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1 Lecture 8. Erdős-Simonovits Stability Theorem

1.1 Stability

For two graphs G and H with the same number of vertices, the edit-distance d(G,H) is the
minimum integer k such that G can be obtained from H by adding or deleting k edges.

Theorem 1.1 (Füredi, 2015). If G is an n-vertex Kr+1-free graph with e(G) = e(Tr(n))− t, then
there exists an r-partite subgraph H of G such that e(H) ≥ e(G)− t.

Proof. We use the so-called Erdős degree majorization algorithm, which will find a partition
V (G) = V1 ∪ V2 ∪ · · · ∪ Vr such that

∑r
i=1 e(G[Vi]) ≤ t. Let x1 ∈ V (G) be a vertex of maximum

degree in G, and let V +
1 = N(x1) and V1 = V (G)\V +

1 . So

2e(G[V1]) + e(V1, V
+

1 ) =
∑
u∈V1

dG(u) ≤ |V1| · |V +
1 |.

Suppose we have defined V +
i−1. Let xi ∈ V +

i−1 be a vertex of maximum degree in G[V +
i−1]. Let

V +
i = V +

i−1 ∩ N(xi) and Vi = V +
i−1\V

+
i , so V +

i−1 = Vi ∪ V +
i and xi ∈ Vi. Note that V (G) =

V1 ∪ V2,∪ · · · ∪ Vi ∪ V +
i and xj ∈ Vj for any j ∈ [i]. Also

2e(G[Vi]) + e(Vi, V
+
i ) =

∑
u∈Vi

dG[V +
i−1](u) ≤ |Vi| · |V +

i |. (1.1)

Observe that G[{x1, x2, · · · , xi}] is a clique. So this procedure will stop in s steps (until V +
s = ∅)

for some integer s ≤ r.
Summing up (1.1) for all i ∈ [s]. Since V +

i = Vi+1 ∪ Vi+2 ∪ · · · ∪ Vs, we have

e(G) +

s∑
i=1

e(G[Vi]) =

s∑
i=1

(
2e(G[Vi]) + e(Vi, V

+
i )
)
≤

s∑
i=1

|Vi| · |V +
i |

= e(K(V1, V2, · · · , Vs)) ≤ e(Ts(n)) ≤ e(Tr(n)).

Thus,
∑s

i=1 e(G[Vi]) ≤ t.

Corollary 1.2. Suppose G is Kr+1-free with e(G) ≥ e(Tr(n)) − t. Then there is a complete
r-partite graph K = K(V1, V2, · · · , Vr) with V (G) = V1 ∪ V2 ∪ · · · ∪ Vr satisfying d(G,K) ≤ 3t.

Proof. By Theorem 1.1, there is an r-partite subgraph H of G with parts V1, V2, · · · , Vr such that
d(H,G) ≤ t. Let K = K(V1, V2, · · · , Vr). Then e(H) ≥ e(Tr(n)) − 2t ≥ e(K) − 2t. This means
by adding at most 2t edges, one can turn H into a complete r-partite K. Since d(H,G) ≤ t and
d(H,K) ≤ 2t, we see d(G,K) ≤ d(G,H) + d(H,K) ≤ 3t.
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Theorem 1.3 (Erdős-Simonovits Stability Theorem). For every ε > 0 and every graph F with
χ(F ) = r + 1, there exists a real δ > 0 and n0 such that if G is F -free with n ≥ n0 vertices and
e(G) ≥ (1− 1

r )
(
n
2

)
− δn2, then d(G,Tr(n)) ≤ εn2.

Proof Sketch. The proof can be completed in the following 5 steps:

1. Use regularity lemma to get a regularity graph R of size k.

2. Observe that e(R) ≥ (1− 1/r)
(
k
2

)
− o(k2).

3. Use embedding lemma to show that R is Kr+1-free.

4. By the stability for Kr+1, we get the structure of R.

5. Finally, we obtain the structure of G.

1.2 Ramsey Number

Given two graphs K and H, the Ramsey number R(K,H) is the smallest integer N so that every
2-edge-coloring (blue/red) of KN contains either a blue K or a red H.

Theorem 1.4 (Ramsey Theorem). Every 2-edge-coloring of K4n contains a monochromatic copy
of Kn.

In fact, it is not hard to prove the following slightly stronger result, using induction.

Proposition 1.5.

R(Ks,Kt) ≤
(
s+ t− 2

s− 1

)
.

Since R(K,H) ≤ R(K|V (K)|,K|V (H)|) holds for any graphs K,H, we see that R(K,H) is always
finite.

For graphs K,H with bounded maximum degree, we can have a much better upper bound on
R(K,H) as follows.

Theorem 1.6. If K,H are graphs on n vertices with maximum degree ∆, then there is a constant
d = d(∆) such that R(K,H) ≤ dn.

Proof. Consider any 2-edge-coloring of Kdn. Let KB be the subgraph of Kdn consisting of blue
edges. Let ε = ε(1/2,∆) and c = c(1/2,∆) be from the embedding lemma. Let m = 4∆+1 and
ε′ = min{ε, 1/(4m)}. Applying the regularity lemma on KB with ε′, we get a ε′-regular partition
V1, V2, · · · , Vk with 1/ε′ ≤ k ≤ T (ε′). There are k ≥ 1/ε′ ≥ 4m parts and at most ε′k2 ≤ k2/(4m)

pairs are not ε′-regular. Therefore, at least k2

2 (1− 1
2m) pairs are ε′-regular. Let R be the regularity

graph. So e(R) ≥
(
k
2

)
− k2

4m ≥
k2

2 (1− 1
m). By Turán theorem, R contains a Km, say V1, V2, · · · , Vm,

which are pairwisely ε′-regular. Considering the following 2-edge-coloring on this Km: color (i, j)
by black if dB(Vi, Vj) ≥ 1/2, otherwise color it by white. Note that if (i, j) is white, the red edges
in (Vi, Vj) is ε′-regular with density at least 1/2. Since m = 4∆+1, by the Ramsey theorem, we
get a monochromatic (black/white) K∆+1, say V1, · · · , V∆+1. That says, either all the density of
blue edges in (Vi, Vj) are at least 1/2 or all the density of red edges in (Vi, Vj) are at least 1/2.
By the embedding lemma, each case would give us a monochromatic (blue/red) K∆+1(s) in G,
which implies a blue H or red K.
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