
Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Cong Luo and Tianchi Yang

Mar 30th 2020, Monday

1 Lecture 11. Tao’s Spectral Proof of Regularity Lemma.

Definition 1.1. Given a graph G with V (G) = [n], its adjacency matrix A = AG is an n × n
matrix such that A(i, j) = 1 if ij ∈ E(G) and A(i, j) = 0 otherwise.

Theorem 1.2 (Spectral Theorem). If G is simple, then AG has n orthononal eigenvectors
~u1, · · · , ~un with real eigenvalues λ1, · · · , λn

Proof. This is because AG is symmetric real n× n matrix.

Definition 1.3. the spectral radius of G is the maximum eigenvalue of AG.

Proposition 1.4. (1) tr(AG) =
∑

i∈[n] λi = 0 and

∑
i∈[n]

λ2
i tr(A

2) =

n∑
i=1

n∑
j=1

A(i, j)2 = 2e(G) ≤ n2.

(2) If we let λ1 ≥ λ2 ≥ · · · ≥ λn, then we have λ1 ≥ −λn and

max
i
|λi| = λ1 = max

~x6=~0

|~xTA~x|
~xT~x

.

(3)

max
i
|λi| = max

~y 6=~0

|A~y|
|~y|

= max
~x,~y 6=~0

|~xTA~y|
|~x||~y|

.

Theorem 1.5 (Spectral version of regularity lemma; Tao’s proof). For any ε > 0, there exists
a constant M(ε) > 0 such that the following holds for any n-vertex graph G: There exists a
partition V1 ∪ · · · ∪ VM = V (G) where M ≤M(ε) and a subset Σ ⊆ [M ]2 such that

•
∑

(i,j)∈Σ |Vi||Vj | ≤ εn2, and

• for all (i, j) ∈ [M ]2\Σ and for all A ⊆ Vi and B ⊆ Vj,
∣∣e(A,B)− dij |A||B|

∣∣ ≤ ε|Vi||Vj |.
Proof. Let ~u1, · · · , ~un ∈ Rn be orthonornal eigenvectors of AG with real eigenvalues λ1, · · · , λn.
We arrange them such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. So AG =

∑
i∈[n] λi~ui ~ui

T . We have the
following lemmas.

Lemma 1.6. |λi| ≤ n/
√
i for any i ∈ [n].

Proof. We have iλ2
i ≤

∑i
j=1 λ

2
j ≤ tr(A2) ≤ n2 and thus λi ≤ n/

√
i.
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Lemma 1.7. Fix a function F : N → N such that F (x) ≥ 1
ε6

(
2x2

ε2

)4x
. Then there exists

c = c(ε, F ) = c(ε) such that there is some integer J < c satisfying
∑

J≤i<F (J) λ
2
i ≤ ε3n2.

Proof. Let J1 = 1 and Ji+1 = F (Ji). We cannot have
∑

Jk≤i<Jk+1
λ2
i > ε3n2 for all k ≤ 1/ε3

(otherwise
∑
λ2
i > n2, a contradiction). Therefore, there exists J = Jk for some k ≤ 1/ε3 with

the desired inequality. Note that J is bounded by c = F (F (· · ·F (1))).

Now we partition AG =
∑

i∈[n] λi~ui ~ui
T into the following 3 matrices AG = A1+A2+A3, where

A1 is the “structured” component with A1 =
∑

i<J λi~ui ~ui
T , A2 is the “error” component with

A2 =
∑

J≤i<F (J) λi~ui ~ui
T , and A3 is the “pseudorandom” component with A3 =

∑
i≥F (J) λi~ui ~ui

T .

Step 1. Partitioning V (G) by considering A1.
Goal: We will partition vertices of G into a bounded number of parts Vi’s such that any

(a, b) ∈ Vi × Vj , A(a, b) ∼ dij is approximately a constant. We will achieve this by giving a
partition based on each ~ui with i < J as following.

Let ~ui = (x1, x2, ..., xn)T and let L(i) =

{
k ∈ [n] : |xk| >

√
J
εn
− 1

2

}
be an exceptional set of

~ui. Note that 1 = |~ui|2 =
∑

i∈[n] x
2
i . So |L(i)| ≤ εn

J . The other xk ∈ [−
√

J
εn
− 1

2 ,
√

J
εn
− 1

2 ] = I.

Partition this interval I into subintervals of length
(
ε
J

) 3
2 n−

1
2 . This gives 2J2

ε2
many subintervals.

Partition [n] \L(i) into 2J2

ε2
subsets according to which subinterval xk belongs to. For each i < J ,

let Ui be the partition of [n] = V (G) formed by L(i) and the above 2J2

ε2
subsets.

Let V0 =
⋃

i<J L
(i) be the set of all exceptional subsets. Let {V1, V2, ..., VM} be the unique

minimal common refinement of Ui \V0 = {F \V0 : F ∈ Ui} for all i < J . Then we have a partition
V (G) = V0 ∪ V1 ∪ · · · ∪ VM where

|V0| ≤ (J − 1)
εn

J
≤ εn and M ≤ (2J2/ε2)J . (1.1)

Note that the upper bound of M only depends on ε. Further, consider any j < J , i ∈ [M ] and
any a, b ∈ Vi. We have

|~uj(a)| ≤
√
J

ε
n−

1
2 and |~uj(a)− ~uj(b)| ≤

( ε
J

) 3
2
n−

1
2 .

