Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Cong Luo and Tianchi Yang

Mar 30th 2020, Monday

1 Lecture 11. Tao's Spectral Proof of Regularity Lemma.

Definition 1.1. Given a graph G with $V(G)=[n]$, its adjacency matrix $A=A_{G}$ is an $n \times n$ matrix such that $A(i, j)=1$ if $i j \in E(G)$ and $A(i, j)=0$ otherwise.

Theorem 1.2 (Spectral Theorem). If G is simple, then A_{G} has n orthononal eigenvectors $\vec{u}_{1}, \cdots, \vec{u}_{n}$ with real eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$

Proof. This is because A_{G} is symmetric real $n \times n$ matrix.
Definition 1.3. the spectral radius of G is the maximum eigenvalue of A_{G}.
Proposition 1.4. (1) $\operatorname{tr}\left(A_{G}\right)=\sum_{i \in[n]} \lambda_{i}=0$ and

$$
\sum_{i \in[n]} \lambda_{i}^{2} \operatorname{tr}\left(A^{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A(i, j)^{2}=2 e(G) \leq n^{2}
$$

(2) If we let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, then we have $\lambda_{1} \geq-\lambda_{n}$ and

$$
\max _{i}\left|\lambda_{i}\right|=\lambda_{1}=\max _{\vec{x} \neq 0} \frac{\left|\vec{x}^{T} A \vec{x}\right|}{\vec{x}^{T} \vec{x}}
$$

$$
\begin{equation*}
\max _{i}\left|\lambda_{i}\right|=\max _{\vec{y} \neq \overrightarrow{0}} \frac{|A \vec{y}|}{|\vec{y}|}=\max _{\vec{x}, \vec{y} \neq 0} \frac{\left|\vec{x}^{T} A \vec{y}\right|}{|\vec{x}||\vec{y}|} . \tag{3}
\end{equation*}
$$

Theorem 1.5 (Spectral version of regularity lemma; Tao's proof). For any $\varepsilon>0$, there exists a constant $M(\varepsilon)>0$ such that the following holds for any n-vertex graph G : There exists a partition $V_{1} \cup \cdots \cup V_{M}=V(G)$ where $M \leq M(\varepsilon)$ and a subset $\Sigma \subseteq[M]^{2}$ such that

- $\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right| \leq \varepsilon n^{2}$, and
- for all $(i, j) \in[M]^{2} \backslash \Sigma$ and for all $A \subseteq V_{i}$ and $B \subseteq V_{j},\left|e(A, B)-d_{i j}\right| A| | B| | \leq \varepsilon\left|V_{i}\right|\left|V_{j}\right|$.

Proof. Let $\vec{u}_{1}, \cdots, \vec{u}_{n} \in \mathbb{R}^{n}$ be orthonornal eigenvectors of A_{G} with real eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. We arrange them such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. So $A_{G}=\sum_{i \in[n]} \lambda_{i} \vec{u}_{i} \vec{u}_{i}{ }^{T}$. We have the following lemmas.
Lemma 1.6. $\left|\lambda_{i}\right| \leq n / \sqrt{i}$ for any $i \in[n]$.
Proof. We have $i \lambda_{i}^{2} \leq \sum_{j=1}^{i} \lambda_{j}^{2} \leq \operatorname{tr}\left(A^{2}\right) \leq n^{2}$ and thus $\lambda_{i} \leq n / \sqrt{i}$.

Lemma 1.7. Fix a function $F: \mathbb{N} \rightarrow \mathbb{N}$ such that $F(x) \geq \frac{1}{\varepsilon^{6}}\left(\frac{2 x^{2}}{\varepsilon^{2}}\right)^{4 x}$. Then there exists $c=c(\varepsilon, F)=c(\varepsilon)$ such that there is some integer $J<c$ satisfying $\sum_{J \leq i<F(J)} \lambda_{i}^{2} \leq \varepsilon^{3} n^{2}$.

