Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Cong Luo and Tianchi Yang

Mar 30th 2020, Monday

1 Lecture 11. Tao's Spectral Proof of Regularity Lemma.

Definition 1.1. Given a graph G with V(G) = [n], its *adjacency matrix* $A = A_G$ is an $n \times n$ matrix such that A(i, j) = 1 if $ij \in E(G)$ and A(i, j) = 0 otherwise.

Theorem 1.2 (Spectral Theorem). If G is simple, then A_G has n orthonoral eigenvectors $\vec{u}_1, \dots, \vec{u}_n$ with real eigenvalues $\lambda_1, \dots, \lambda_n$

Proof. This is because A_G is symmetric real $n \times n$ matrix.

Definition 1.3. the spectral radius of G is the maximum eigenvalue of A_G .

Proposition 1.4. (1) $tr(A_G) = \sum_{i \in [n]} \lambda_i = 0$ and

$$\sum_{i \in [n]} \lambda_i^2 tr(A^2) = \sum_{i=1}^n \sum_{j=1}^n A(i,j)^2 = 2e(G) \le n^2.$$

(2) If we let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, then we have $\lambda_1 \geq -\lambda_n$ and

$$\max_{i} |\lambda_{i}| = \lambda_{1} = \max_{\vec{x} \neq \vec{0}} \frac{|\vec{x}^{T} A \vec{x}|}{\vec{x}^{T} \vec{x}}.$$

(3)

$$\max_{i} |\lambda_{i}| = \max_{\vec{y} \neq \vec{0}} \frac{|A\vec{y}|}{|\vec{y}|} = \max_{\vec{x}, \vec{y} \neq \vec{0}} \frac{|\vec{x}^{T} A\vec{y}|}{|\vec{x}| |\vec{y}|}.$$

Theorem 1.5 (Spectral version of regularity lemma; Tao's proof). For any $\varepsilon > 0$, there exists a constant $M(\varepsilon) > 0$ such that the following holds for any n-vertex graph G: There exists a partition $V_1 \cup \cdots \cup V_M = V(G)$ where $M \leq M(\varepsilon)$ and a subset $\Sigma \subseteq [M]^2$ such that

- $\sum_{(i,j)\in\Sigma} |V_i| |V_j| \leq \varepsilon n^2$, and
- for all $(i,j) \in [M]^2 \setminus \Sigma$ and for all $A \subseteq V_i$ and $B \subseteq V_j$, $|e(A,B) d_{ij}|A||B|| \le \varepsilon |V_i||V_j|$.

Proof. Let $\vec{u}_1, \dots, \vec{u}_n \in \mathbb{R}^n$ be orthonormal eigenvectors of A_G with real eigenvalues $\lambda_1, \dots, \lambda_n$. We arrange them such that $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_n|$. So $A_G = \sum_{i \in [n]} \lambda_i \vec{u}_i \vec{u}_i^T$. We have the following lemmas.

Lemma 1.6. $|\lambda_i| \leq n/\sqrt{i}$ for any $i \in [n]$. *Proof.* We have $i\lambda_i^2 \leq \sum_{j=1}^i \lambda_j^2 \leq tr(A^2) \leq n^2$ and thus $\lambda_i \leq n/\sqrt{i}$.

Lemma 1.7. Fix a function $F : \mathbb{N} \to \mathbb{N}$ such that $F(x) \geq \frac{1}{\varepsilon^6} \left(\frac{2x^2}{\varepsilon^2}\right)^{4x}$. Then there exists $c = c(\varepsilon, F) = c(\varepsilon)$ such that there is some integer J < c satisfying $\sum_{J \leq i < F(J)} \lambda_i^2 \leq \varepsilon^3 n^2$.

Proof. Let $J_1 = 1$ and $J_{i+1} = F(J_i)$. We cannot have $\sum_{J_k \leq i < J_{k+1}} \lambda_i^2 > \varepsilon^3 n^2$ for all $k \leq 1/\varepsilon^3$ (otherwise $\sum \lambda_i^2 > n^2$, a contradiction). Therefore, there exists $J = J_k$ for some $k \leq 1/\varepsilon^3$ with the desired inequality. Note that J is bounded by $c = F(F(\cdots F(1)))$.

Now we partition $A_G = \sum_{i \in [n]} \lambda_i \vec{u}_i \vec{u}_i^T$ into the following 3 matrices $A_G = A_1 + A_2 + A_3$, where A_1 is the "structured" component with $A_1 = \sum_{i < J} \lambda_i \vec{u}_i \vec{u}_i^T$, A_2 is the "error" component with $A_2 = \sum_{J \leq i < F(J)} \lambda_i \vec{u}_i \vec{u}_i^T$, and A_3 is the "pseudorandom" component with $A_3 = \sum_{i \geq F(J)} \lambda_i \vec{u}_i \vec{u}_i^T$. **Step 1.** Partitioning V(G) by considering A_1 .

