Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang

Mar 25th 2020, Wednesday

1 Lecture 10. Induced Removal Lemma

Lemma 1.1 (Strong regularity lemma). For any sequence of constants $\varepsilon_{0} \geq \varepsilon_{1} \geq \cdots>0$, there exists an integer M such that every graph has two equipartitions P, Q satisfying P is ε_{0}-regular, Q is $\varepsilon_{|P|}$-regular, Q refines $P,|Q| \leq M$ and $q(Q) \leq q(P)+\varepsilon_{0}$.

Proof. The proof of regularity lemma can also show the following statement: for $\varepsilon>0$, there is a constant $M(\varepsilon)$ such that for any equipartition P of $V(G)$, we can get a refinement P^{\prime} of P where each part of P refines to at most $M(\varepsilon)$ parts and P^{\prime} is ε-regular.

By repeatedly applying the above statement, we obtain a sequence of equipartitions P_{0}, P_{1}, \ldots of $V(G)$, satisfying each P_{i+1} refines P_{i} and P_{i+1} is $\varepsilon_{\left|P_{i}\right|}$-regular with $\left|P_{i+1}\right| \leq\left|P_{i}\right| M\left(\varepsilon_{\left|P_{i}\right|}\right)$. Since $q\left(P_{i}\right)$ is non-decreasing and $0 \leq q(\cdot) \leq 1$, we can find an $i \leq 1 / \varepsilon$ satisfies $q\left(P_{i+1}\right) \leq q\left(P_{i}\right)+\varepsilon_{0}$. Thus $P=P_{i}$ and $Q=P_{i+1}$ are the desired sets.

Recall the definition of the potential funcion $q(\cdot)$. Given an n-vertex graph G and $A, B \subseteq$ $V(G)$, the potential function is $q(A, B)=\frac{|A||B|}{n^{2}} d^{2}(A, B)$. For a partition $P=\left\{V_{1}, \cdots, V_{k}\right\}$ of $V(G)$, let $q(P)=\sum_{i, j} q\left(V_{i}, V_{j}\right)$. Here we note that $q\left(V_{i}, V_{i}\right)=d\left(V_{i}, V_{i}\right)=0$.

Now let $\mathcal{A}=\left\{A_{1}, \cdots, A_{s}\right\}$ be a partition of A and $\mathcal{B}=\left\{B_{1}, \cdots, B_{t}\right\}$ be a partition of B. Define $q(\mathcal{A}, \mathcal{B})=\sum_{1 \leq i \leq s} \sum_{1 \leq j \leq t} q\left(A_{i}, B_{j}\right)$. Choose $x \in A$ uniformly at random, and choose $y \in B$ uniformly at random, independently of each other. Let $A_{x} \in \mathcal{A}$ be the part containing x, and $B_{y} \in \mathcal{B}$ be the part containing y. Let $z=d\left(A_{x}, A_{y}\right)$ be the random variable. Then

$$
\mathbb{E}[z]=\sum_{i \in[s]} \sum_{j \in[t]} \frac{\left|A_{i}\right|}{|A|} \frac{\left|B_{j}\right|}{|B|} d\left(A_{i}, B_{j}\right)=\sum_{i \in[s]} \sum_{j \in[t]} \frac{e\left(A_{i}, B_{j}\right)}{|A||B|}=\frac{e(A, B)}{|A||B|}=d(A, B),
$$

and

$$
\mathbb{E}\left[z^{2}\right]=\sum_{i \in[s]} \sum_{j \in[t]} \frac{\left|A_{i}\right|}{|A|} \frac{\left|B_{j}\right|}{|B|} d^{2}\left(A_{i}, B_{j}\right)=\frac{n^{2}}{|A||B|} q(\mathcal{A}, \mathcal{B})
$$

Lemma 1.2. For any sequence of constant $\varepsilon_{0} \geq \varepsilon_{1} \geq \cdots>0$, there exists a $\delta_{1.2}>0$ such that every n-vertex graph G has an equipartition $V_{1}, V_{2}, \cdots, V_{k}$ and $W_{i} \subseteq V_{i}$ for $i \in[k]$ satisfying

- $\left|W_{i}\right| \geq \delta_{1.2} n$.
- $\left(W_{i}, W_{j}\right)$ is ε_{k}-regular for all $1 \leq i<j \leq k$.
- All but at most $\varepsilon_{0}\binom{k}{2}$ of the pairs $\{i, j\}$ with $1 \leq i<j \leq k$ satisfy $\left|d\left(V_{i}, V_{j}\right)-d\left(W_{i}, W_{j}\right)\right| \leq \varepsilon_{0}$.