Proof. Let $J_{1}=1$ and $J_{i+1}=F\left(J_{i}\right)$. We cannot have $\sum_{J_{k} \leq i<J_{k+1}} \lambda_{i}^{2}>\varepsilon^{3} n^{2}$ for all $k \leq 1 / \varepsilon^{3}$ (otherwise $\sum \lambda_{i}^{2}>n^{2}$, a contradiction). Therefore, there exists $J=J_{k}$ for some $k \leq 1 / \varepsilon^{3}$ with the desired inequality. Note that J is bounded by $c=F(F(\cdots F(1)))$.

Now we partition $A_{G}=\sum_{i \in[n]} \lambda_{i} \vec{u}_{i} \vec{u}_{i}^{T}$ into the following 3 matrices $A_{G}=A_{1}+A_{2}+A_{3}$, where A_{1} is the "structured" component with $A_{1}=\sum_{i<J} \lambda_{i} \vec{u}_{i} \vec{u}_{i}^{T}, A_{2}$ is the "error" component with $A_{2}=\sum_{J \leq i<F(J)} \lambda_{i} \vec{u}_{i} \vec{u}_{i}^{T}$, and A_{3} is the "pseudorandom" component with $A_{3}=\sum_{i \geq F(J)} \lambda_{i} \vec{u}_{i} \vec{u}_{i}^{T}$.
Step 1. Partitioning $V(G)$ by considering A_{1}.
Goal: We will partition vertices of G into a bounded number of parts V_{i} 's such that any $(a, b) \in V_{i} \times V_{j}, A(a, b) \sim d_{i j}$ is approximately a constant. We will achieve this by giving a partition based on each \vec{u}_{i} with $i<J$ as following.

Let $\vec{u}_{i}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ and let $L^{(i)}=\left\{k \in[n]:\left|x_{k}\right|>\sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}}\right\}$ be an exceptional set of \vec{u}_{i}. Note that $1=\left|\vec{u}_{i}\right|^{2}=\sum_{i \in[n]} x_{i}^{2}$. So $\left|L^{(i)}\right| \leq \frac{\varepsilon n}{J}$. The other $x_{k} \in\left[-\sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}}, \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}}\right]=I$. Partition this interval I into subintervals of length $\left(\frac{\varepsilon}{J}\right)^{\frac{3}{2}} n^{-\frac{1}{2}}$. This gives $\frac{2 J^{2}}{\varepsilon^{2}}$ many subintervals. Partition $[n] \backslash L^{(i)}$ into $\frac{2 J^{2}}{\varepsilon^{2}}$ subsets according to which subinterval x_{k} belongs to. For each $i<J$, let \mathcal{U}_{i} be the partition of $[n]=V(G)$ formed by $L^{(i)}$ and the above $\frac{2 J^{2}}{\varepsilon^{2}}$ subsets.

Let $V_{0}=\bigcup_{i<J} L^{(i)}$ be the set of all exceptional subsets. Let $\left\{V_{1}, V_{2}, \ldots, V_{M}\right\}$ be the unique minimal common refinement of $\mathcal{U}_{i} \backslash V_{0}=\left\{F \backslash V_{0}: F \in \mathcal{U}_{i}\right\}$ for all $i<J$. Then we have a partition $V(G)=V_{0} \cup V_{1} \cup \cdots \cup V_{M}$ where

$$
\begin{equation*}
\left|V_{0}\right| \leq(J-1) \frac{\varepsilon n}{J} \leq \varepsilon n \text { and } M \leq\left(2 J^{2} / \varepsilon^{2}\right)^{J} . \tag{1.1}
\end{equation*}
$$

Note that the upper bound of M only depends on ε. Further, consider any $j<J, i \in[M]$ and any $a, b \in V_{i}$. We have

$$
\left|\vec{u}_{j}(a)\right| \leq \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}} \text { and }\left|\vec{u}_{j}(a)-\vec{u}_{j}(b)\right| \leq\left(\frac{\varepsilon}{J}\right)^{\frac{3}{2}} n^{-\frac{1}{2}} .
$$