Goal: We will partition vertices of G into a bounded number of parts V_i 's such that any $(a, b) \in V_i \times V_i$. $A(a, b) \approx d_{i'}$ is approximately a constant. We will achieve this by giving a

 $(a,b) \in V_i \times V_j$, $A(a,b) \sim d_{ij}$ is approximately a constant. We will achieve this by giving a partition based on each \vec{u}_i with i < J as following.

Let $\vec{u}_i = (x_1, x_2, ..., x_n)^T$ and let $L^{(i)} = \left\{ k \in [n] : |x_k| > \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}} \right\}$ be an exceptional set of \vec{u}_i . Note that $1 = |\vec{u}_i|^2 = \sum_{i \in [n]} x_i^2$. So $|L^{(i)}| \leq \frac{\varepsilon n}{J}$. The other $x_k \in [-\sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}}, \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}}] = I$. Partition this interval I into subintervals of length $\left(\frac{\varepsilon}{J}\right)^{\frac{3}{2}} n^{-\frac{1}{2}}$. This gives $\frac{2J^2}{\varepsilon^2}$ many subintervals. Partition $[n] \setminus L^{(i)}$ into $\frac{2J^2}{\varepsilon^2}$ subsets according to which subinterval x_k belongs to. For each i < J, let \mathcal{U}_i be the partition of [n] = V(G) formed by $L^{(i)}$ and the above $\frac{2J^2}{\varepsilon^2}$ subsets.

Let $V_0 = \bigcup_{i < J} L^{(i)}$ be the set of all exceptional subsets. Let $\{V_1, V_2, ..., V_M\}$ be the unique minimal common refinement of $\mathcal{U}_i \setminus V_0 = \{F \setminus V_0 : F \in \mathcal{U}_i\}$ for all i < J. Then we have a partition $V(G) = V_0 \cup V_1 \cup \cdots \cup V_M$ where

$$|V_0| \le (J-1)\frac{\varepsilon n}{J} \le \varepsilon n \text{ and } M \le (2J^2/\varepsilon^2)^J.$$
 (1.1)

Note that the upper bound of M only depends on ε . Further, consider any j < J, $i \in [M]$ and any $a, b \in V_i$. We have

$$|\vec{u}_j(a)| \le \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}} \text{ and } |\vec{u}_j(a) - \vec{u}_j(b)| \le \left(\frac{\varepsilon}{J}\right)^{\frac{3}{2}} n^{-\frac{1}{2}}.$$

For any pairs $(a, b), (c, d) \in V_i \times V_j$ where $i, j \in [M]$, we have

$$\begin{aligned} |A_{1}(a,b) - A_{1}(c,d)| &= |\sum_{k < J} \lambda_{k} \vec{u}_{k}(a) \vec{u}_{k}(b) - \sum_{k < J} \lambda_{k} \vec{u}_{k}(c) \vec{u}_{k}(d)| \\ &\leq \sum_{k < J} |\lambda_{k}| |\vec{u}_{k}(a) \vec{u}_{k}(b) - \vec{u}_{k}(c) \vec{u}_{k}(b) + \vec{u}_{k}(c) \vec{u}_{k}(b) - \vec{u}_{k}(c) \vec{u}_{k}(d)| \\ &\leq Jn \left(|\vec{u}_{k}(a) - \vec{u}_{k}(c)| |\vec{u}_{k}(b)| + |\vec{u}_{k}(b) - \vec{u}_{k}(d)| |\vec{u}_{k}(c)| \right) \\ &\leq Jn \left(2 \left(\frac{\varepsilon}{J}\right)^{\frac{3}{2}} n^{-\frac{1}{2}} \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}} \right) = 2\varepsilon. \end{aligned}$$

Therefore, if we let d_{ij} be the average of the entries in the block $V_i \times V_j$ of the matrix A_1 , then by triangle inequality, for any $A \subseteq V_i$, $B \subseteq V_j$ where $i, j \in [M]$, we have

$$\left|\mathbb{1}_{A}^{T}A_{1}\mathbb{1}_{B} - d_{ij}|A||B|\right| = \left|\sum_{a \in A} \sum_{b \in B} (A_{1}(a,b) - d_{ij})\right| \le \sum_{a \in A} \sum_{b \in B} |A_{1}(a,b) - d_{ij}| \le 2\varepsilon |A||B| \le 2\varepsilon |V_{i}||V_{j}|$$
(1.2)

Step 2. Consider A_2 and A_3 .