For any pairs (a, b), (c, d) ∈ Vi × Vj where i, j ∈ [M ], we have

|A1(a, b)−A1(c, d)| = |
∑
k<J

λk~uk(a)~uk(b)−
∑
k<J

λk~uk(c)~uk(d)|

≤
∑
k<J

|λk||~uk(a)~uk(b)− ~uk(c)~uk(b) + ~uk(c)~uk(b)− ~uk(c)~uk(d)|

≤ Jn (|~uk(a)− ~uk(c)||~uk(b)|+ |~uk(b)− ~uk(d)||~uk(c)|)

≤ Jn

(
2
( ε
J

) 3
2
n−

1
2

√
J

ε
n−

1
2

)
= 2ε.
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Therefore, if we let dij be the average of the entries in the block Vi × Vj of the matrix A1, then
by triangle inequality, for any A ⊆ Vi, B ⊆ Vj where i, j ∈ [M ], we have∣∣1TAA11B − dij |A||B|

∣∣ =
∣∣∣∑
a∈A

∑
b∈B

(A1(a, b)− dij)
∣∣∣ ≤∑

a∈A

∑
b∈B
|A1(a, b)− dij | ≤ 2ε|A||B| ≤ 2ε|Vi||Vj |.

(1.2)

Step 2. Consider A2 and A3.
Consider A2. By Lemma 1.7, we have

tr(A2
2) =

∑
J≤i<F (j)

λ2
i ≤ ε3n2.

Let Σ1 = {(i, j) ∈ [M ]2 :
∑

a∈Vi

∑
b∈Vj
|A2(a, b)|2 > ε2|Vi||Vj |}. Then

ε2
∑

(i,j)∈Σ1

|Vi||Vj | <
∑

(i,j)∈Σ1

∑
a∈Vi

∑
b∈Vj

|A2(a, b)|2 ≤ tr(A2
2) ≤ ε3n2.

Thus ∑
(i,j)∈Σ1

|Vi||Vj | ≤ εn2. (1.3)

For any (i, j) /∈ Σ1,
∑

a∈Vi

∑
b∈Vj

A2(a, b)2 ≤ ε2|Vi||Vj |. By Cauchy-Schwarz, for any A ⊆ Vi,
B ⊆ Vj ,(

1
T
AA21B

)2
= (
∑
a∈Vi

∑
b∈Vj

A2(a, b))2 ≤ |A||B|
∑
a∈Vi

∑
b∈Vj

A2(a, b)2 ≤ ε2|A||B||Vi||Vj | ≤ ε2|Vi|2|Vj |2.

Thus for any A ⊆ Vi, B ⊆ Vj where (i, j) /∈ Σ1,∣∣1TAA21B

∣∣ ≤ ε|Vi||Vj |. (1.4)

Consider A3. By Lemma 1.6, the spectral radius of A3 is |λF (J)| ≤ n/
√
F (J). For any A ⊆ Vi

and B ⊆ Vj , since M ≤ (2J2/ε2)J (by (1.1)) and F (J) ≥ 1
ε6

(2J2/ε2)4J ≥ M4

ε6
, by proposition 1.4

we have ∣∣1TAA31B

∣∣ ≤ ∣∣λF (J)

∣∣ |1A||1B| ≤ n2√
F (J)

≤ ε3n2

M2
. (1.5)

Step 3. Combining all together. Let Σ be the set consisting of pairs (i, j) ∈ {0, 1, ...,M}2 such
that (i, j) ∈ Σ1, or i = 0, or j = 0, or min{|Vi|, |Vj |} ≤ εn

M . Then by (1.1) and (1.3),∑
(i,j)∈Σ

|Vi||Vj | ≤
∑

(i,j)∈Σ1

|Vi||Vj |+2|V0||V |+2
∑

i 6=0,|Vi|≤ εn
M

|Vi||Vj | ≤ εn2 +2εn2 +2M
(εn
M

)
n = 5εn2.

For (i, j) /∈ Σ, we have |Vi|, |Vj | ≥ εn
M . So by (1.2),(1.4) and(1.5), for any A ⊆ Vi, B ⊆ Vj where

(i, j) /∈ Σ, we have

|e(A,B)− dij |A||B|| =
∣∣1TAAG1B − dij |A||B|

∣∣ ≤ ∣∣1TAA11B − dij |A||B|
∣∣+
∣∣1TAA21B

∣∣+
∣∣1TAA31B

∣∣
≤ 2ε|Vi||Vj |+ ε|Vi||Vj |+ ε3n2/M2 ≤ 4ε|Vi||Vj |.

This completes the proof of the theorem.

Remark. One can turn this spectral version of regularity lemma into the normal version of
regularity lemma, but we will not pursue here.
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