For any pairs $(a, b),(c, d) \in V_{i} \times V_{j}$ where $i, j \in[M]$, we have

$$
\begin{aligned}
\left|A_{1}(a, b)-A_{1}(c, d)\right| & =\left|\sum_{k<J} \lambda_{k} \vec{u}_{k}(a) \vec{u}_{k}(b)-\sum_{k<J} \lambda_{k} \vec{u}_{k}(c) \vec{u}_{k}(d)\right| \\
& \leq \sum_{k<J}\left|\lambda_{k}\right|\left|\vec{u}_{k}(a) \vec{u}_{k}(b)-\vec{u}_{k}(c) \vec{u}_{k}(b)+\vec{u}_{k}(c) \vec{u}_{k}(b)-\vec{u}_{k}(c) \vec{u}_{k}(d)\right| \\
& \leq J n\left(\left|\vec{u}_{k}(a)-\vec{u}_{k}(c)\right|\left|\vec{u}_{k}(b)\right|+\left|\vec{u}_{k}(b)-\vec{u}_{k}(d)\right|\left|\vec{u}_{k}(c)\right|\right) \\
& \leq J n\left(2\left(\frac{\varepsilon}{J}\right)^{\frac{3}{2}} n^{-\frac{1}{2}} \sqrt{\frac{J}{\varepsilon}} n^{-\frac{1}{2}}\right)=2 \varepsilon .
\end{aligned}
$$

Therefore, if we let $d_{i j}$ be the average of the entries in the block $V_{i} \times V_{j}$ of the matrix A_{1}, then by triangle inequality, for any $A \subseteq V_{i}, B \subseteq V_{j}$ where $i, j \in[M]$, we have

$$
\begin{equation*}
\left|\mathbb{1}_{A}^{T} A_{1} \mathbb{1}_{B}-d_{i j}\right| A||B||=\left|\sum_{a \in A} \sum_{b \in B}\left(A_{1}(a, b)-d_{i j}\right)\right| \leq \sum_{a \in A} \sum_{b \in B}\left|A_{1}(a, b)-d_{i j}\right| \leq 2 \varepsilon|A||B| \leq 2 \varepsilon\left|V_{i}\right|\left|V_{j}\right| . \tag{1.2}
\end{equation*}
$$

Step 2. Consider A_{2} and A_{3}.
Consider A_{2}. By Lemma 1.7, we have

$$
\operatorname{tr}\left(A_{2}^{2}\right)=\sum_{J \leq i<F(j)} \lambda_{i}^{2} \leq \varepsilon^{3} n^{2} .
$$

Let $\Sigma_{1}=\left\{(i, j) \in[M]^{2}: \sum_{a \in V_{i}} \sum_{b \in V_{j}}\left|A_{2}(a, b)\right|^{2}>\varepsilon^{2}\left|V_{i}\right|\left|V_{j}\right|\right\}$. Then

$$
\varepsilon^{2} \sum_{(i, j) \in \Sigma_{1}}\left|V_{i}\right|\left|V_{j}\right|<\sum_{(i, j) \in \Sigma_{1}} \sum_{a \in V_{i}} \sum_{b \in V_{j}}\left|A_{2}(a, b)\right|^{2} \leq \operatorname{tr}\left(A_{2}^{2}\right) \leq \varepsilon^{3} n^{2} .
$$

Thus

$$
\begin{equation*}
\sum_{(i, j) \in \Sigma_{1}}\left|V_{i}\right|\left|V_{j}\right| \leq \varepsilon n^{2} \tag{1.3}
\end{equation*}
$$

For any $(i, j) \notin \Sigma_{1}, \sum_{a \in V_{i}} \sum_{b \in V_{j}} A_{2}(a, b)^{2} \leq \varepsilon^{2}\left|V_{i}\right|\left|V_{j}\right|$. By Cauchy-Schwarz, for any $A \subseteq V_{i}$, $B \subseteq V_{j}$,

$$
\left(\mathbb{1}_{A}^{T} A_{2} \mathbb{1}_{B}\right)^{2}=\left(\sum_{a \in V_{i}} \sum_{b \in V_{j}} A_{2}(a, b)\right)^{2} \leq|A||B| \sum_{a \in V_{i}} \sum_{b \in V_{j}} A_{2}(a, b)^{2} \leq \varepsilon^{2}|A|\left|B \| V_{i}\right|\left|V_{j}\right| \leq \varepsilon^{2}\left|V_{i}\right|^{2}\left|V_{j}\right|^{2} .
$$

