Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Mar 18th 2020, Wednesday

1 Lecture 8. Erdos-Simonovits Stability Theorem

1.1 Stability

For two graphs G and H with the same number of vertices, the edit-distance d(G, H) is the
minimum integer k such that G can be obtained from H by adding or deleting k edges.

Theorem 1.1 (Fiiredi, 2015). If G is an n-vertex K,1-free graph with e(G) = e(T(n)) —t, then
there exists an r-partite subgraph H of G such that e(H) > e(G) —t.

Proof. We use the so-called Erd6s degree majorization algorithm, which will find a partition
V(@) =ViUVaU---UV, such that Y., e(G[V;]) <t. Let 21 € V(G) be a vertex of maximum
degree in G, and let V;" = N(x1) and Vi = V(G)\V;". So

2e(GIVi]) + e(Vi, Vi) = 3 dolw) < [Vi| - [V
ueVy

Suppose we have defined V:l Let z; € V:l be a vertex of maximum degree in G[V:l] Let
VE =V N N(x) and V; = VI \V. so VI = VUV and 2; € V. Note that V(G) =
V1UV2,U---UV1-UViJr and z; € V; for any j € [i]. Also

2e(GIVi]) +e(Vi, Vi) = Y dgpyr 5(w) < Vil - Vi), (1.1)
ueV;
Observe that G[{x1,x2,- -+ ,x;}] is a clique. So this procedure will stop in s steps (until V& = ()
for some integer s < 7.
Summing up (1.1) for all 7 € [s]. Since V =Vii1UViio U---UVy, we have
G)+ Y e(GVil) =3 (2e(GIVi]) +e(Vi, V1)) < DIVl - [V
i=1 i=1 i=1

= e(K(Vl7V27 T ﬂVS)) < e(TS(n)) < e(TT(n))'
Thus, Y7, e(G[Vi]) < t. ]

Corollary 1.2. Suppose G is K,i1-free with e(G) > e(T.(n)) —t. Then there is a complete
r-partite graph K = K(Vi,Va, -+ V) with V(G) =V U Vo U --- UV, satisfying d(G, K) < 3t.

Proof. By Theorem 1.1, there is an r-partite subgraph H of G with parts Vi, Vs, - - -, V;. such that
d(H,G) <t. Let K = K(Vi,Va,---,V;). Then e(H) > e(T,(n)) — 2t > e(K) — 2t. This means
by adding at most 2¢ edges, one can turn H into a complete r-partite K. Since d(H,G) < t and
d(H,K) <2t,wesee d(G,K) <d(G,H)+d(H,K) < 3t. |



Theorem 1.3 (Erdés-Simonovits Stability Theorem). For every € > 0 and every graph F with
X(F) =1+ 1, there exists a real § > 0 and ng such that if G is F-free with n > ng vertices and
e(G) > (1 —1)(3) — on?, then d(G, Tr(n)) < en?.

Proof Sketch. The proof can be completed in the following 5 steps:
1. Use regularity lemma to get a regularity graph R of size k.

Observe that e(R) > (1 — 1/7")(5) —o(k?).
Use embedding lemma to show that R is K, q-free.

By the stability for K1, we get the structure of R.

AR A

Finally, we obtain the structure of G.

1.2 Ramsey Number

Given two graphs K and H, the Ramsey number R(K, H) is the smallest integer N so that every
2-edge-coloring (blue/red) of K contains either a blue K or a red H.

Theorem 1.4 (Ramsey Theorem). Every 2-edge-coloring of K4n contains a monochromatic copy
of K.

In fact, it is not hard to prove the following slightly stronger result, using induction.

R(K&Kt)§<5+t2>'

Proposition 1.5.

s—1
Since R(K, H) < R(Ky(x)|; Ky (z)|) holds for any graphs K, H, we see that R(K, H) is always
finite.

For graphs K, H with bounded maximum degree, we can have a much better upper bound on
R(K, H) as follows.

Theorem 1.6. If K, H are graphs on n vertices with maximum degree A, then there is a constant

d = d(A) such that R(K,H) < dn.

Proof. Consider any 2-edge-coloring of Kg,. Let Kp be the subgraph of Ky, consisting of blue
edges. Let ¢ = £(1/2,A) and ¢ = ¢(1/2, A) be from the embedding lemma. Let m = 42+ and
¢’ = min{e, 1/(4m)}. Applying the regularity lemma on Kp with ¢/, we get a &’-regular partition
Vi, Va, -+, Vi with 1/&’ < k < T(¢'). There are k > 1/¢’ > 4m parts and at most £'k? < k2/(4m)
pairs are not ’-regular. Therefore, at least %2(1 — ﬁ) pairs are £’-regular. Let R be the regularity
graph. So e(R) > (’2“) — % > %2(1 — %) By Turan theorem, R contains a K,,, say Vi, Vo, -+, Vi,
which are pairwisely ¢’-regular. Considering the following 2-edge-coloring on this K,,: color (i, 5)
by black if dp(V;, V;) > 1/2, otherwise color it by white. Note that if (¢, j) is white, the red edges
in (V;,Vj) is €’-regular with density at least 1/2. Since m = 4A+1 by the Ramsey theorem, we
get a monochromatic (black/white) Kat1, say Vi,---,Vayi. That says, either all the density of
blue edges in (V;,V;) are at least 1/2 or all the density of red edges in (V;,V;) are at least 1/2.
By the embedding lemma, each case would give us a monochromatic (blue/red) Kayi(s) in G,
which implies a blue H or red K. |