Proof. By the regularity lemma, there exist two equipartitions P and Q of $V(G)$ such that the following hold. $P=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ is ε_{0}^{3}-regular, Q is ε_{k}-regular, $Q=\left\{W_{i}^{j}\right\}_{i \in[k], j \in[t]}$, where $\left\{W_{i}^{j}\right\}_{j \in[t]}$ is a partition of $V_{i},\left|W_{i}^{j}\right| \geq \delta n$ and $q(Q) \leq q(P)+\varepsilon_{0}^{3} / 4$.

Choose $x \in V(G)$ uniformly at random, and choose $y \in V(G)$ uniformly at random, independently of each other. Let $z_{P}=d\left(V_{i}, V_{j}\right)$ where $V_{i} \ni x$ and $V_{j} \ni y$. Similarly, let $z_{Q}=d\left(W_{i}^{\alpha}, W_{j}^{\beta}\right)$ where $W_{i}^{\alpha} \ni x$ and $W_{j}^{\beta} \ni y$. So we get $\mathbb{E}\left[z_{P}^{2}\right]=q(P, P)=2 q(P)$ and $\mathbb{E}\left[z_{Q}^{2}\right]=q(Q, Q)=2 q(Q)$. Also we have
$\mathbb{E}\left[z_{P} z_{Q}\right]=\sum_{i \in[k]} \sum_{j \in[k]} \frac{\left|V_{i}\right|}{n} \frac{\left|V_{j}\right|}{n} d\left(V_{i}, V_{j}\right) \mathbb{E}\left[d\left(W_{i}^{\alpha}, W_{j}^{\beta}\right)\right]=\sum_{i \in[k]} \sum_{j \in[k]} \frac{\left|V_{i}\right|}{n} \frac{\left|V_{j}\right|}{n} d^{2}\left(V_{i}, V_{j}\right)=q(P, P)=\mathbb{E}\left[z_{P}^{2}\right]$,
then

$$
\mathbb{E}\left[\left(z_{Q}-z_{P}\right)^{2}\right]=\mathbb{E}\left[z_{Q}^{2}\right]+\mathbb{E}\left[z_{P}^{2}\right]-2 \mathbb{E}\left[z_{Q} z_{P}\right]=\mathbb{E}\left[z_{Q}^{2}\right]-\mathbb{E}\left[z_{P}^{2}\right]=2 q(Q)-2 q(P) \leq \varepsilon_{0}^{3} / 2
$$

This implies that $\left|d\left(V_{i}, V_{j}\right)-d\left(W_{i}^{\alpha}, W_{j}^{\beta}\right)\right| \leq \varepsilon_{0}$ holds for all $\left(W_{i}^{\alpha}, W_{j}^{\beta}\right)$ but at most $\varepsilon_{0}(t k)^{2} / 2$ pairs.

Now for each $1 \leq i \leq k$, choose W_{i}^{α} uniformly at random, independently of each other. So we get k disjoint sets. Since there are at most $\varepsilon_{0}(t k)^{2} / 2$ pairs $\left(W_{i}^{\beta}, W_{j}^{\theta}\right)$ with $\mid d\left(V_{i}, V_{j}\right)-$ $d\left(W_{i}^{\beta}, W_{j}^{\theta}\right) \mid \geq \varepsilon_{0}$, the expected number of such pairs in the sets we chosen is no more than $\varepsilon_{0}(t k)^{2} t^{k-2} / t^{k}=\varepsilon_{0} k^{2} / 2$. So with probability at least $1 / 2$, the sets we chosen contain no more than $\varepsilon_{0} k^{2}$ such pairs. Meanwhile, we know G has at most $\varepsilon_{k}(t k)^{2}$ non- ε_{k}-regular $\left(W_{i}^{\alpha}, W_{j}^{\beta}\right)$ pairs. Thus with probability more than $1 / 2$, all $\left(W_{i}^{\alpha}, W_{j}^{\beta}\right)$ pairs we chosen are ε_{k}-regular, since $\varepsilon_{k}(t k)^{2} t^{k-2} / t^{k}<1 / 2$ where $\varepsilon_{k}<1 /\left(2 k^{2}\right)$. Together, there exists a choice k sets, say $W_{1}, W_{2}, \cdots, W_{k}$, such that all pairs are ε_{k}-regular and all but at most $\varepsilon_{0}\binom{k}{2}$ pairs satisfy $\mid d\left(V_{i}, V_{j}\right)-$ $d\left(W_{i}, W_{j}\right) \mid \leq \varepsilon_{0}$, as desired.

