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1 Lecture 10. Induced Removal Lemma

Lemma 1.1 (Strong regularity lemma). For any sequence of constants ε0 ≥ ε1 ≥ · · · > 0, there
exists an integer M such that every graph has two equipartitions P,Q satisfying P is ε0-regular,
Q is ε|P |-regular, Q refines P , |Q| ≤M and q(Q) ≤ q(P ) + ε0.

Proof. The proof of regularity lemma can also show the following statement: for ε > 0, there is a
constant M(ε) such that for any equipartition P of V (G), we can get a refinement P ′ of P where
each part of P refines to at most M(ε) parts and P ′ is ε-regular.

By repeatedly applying the above statement, we obtain a sequence of equipartitions P0, P1, · · ·
of V (G), satisfying each Pi+1 refines Pi and Pi+1 is ε|Pi|-regular with |Pi+1| ≤ |Pi|M(ε|Pi|). Since
q(Pi) is non-decreasing and 0 ≤ q(·) ≤ 1, we can find an i ≤ 1/ε satisfies q(Pi+1) ≤ q(Pi) + ε0.
Thus P = Pi and Q = Pi+1 are the desired sets.

Recall the definition of the potential funcion q(·). Given an n-vertex graph G and A,B ⊆
V (G), the potential function is q(A,B) = |A||B|

n2 d2(A,B). For a partition P = {V1, · · · , Vk} of
V (G), let q(P ) =

∑
i,j q(Vi, Vj). Here we note that q(Vi, Vi) = d(Vi, Vi) = 0.

Now let A = {A1, · · · , As} be a partition of A and B = {B1, · · · , Bt} be a partition of B.
Define q(A,B) =

∑
1≤i≤s

∑
1≤j≤t q(Ai, Bj). Choose x ∈ A uniformly at random, and choose

y ∈ B uniformly at random, independently of each other. Let Ax ∈ A be the part containing x,
and By ∈ B be the part containing y. Let z = d(Ax, Ay) be the random variable. Then

E[z] =
∑
i∈[s]

∑
j∈[t]

|Ai|
|A|
|Bj |
|B|

d(Ai, Bj) =
∑
i∈[s]

∑
j∈[t]

e(Ai, Bj)

|A||B|
=
e(A,B)

|A||B|
= d(A,B),

and

E[z2] =
∑
i∈[s]

∑
j∈[t]

|Ai|
|A|
|Bj |
|B|

d2(Ai, Bj) =
n2

|A||B|
q(A,B).

Lemma 1.2. For any sequence of constant ε0 ≥ ε1 ≥ · · · > 0, there exists a δ1.2 > 0 such that
every n-vertex graph G has an equipartition V1, V2, · · · , Vk and Wi ⊆ Vi for i ∈ [k] satisfying

• |Wi| ≥ δ1.2n.

• (Wi,Wj) is εk-regular for all 1 ≤ i < j ≤ k.

• All but at most ε0
(
k
2

)
of the pairs {i, j} with 1 ≤ i < j ≤ k satisfy |d(Vi, Vj)−d(Wi,Wj)| ≤ ε0.

Proof. By the regularity lemma, there exist two equipartitions P and Q of V (G) such that the
following hold. P = {V1, V2, · · · , Vk} is ε30-regular, Q is εk-regular, Q = {W j

i }i∈[k],j∈[t], where

{W j
i }j∈[t] is a partition of Vi, |W j

i | ≥ δn and q(Q) ≤ q(P ) + ε30/4.
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Choose x ∈ V (G) uniformly at random, and choose y ∈ V (G) uniformly at random, indepen-

dently of each other. Let zP = d(Vi, Vj) where Vi 3 x and Vj 3 y. Similarly, let zQ = d(Wα
i ,W

β
j )

where Wα
i 3 x and W β

j 3 y. So we get E[z2P ] = q(P, P ) = 2q(P ) and E[z2Q] = q(Q,Q) = 2q(Q).
Also we have

E[zP zQ] =
∑
i∈[k]

∑
j∈[k]

|Vi|
n

|Vj |
n
d(Vi, Vj)E[d(Wα

i ,W
β
j )] =

∑
i∈[k]

∑
j∈[k]

|Vi|
n

|Vj |
n
d2(Vi, Vj) = q(P, P ) = E[z2P ],

then

E[(zQ − zP )2] = E[z2Q] + E[z2P ]− 2E[zQzP ] = E[z2Q]− E[z2P ] = 2q(Q)− 2q(P ) ≤ ε30/2.