Thus for any $A \subseteq V_{i}, B \subseteq V_{j}$ where $(i, j) \notin \Sigma_{1}$,

$$
\begin{equation*}
\left|\mathbb{1}_{A}^{T} A_{2} \mathbb{1}_{B}\right| \leq \varepsilon\left|V_{i}\right|\left|V_{j}\right| . \tag{1.4}
\end{equation*}
$$

Consider A_{3}. By Lemma 1.6, the spectral radius of A_{3} is $\left|\lambda_{F(J)}\right| \leq n / \sqrt{F(J)}$. For any $A \subseteq V_{i}$ and $B \subseteq V_{j}$, since $M \leq\left(2 J^{2} / \varepsilon^{2}\right)^{J}$ (by (1.1)) and $F(J) \geq \frac{1}{\varepsilon^{6}}\left(2 J^{2} / \varepsilon^{2}\right)^{4 J} \geq \frac{M^{4}}{\varepsilon^{6}}$, by proposition 1.4 we have

$$
\begin{equation*}
\left|\mathbb{1}_{A}^{T} A_{3} \mathbb{1}_{B}\right| \leq\left|\lambda_{F(J)}\right|\left|\mathbb{1}_{A}\right|\left|\mathbb{1}_{B}\right| \leq \frac{n^{2}}{\sqrt{F(J)}} \leq \frac{\varepsilon^{3} n^{2}}{M^{2}} \tag{1.5}
\end{equation*}
$$

Step 3. Combining all together. Let Σ be the set consisting of pairs $(i, j) \in\{0,1, \ldots, M\}^{2}$ such that $(i, j) \in \Sigma_{1}$, or $i=0$, or $j=0$, or $\min \left\{\left|V_{i}\right|,\left|V_{j}\right|\right\} \leq \frac{\varepsilon n}{M}$. Then by (1.1) and (1.3),

$$
\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right| \leq \sum_{(i, j) \in \Sigma_{1}}\left|V_{i}\right|\left|V_{j}\right|+2\left|V_{0}\right||V|+2 \sum_{i \neq 0,\left|V_{i}\right| \leq \frac{\varepsilon n}{M}}\left|V_{i}\right|\left|V_{j}\right| \leq \varepsilon n^{2}+2 \varepsilon n^{2}+2 M\left(\frac{\varepsilon n}{M}\right) n=5 \varepsilon n^{2} .
$$

For $(i, j) \notin \Sigma$, we have $\left|V_{i}\right|,\left|V_{j}\right| \geq \frac{\varepsilon n}{M}$. So by (1.2),(1.4) and(1.5), for any $A \subseteq V_{i}, B \subseteq V_{j}$ where $(i, j) \notin \Sigma$, we have

$$
\begin{aligned}
\left|e(A, B)-d_{i j}\right| A||B|| & =\left|\mathbb{1}_{A}^{T} A_{G} \mathbb{1}_{B}-d_{i j}\right| A| | B| | \leq\left|\mathbb{1}_{A}^{T} A_{1} \mathbb{1}_{B}-d_{i j}\right| A| | B| |+\left|\mathbb{1}_{A}^{T} A_{2} \mathbb{1}_{B}\right|+\left|\mathbb{1}_{A}^{T} A_{3} \mathbb{1}_{B}\right| \\
& \leq 2 \varepsilon\left|V_{i}\right|\left|V_{j}\right|+\varepsilon\left|V_{i}\right|\left|V_{j}\right|+\varepsilon^{3} n^{2} / M^{2} \leq 4 \varepsilon\left|V_{i}\right|\left|V_{j}\right| .
\end{aligned}
$$

This completes the proof of the theorem.

Remark. One can turn this spectral version of regularity lemma into the normal version of regularity lemma, but we will not pursue here.

