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1 Lecture 11. Tao’s Spectral Proof of Regularity Lemma.

Definition 1.1. Given a graph G with V(G) = [n], its adjacency matrix A = Ag is an n X n
matrix such that A(i,j) =1 if ij € E(G) and A(7, j) = 0 otherwise.

Theorem 1.2 (Spectral Theorem). If G is simple, then Ag has n orthononal eigenvectors
U, , Uy with real eigenvalues A1, -+, Ap

Proof. This is because Ag is symmetric real n X n matrix. |
Definition 1.3. the spectral radius of G is the maximum eigenvalue of Ag.

Proposition 1.4. (1) tr(Ag) => e Ai =0 and
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(2) If we let \y > Ao > -+~ >\, then we have \y > —\,, and
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Theorem 1.5 (Spectral version of regularity lemma; Tao’s proof). For any € > 0, there exists
a constant M(g) > 0 such that the following holds for any n-vertexr graph G: There exists a
partition Vi U ---U Vi = V(G) where M < M(g) and a subset ¥ C [M]? such that

¢ Z(i,j)ez |V@||V}‘ < 6712, and
o for all (i.) € [MI\3 and for all A C Vi and B CVy, |e(A, B) —dylA||B| < elVilIV;].

Proof. Let 1, , 4, € R™ be orthonornal eigenvectors of Ag with real eigenvalues Ay, -, Ay.
We arrange them such that [A1] > |Ag| > -+ > |Ay]. So Ag = Zie[n] N L. We have the
following lemmas.

Lemma 1.6. |\;| < n/Vi for any i € [n].
Proof. We have i\? < 23'21 /\32' < tr(A?) < n? and thus \; < n/vVi. ]
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Lemma 1.7. Fiz a function F : N — N such that F(x) > E% (28%2) . Then there exists
¢ =c(e, F) = c(e) such that there is some integer J < c satisfying 3 ;<;<p(.s) 22 < e%n?

Proof. Let J; = 1 and J;41 = F(J;). We cannot have ZJk§i<Jk+1 )\% > e3n? for all k < 1/3
(otherwise Y A? > n?, a contradiction). Therefore, there exists J = Jj for some k < 1/&3 with
the desired inequality. Note that J is bounded by ¢ = F(F(--- F(1))). ]

Now we partition Ag = Zie[n] \ii;w; T into the following 3 matrices Ag = A1+ Ao+ A3, where
Ay is the “structured” component with Ay = ) ,_; )\iﬁiu_;-T, Ay is the “error” component with
Ay = ZJ§i<F(J) N T, and Ajg is the “pseudorandom” component with Ag = ZiZF(J) PR
Step 1. Partitioning V' (G) by considering A;.

Goal: We will partition vertices of G into a bounded number of parts V;’s such that any
(a,b) € V; x Vj, A(a,b) ~ d;; is approximately a constant. We will achieve this by giving a
partition based on each w; with ¢ < J as following.

Let @; = (x1, %2, ...,2,)7 and let L) = {k € [n]:|zk| > \/gn_2} be an exceptional set of

;. Note that 1 = |i;|> = 2icln] z?. So |LW| < 5. The other z € [—\/Z 3 \/g % =
3 2J

[

Partition this interval I into subintervals of length (%) . This gives many subintervals.
Partition [n] \ L into 28%2 subsets according to which subinterval xy, belongs to. For each ¢ < J,
let U; be the partition of [n] = V(@) formed by L and the above 5—2 subsets.

Let Vo = ;s L L® be the set of all exceptional subsets. Let {Vi,Va,..., Vas} be the unique
minimal common refinement of U; \ Vo = {F\Vy : F € U;} for all i < J. Then we have a partition

V(G)=VouWVi U--- UV where
Vol < (J — 1)57” <enand M < (2J2/%). (1.1)

Note that the upper bound of M only depends on e. Further, consider any j < J, i € [M] and
any a,b € V;. We have

3

For any pairs (a,b), (¢,d) € V; x V; where i,j € [M], we have

|A1(a,b) — Ay (c,d)| = | Y Ml (a)iin(b) — Y Apii(c)iik(d)

k<J k<J
<3 alliir(@)aig (b) — g ()it (b) + dr(c)iix(b) — ik (c)idir(d)]
k<J

< Jn (|ig(a) — ik (c)||dg(b)| + [k (b) — dk(d)|[tik(c)])

3
< Jn (2 (%) : né\/Zné> = 2¢.



Therefore, if we let d;; be the average of the entries in the block V; x Vj of the matrix A;, then
by triangle inequality, for any A C V;, B C V; where 4, j € [M], we have

15 411 — di; | A||B|| = ‘ZZ (A1(a,b) — d ‘ <33 |Ai(a,b) - diy| < 26| A||B| < 2| Vi|[V)-
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Step 2. Consider As and As.
Consider As. By Lemma 1.7, we have
tr(A3) = Z M < 32
J<i<F(j)
Let £y = {(i,4) € [M]?: X ey, Soev, [ A2, D)2 > 2|Vi[|Vj[}. Then
e > il < Z DY | As(a,b)|* < tr(A3) < n
(1,5)€Xq (3,7)€X1 a€V; bEV;
Thus
> Villvy| <en’. (1.3)
(i,7)€X1

For any (4,7) ¢ X1, D _ucvs Zbevj As(a,b)? < 2|V;||V;|. By Cauchy-Schwarz, for any A C V;,
BCV;,

(15 431 5)° = (D Ax(a,0)* <JA|BI Y > As(a,b)* < 2| A||B||Vil|V;] < ViV

a€V; beV a€V; beV;
Thus for any A C V;, B C V; where (i,7) ¢ ¥4,
|15 A21 5] < eV3||V;]. (1.4)

Consider Az. By Lemma 1.6, the spectral radius of A3 is [Ap( 5| < n/4/F(J). For any A CV;
and B C V}, since M < (2J%/¢%)7 (by (1.1)) and F(J) > & (2J%/e*)* > ]‘g—ﬁ, by proposition 1.4

we have
3.2
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Step 3. Combining all together. Let ¥ be the set consisting of pairs (i,j) € {0,1, ..., M}? such
that (i,j) € X1, or i =0, or j = 0, or min{|V;|,|V;|} < §7. Then by (1.1) and (1.3),

|15 A318] < [Apy| 11all15] < (1.5)

EN
> Wilvis Y illvil+2Melivi+2 Y VillVl < en?+2en®+2M (T7) n = en?.
(i,5)€X (4,)€%1 i#0,|V;| <50

M
For (i,7) ¢ X, we have |V;|,[V;| > 7. So by (1.2),(1.4) and(1.5), for any A C V;, B C V; where
(1,7) ¢ 3, we have

le(A, B) — di;|A||B|| = |14 Aclp — dij|A||B|| < [144115 — dij| A||B| + |14 4215 + |15 431 5]
< 26| Vil|Vj + eVillVj] + e%n® /M2 < 4e|Vi||Vj].
This completes the proof of the theorem. |

Remark. One can turn this spectral version of regularity lemma into the normal version of
regularity lemma, but we will not pursue here.