This implies that |d(Vi, Vj) − d(Wα
i ,W

β
j )| ≤ ε0 holds for all (Wα

i ,W
β
j ) but at most ε0(tk)2/2

pairs.
Now for each 1 ≤ i ≤ k, choose Wα

i uniformly at random, independently of each other.

So we get k disjoint sets. Since there are at most ε0(tk)2/2 pairs (W β
i ,W

θ
j ) with |d(Vi, Vj) −

d(W β
i ,W

θ
j )| ≥ ε0, the expected number of such pairs in the sets we chosen is no more than

ε0(tk)2tk−2/tk = ε0k
2/2. So with probability at least 1/2, the sets we chosen contain no more

than ε0k
2 such pairs. Meanwhile, we know G has at most εk(tk)2 non-εk-regular (Wα

i ,W
β
j )

pairs. Thus with probability more than 1/2, all (Wα
i ,W

β
j ) pairs we chosen are εk-regular, s-

ince εk(tk)2tk−2/tk < 1/2 where εk < 1/(2k2). Together, there exists a choice k sets, say
W1,W2, · · · ,Wk, such that all pairs are εk-regular and all but at most ε0

(
k
2

)
pairs satisfy |d(Vi, Vj)−

d(Wi,Wj)| ≤ ε0, as desired.

Lemma 1.3. For every l, γ there exist δ1.3 = δ(t, γ) such that for every graph G there is a disjoint
vertex sets W1,W2, · · · ,W` satisfying

• |Wi| ≥ δ1.3n.

• All
(
`
2

)
pairs are γ-regular.

• Either all pairs are with densities at least 1/2, or all pairs are with densities less than 1/2.

Proof. By regularity lemma, we can get an equipartion {Vi, · · · , Vk} of the of G such that all but
at most (r − 1)−1

(
k
2

)
pairs of them are γ-regular, with k to be chosen later. Then apply Turán’s

Theorem, there exist r sets Vi such that all pairs of them are γ-regular. Finally use Ramsey
Theorem, we can take ` sets among these r sets such that all pairs are with densities at least 1/2,
or all pairs are with densities less than 1/2. Obviously, we know such k, r exists.

We are ready to prove the induced graph removal lemma.

Theorem 1.4 (Induced removal lemma). For any graph H and ε > 0, there is a constant δ > 0
such that any n-vertex graph has at most δn|V (H)| induced copies of H can be made induced H-free
by deleting or adding εn2 edges.

Proof. Let h = |V (H)|. Apply Lemma 1.2 to G with εi = ε/3, we can get an equipartition
V1, · · · , V2 and Wi ⊆ Vi for i ∈ [k] with the following properties. All pairs (Wi,Wj) are ε/3-

regular and all but at most ε
(
k
2

)
/3 of the them satisfy |d(Vi, Vj)− d(Wi,Wj)| ≤ ε/3. Next we use

Lemma 1.3 on the induced subgraph G[Wi] to obtain sets Wi,1,Wi,2, · · · ,Wi,h, where ` = h and
γ = ε/3.

Next we construct a new graph G1 from G by add and removing the following edges.
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• For 1 ≤ i < j ≤ k such that |d(Vi, Vj) − d(Wi,Wj)| ≥ ε/3, remove all edges in (Wi,Wj) if
d(Wi,Wj) < 1/2 and add all missing edges while d(Wi,Wj) > 1/2.

• For the rest 1 ≤ i < j ≤ k, if d(Wi,Wj) ≤ 2ε/3, remove all edges in (Wi,Wj), and if
d(Vi, Vj) ≥ 1− 2ε/3, add all missing edges in (Vi, Vj).

• For a fixed i, if all densities of pairs from Wi,1,Wi,2, · · · ,Wi,h are less than 1/2, all edges in
G[Vi] are removed. Otherwise, all those densities are at least 1/2, then we add all missing
edges in G[Vi].

By doing this, the total number of edges removed and added is at most εn2. Now if the resulting
graph G1 is induced H-free, then we are done. So we may assume G1 has an induced copy of
H, and the vertices of it are from h parts with repetition, say Vi1 , Vi2 , · · · , Vih . Let G2 be the
induced subgraph of G with vertices Wi1,1,Wi2,2, · · · ,Wih,h, clearly these sets are disjoint and
pairwise ε-regular. Also we can check that they satisfy the density condition required for graph
counting lemma, so there are at least δnh induced copies of H in G where δ = (δ1.2δ1.3ε/3)h, a
contradiction.
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