedding lemma for d and A. Let
e = min{egp, d/4}. Applying regularity lemma to G with €, we get an e-regular partition (V1, ..., Vi)
with 1/e <k < T(¢) and |V;| = n/k £ £ > n/T(¢). Remove the following 3 types of edges:

(1) Edges inside each V;.
(2) Edges between non-e-regular pairs (V;, Vj).
(3) Edges between e-regular pairs (V;, V;) with d(V;, V;) < g.

So the total number of edges deleted is at most
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Thus the remaining graph G’ still has at least (1—1)(}) edges. By Turén’s Theorem, G’ contains
a copy of K,11. We may assume K, 1 has vertices x1, ..., x,41, where z; € V;. Then all 1 <i4,5 <
r+1, (V;,Vj) is e-regular with d(V;,V;) > §/4. Apply the embedding lemma with d = §/4 and
A =r. If every |V;| is sufficiently large, then we get K,;+1(h) C R(h) C G. Now all we need is to
make sure the size of V; is large as
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