Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Mar 23rd 2020, Monday

1 Lecture 9.

1.1 Induced Embedding Lemma

Recall the Embedding lemma as follows.
Theorem 1.1 (Embedding Lemma). For every $d \in(0,1]$ and Δ, there exists a constant $\varepsilon=$ $\varepsilon(d, \Delta)$ such that the following holds: for any graph H with $\Delta(H) \leq \Delta$, if $V_{1}, V_{2}, \cdots, V_{\chi(H)}$ are disjoint sets of size at least $|V(H)| / \varepsilon$ and each $\left(V_{i}, V_{j}\right)$ is ε-regular with $d\left(V_{i}, V_{j}\right) \geq d$, then one can find a copy of H in $\left(V_{1}, V_{2}, \cdots, V_{\chi(H)}\right)$.

Now we state an induced version of Embedding lemma .
Theorem 1.2 (Induced Embedding Lemma). For every $c \in(0,1 / 2]$ and h, there is a constant $\varepsilon=\varepsilon(c, h)$ such that the following holds: for any graph H with h vertices, if $V_{1}, V_{2}, \cdots, V_{h}$ are disjoint sets of size at least $(1 / \varepsilon)^{2}$ and each $\left(V_{i}, V_{j}\right)$ is ε-regular with density in $[c, 1-c]$, then one can find an induced copy of H in $\left(V_{1}, V_{2}, \cdots, V_{h}\right)$.

Proof (hint). If $\left(V_{i}, V_{j}\right)$ is ε-regular with density in $[c, 1-c]$, then the complement of $\left(V_{i}, V_{j}\right)$ is ε-regular with density in $[c, 1-c]$ too. So it suffices to show that a proper designed graph on $\left(V_{1}, V_{2}, \cdots, V_{h}\right)$ has a copy of K_{h}, which is implied by the Embedding Lemma.

1.2 Induced Ramsey Theorem

We are familar with Ramsey Theorem. One may ask that if there is a graph R such that any 2-edge-coloring of it contains a monochromatic induced copy of H for a fixed graph H. Specially, when $H=K_{h}$, it is the same as before and we know such R can be chosen as $K_{4^{h}}$. What if H is not a clique? Then R can't be a clique.

Theorem 1.3 (Induced Ramsey Theorem). For any graph H, there exists a host graph $R=R(H)$ such that any 2-edge-coloring of R contains a monochromatic induced copy of H.

Proof. Our proof will show that for all graphs H on h vertices, there exists a common host graph $R \sim G(n, 1 / 2)$ for $n \gg h$. To begin with, let us introduce some notation. Set $\varepsilon=\varepsilon(0.2, h)$ from Induced Embedding Lemma with $c=0.2$ and h. Let $m=4^{h}$ and $\tilde{\varepsilon}=\min \left\{\frac{\varepsilon}{3}, \frac{1}{4 m}\right\}$. Let $T=T(\tilde{\varepsilon})$ where $T(\cdot)$ is from regularity lemma.

We will prove the following statement: if G is an n-vertex graph such that
(1) $n / T \geq(1 / \varepsilon)^{2}$.
(2) For any disjoint pair (A, B) with $|A|,|B| \geq \frac{\varepsilon n}{T}$, we have $\left|d(A, B)-\frac{1}{2}\right| \leq \frac{\varepsilon}{3}$,
then G can be taken as the host graph $R(H)$.
First, we remark that random graphs $G \sim G(n, 1 / 2)$ for some $n \gg h$ satisfy (1) and (2). One can check it by applying Chernoff's inequality and union bound.

Then we return to the statement. Consider any 2 -edge-coloring of G. Let G_{0} be the subgraph of all blue edges and G_{1} be that of red edges. Applying regularity lemma for $\tilde{\varepsilon}$ to G_{0}, we get an $\tilde{\varepsilon}$-regular partition V_{1}, \cdots, V_{k} with $\left|V_{i}\right|=\frac{n}{k}$, where $4 m \leq 1 / \tilde{\varepsilon} \leq k \leq T(\tilde{\varepsilon}) \triangleq T$, such that at most $\varepsilon k^{2} \leq \frac{k^{2}}{4 m}$ pairs $\left(V_{i}, V_{j}\right)$ are not $\tilde{\varepsilon}$-regular in G_{0}. By Turán's Theorem, there are m sets say V_{1}, \cdots, V_{m} such that any pair $\left(V_{i}, V_{j}\right)$ is $\tilde{\varepsilon}$-regular in G_{0} for $1 \leq i<j \leq m$, and of course they are $\varepsilon / 3$-regular.

Now we claim that any pair $\left(V_{i}, V_{j}\right)$ in G_{1} is ε-regular for $1 \leq i \leq j \leq m$. If $U_{i} \subseteq V_{i}$ and $U_{j} \subseteq V_{j}$ satisfy $\left|U_{i}\right| \geq \varepsilon\left|V_{i}\right| \geq \varepsilon n / T$ and $\left|U_{j}\right| \geq \varepsilon\left|V_{j}\right| \geq \varepsilon n / T$, then

$$
\begin{aligned}
&\left|d_{G_{1}}\left(U_{i}, U_{j}\right)-d_{G_{1}}\left(V_{i}, V_{j}\right)\right|=\left|d_{G}\left(U_{i}, U_{j}\right)-d_{G_{0}}\left(U_{i}, U_{j}\right)-d_{G}\left(V_{i}, V_{j}\right)+d_{G_{0}}\left(V_{i}, V_{j}\right)\right| \\
& \leq\left|d_{G}\left(U_{i}, U_{j}\right)-1 / 2\right|+\left|d_{G}\left(V_{i}, V_{j}\right)-1 / 2\right|+\left|d_{G_{0}}\left(U_{i}, U_{j}\right)-d_{G_{0}}\left(V_{i}, V_{j}\right)\right| \leq \varepsilon / 3+\varepsilon / 3+\varepsilon / 3 \leq \varepsilon
\end{aligned}
$$

which confirms the claim.
Note tha ramsey $R\left(K_{h}, K_{h}\right) \leq 4^{h} \leq m$. Applying this on the m sets V_{1}, \cdots, V_{m}, there exist h sets, say V_{1}, \cdots, V_{h}, such that one of the following holds:
(a) each $d_{G_{0}}\left(V_{i}, V_{j}\right) \in[1 / 4,0.51]$ for $1 \leq i<j \leq h$.
(b) each $d_{G_{0}}\left(V_{i}, V_{j}\right) \in[0,1 / 4]$ for $1 \leq i<j \leq h$.

Assume case (a) holds. We now pick some edges between the clusters V_{1}, \cdots, V_{h} to form a new graph G^{*} as follows. For $1 \leq i<j \leq h$, take all edges in $G_{0}\left(V_{i}, V_{j}\right)$ if $(i, j) \in H$; otherwise, take all edges in $G\left(V_{i}, V_{j}\right)$. Now G^{*} satisfies the condition in the Induced Embedding Lemma (for $c=0.2$ and h). So there is an induced copy of H in G^{*}, and this is also an induced blue copy of H. Next we assume case (b) occurs. Then each $d_{G_{1}}\left(V_{i}, V_{j}\right) \in[1 / 4,0.51]$ for $1 \leq i<j \leq h$. Similarly, we can define a new graph G^{*} on V_{1}, \cdots, V_{h} such that it contains all edges in $G_{1}\left(V_{i}, V_{j}\right)$ if $(i, j) \in H$, and all edges in $G\left(V_{i}, V_{j}\right)$ when $(i, j) \notin H$. Therefore we can get an induced red copy of H in G. This finishes the proof of the statement and the theorem.