Consider A_2 . By Lemma 1.7, we have

$$tr(A_2^2) = \sum_{J \le i < F(j)} \lambda_i^2 \le \varepsilon^3 n^2.$$

Let $\Sigma_1 = \{(i, j) \in [M]^2 : \sum_{a \in V_i} \sum_{b \in V_j} |A_2(a, b)|^2 > \varepsilon^2 |V_i| |V_j|\}$. Then

$$\varepsilon^2 \sum_{(i,j)\in\Sigma_1} |V_i| |V_j| < \sum_{(i,j)\in\Sigma_1} \sum_{a\in V_i} \sum_{b\in V_j} |A_2(a,b)|^2 \le tr(A_2^2) \le \varepsilon^3 n^2.$$

Thus

$$\sum_{(i,j)\in\Sigma_1} |V_i||V_j| \le \varepsilon n^2.$$
(1.3)

For any $(i, j) \notin \Sigma_1$, $\sum_{a \in V_i} \sum_{b \in V_j} A_2(a, b)^2 \leq \varepsilon^2 |V_i| |V_j|$. By Cauchy-Schwarz, for any $A \subseteq V_i$, $B \subseteq V_j$,

$$\left(\mathbb{1}_{A}^{T}A_{2}\mathbb{1}_{B}\right)^{2} = \left(\sum_{a \in V_{i}}\sum_{b \in V_{j}}A_{2}(a,b)\right)^{2} \le |A||B|\sum_{a \in V_{i}}\sum_{b \in V_{j}}A_{2}(a,b)^{2} \le \varepsilon^{2}|A||B||V_{i}||V_{j}| \le \varepsilon^{2}|V_{i}|^{2}|V_{j}|^{2}.$$

Thus for any $A \subseteq V_i$, $B \subseteq V_j$ where $(i, j) \notin \Sigma_1$,

$$\left|\mathbb{1}_{A}^{T}A_{2}\mathbb{1}_{B}\right| \leq \varepsilon |V_{i}||V_{j}|.$$

$$(1.4)$$

Consider A_3 . By Lemma 1.6, the spectral radius of A_3 is $|\lambda_{F(J)}| \leq n/\sqrt{F(J)}$. For any $A \subseteq V_i$ and $B \subseteq V_j$, since $M \leq (2J^2/\varepsilon^2)^J$ (by (1.1)) and $F(J) \geq \frac{1}{\varepsilon^6} (2J^2/\varepsilon^2)^{4J} \geq \frac{M^4}{\varepsilon^6}$, by proposition 1.4 we have

$$\left|\mathbb{1}_{A}^{T}A_{3}\mathbb{1}_{B}\right| \leq \left|\lambda_{F(J)}\right| \left|\mathbb{1}_{A}\right| \left|\mathbb{1}_{B}\right| \leq \frac{n^{2}}{\sqrt{F(J)}} \leq \frac{\varepsilon^{3}n^{2}}{M^{2}}.$$
(1.5)

Step 3. Combining all together. Let Σ be the set consisting of pairs $(i, j) \in \{0, 1, ..., M\}^2$ such that $(i, j) \in \Sigma_1$, or i = 0, or j = 0, or $\min\{|V_i|, |V_j|\} \leq \frac{\varepsilon n}{M}$. Then by (1.1) and (1.3),

$$\sum_{(i,j)\in\Sigma} |V_i||V_j| \le \sum_{(i,j)\in\Sigma_1} |V_i||V_j| + 2|V_0||V| + 2\sum_{i\neq 0, |V_i|\le\frac{\varepsilon n}{M}} |V_i||V_j| \le \varepsilon n^2 + 2\varepsilon n^2 + 2M\left(\frac{\varepsilon n}{M}\right)n = 5\varepsilon n^2.$$

For $(i, j) \notin \Sigma$, we have $|V_i|, |V_j| \ge \frac{\varepsilon n}{M}$. So by (1.2),(1.4) and(1.5), for any $A \subseteq V_i, B \subseteq V_j$ where $(i, j) \notin \Sigma$, we have

$$|e(A,B) - d_{ij}|A||B|| = \left|\mathbb{1}_A^T A_G \mathbb{1}_B - d_{ij}|A||B|\right| \le \left|\mathbb{1}_A^T A_1 \mathbb{1}_B - d_{ij}|A||B|\right| + \left|\mathbb{1}_A^T A_2 \mathbb{1}_B\right| + \left|\mathbb{1}_A^T A_3 \mathbb{1}_B\right| \le 2\varepsilon |V_i||V_j| + \varepsilon |V_i||V_j| + \varepsilon^3 n^2/M^2 \le 4\varepsilon |V_i||V_j|.$$

This completes the proof of the theorem.

Remark. One can turn this spectral version of regularity lemma into the normal version of regularity lemma, but we will not pursue here.