Lemma 1.3. For every l, γ there exist $\delta_{1.3}=\delta(t, \gamma)$ such that for every graph G there is a disjoint vertex sets $W_{1}, W_{2}, \cdots, W_{\ell}$ satisfying

- $\left|W_{i}\right| \geq \delta_{1.3} n$.
- All $\binom{\ell}{2}$ pairs are γ-regular.
- Either all pairs are with densities at least $1 / 2$, or all pairs are with densities less than $1 / 2$.

Proof. By regularity lemma, we can get an equipartion $\left\{V_{i}, \cdots, V_{k}\right\}$ of the of G such that all but at most $(r-1)^{-1}\binom{k}{2}$ pairs of them are γ-regular, with k to be chosen later. Then apply Turán's Theorem, there exist r sets V_{i} such that all pairs of them are γ-regular. Finally use Ramsey Theorem, we can take ℓ sets among these r sets such that all pairs are with densities at least $1 / 2$, or all pairs are with densities less than $1 / 2$. Obviously, we know such k, r exists.

We are ready to prove the induced graph removal lemma.
Theorem 1.4 (Induced removal lemma). For any graph H and $\varepsilon>0$, there is a constant $\delta>0$ such that any n-vertex graph has at most $\delta n^{|V(H)|}$ induced copies of H can be made induced H-free by deleting or adding εn^{2} edges.
Proof. Let $h=|V(H)|$. Apply Lemma 1.2 to G with $\varepsilon_{i}=\varepsilon / 3$, we can get an equipartition V_{1}, \cdots, V_{2} and $W_{i} \subseteq V_{i}$ for $i \in[k]$ with the following properties. All pairs $\left(W_{i}, W_{j}\right)$ are $\varepsilon / 3$ regular and all but at most $\varepsilon\binom{k}{2} / 3$ of the them satisfy $\left|d\left(V_{i}, V_{j}\right)-d\left(W_{i}, W_{j}\right)\right| \leq \varepsilon / 3$. Next we use Lemma 1.3 on the induced subgraph $G\left[W_{i}\right]$ to obtain sets $W_{i, 1}, W_{i, 2}, \cdots, W_{i, h}$, where $\ell=h$ and $\gamma=\varepsilon / 3$.

Next we construct a new graph G_{1} from G by add and removing the following edges.

- For $1 \leq i<j \leq k$ such that $\left|d\left(V_{i}, V_{j}\right)-d\left(W_{i}, W_{j}\right)\right| \geq \varepsilon / 3$, remove all edges in $\left(W_{i}, W_{j}\right)$ if $d\left(W_{i}, W_{j}\right)<1 / 2$ and add all missing edges while $d\left(W_{i}, W_{j}\right)>1 / 2$.
- For the rest $1 \leq i<j \leq k$, if $d\left(W_{i}, W_{j}\right) \leq 2 \varepsilon / 3$, remove all edges in (W_{i}, W_{j}), and if $d\left(V_{i}, V_{j}\right) \geq 1-2 \varepsilon / 3$, add all missing edges in $\left(V_{i}, V_{j}\right)$.
- For a fixed i, if all densities of pairs from $W_{i, 1}, W_{i, 2}, \cdots, W_{i, h}$ are less than $1 / 2$, all edges in $G\left[V_{i}\right]$ are removed. Otherwise, all those densities are at least $1 / 2$, then we add all missing edges in $G\left[V_{i}\right]$.

By doing this, the total number of edges removed and added is at most εn^{2}. Now if the resulting graph G_{1} is induced H-free, then we are done. So we may assume G_{1} has an induced copy of H, and the vertices of it are from h parts with repetition, say $V_{i_{1}}, V_{i_{2}}, \cdots, V_{i_{h}}$. Let G_{2} be the induced subgraph of G with vertices $W_{i_{1}, 1}, W_{i_{2}, 2}, \cdots, W_{i_{h}, h}$, clearly these sets are disjoint and pairwise ε-regular. Also we can check that they satisfy the density condition required for graph counting lemma, so there are at least δn^{h} induced copies of H in G where $\delta=\left(\delta_{1.2} \delta_{1.3} \varepsilon / 3\right)^{h}$, a contradiction.

