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1 Lecture 12. Extremal Bounds on Paths and Posa’s Rotation.

We now turn to extremal problems (mostly on Turán numbers) for bipartiate graphs. Let us
start by considering trees, paths and cycles.

Proposition 1.1. For n ≥ k+ 2, any n-vertex graph G with at least kn− k2+k−2
2 edges contains

a subgraph of minimum degree at least k + 1. (If e(G) > kn, then there is such a subgraph.)

Proposition 1.2. For any tree T on t+ 1 vertices, ex(n, T ) < (t− 1)n.

Proof. Let G be an n-vertex graph with at least (t − 1)n edges. By Proposition 1.1, there is a
subgraph G′ of G with δ(G′) ≥↔ ∀x ∈ St. Using a greedy algorithm, one can find any tree on
t+ 1 vertices.

Conjecture 1.3 (Erdős-Sós). Let T be any tree on t+ 1 vertices. Then ex(n, T ) ≤ (t− 1)n/2.

Here are two remarks towards the conjecture. Note that a vertex-disjoint union of cliques Kt

show that the inequality is tight for some n if the conjecture is ture. An approximate version of
this conjecture was confirmed by Ajtai-Komlós-Simonovits-Szemerédi.

Definition 1.4. Denote the length of a path P by |P |, which is the number of edges in P . Let
Pt be the path of length t.

Proposition 1.5. Any graph G has a path of length at least δ(G).

Definition 1.6. Let P be a path in G from u to v. For x ∈ V (P ), denote x− and x+ to be the
immediate predecessor and immediate successor of x on P . For S ⊆ V (P ) let S+ = {x+ : x ∈ S}
and S− = {x− : x ∈ S}.

Definition 1.7. Let P be a longest path in G from u to v. For w ∈ N(v), the path P ′ =
P −{ww+}+{wv} is also a longest path in G. This transformation from P to P ′ is called a Pósa
rotation.

Definition 1.8. A path or a cycle is called Hamiltonian if it contains all vertices of the graph
G. And G is Hamiltonian if G has such a cycle.

Proposition 1.9. Let G be connected and P be a longest path in G. If there exists a cycle C
with V (C) = V (P ), then G is Hamiltonian.

Proof. Suppose V (C) 6= V (G). As G is connected, there exists a vertex a /∈ V (C) and a path
Q from a to b ∈ V (C) internally disjoint from V (C). Then we can find a longer path than P , a
contradiction.

Theorem 1.10. If G is connected, then G has a path with at least min{n, 2δ(G) + 1} vertices.
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Proof. Let P = x0x1 · · ·xn be a longest path in G. So N(x0), N(xm) ⊆ V (P ). Suppose |V (P )| <
min{n, 2δ(G) + 1}. We claim that there is an i ∈ {0, 1, ...,m− 1} such that x0xi+1, xmxi ∈ E(G).
Suppose not. Then N(x0) ∩ N(xm)+ = ∅. Also x0 /∈ N(x0) ∪ N(xm)+, we have |V (P )| ≥
1 + |N(x0) ∪N(xm)+| ≥ 1 + d(x0) + d(xm) ≥ 1 + 2δ(G), a contradiction. So we can find a cycle
C = P − {xixi+1}+ {x0xi+1, xmxi} with V (C) = V (P ). By Proposition 1.9, G is hamiltonian.

Now we consider a special case of Erdős-Sós Conjecture.

Theorem 1.11 (Erdős-Gallai). For n ≥ t, ex(n, Pt) ≤ (t− 1)n/2.

Proof. We prove by induction on n. It’s trivial for n ≤ t. For n ≥ t+ 1, let G be a Pt-free graph
on n vertices. We want to show e(G) ≤ (t− 1)n/2. We may assume that G is connected. If
δ(G) ≥ t/2, by Theorem 1.10, G has a path with at least min{n, 2δ(G)+1} ≥ min{n, t+1} ≥ t+1
vertices, a contradiction. So there is a vertex v of degree at most (t− 1)/2. Let G′ = G − {v}.
By inducion, we know e(G′) ≤ (t− 1)(n− 1)/2, thus e(G) = e(G′) + d(v) ≤ (t− 1)n/2.

Note that the unique extremal graph of Pt is a disjoint union of Kt. (exercise)

Theorem 1.12 (Ore’s Theorem). Let G be an n-vertex graph such that for any non-adjacent
vertices u and v, d(u) + d(v) ≥ n. Then G is Hamiltonian.

Proof. First, we see G is connected. Let P be a longest path in G with endpoints u, v. By
Proposition 1.9, we may assume uv /∈ E(G). So d(u) + d(v) ≥ n implies that N(u) ∩N(v)+ 6= ∅,
then there exists a cycle C with V (C) = V (P ). Again by Proposition 1.9, G is Hamiltonian.

Corollary 1.13 (Dirac’s Theorem). If δ(G) ≥ |V (G)|/2, then G is Hamiltonian.

Definition 1.14. The closure of a graph G is the graph obtained from G by recursively joining
pairs of non-adjacent vertices u, v whose degree sum is at least n until no such pairs exist.

Proposition 1.15. The closure of G is well defined, that is, the ordering of adding edges will
not affect the final graph.

Theorem 1.16 (Bondy-chvátal). A graph is Hamiltonian if and only if its closure is Hamiltonian.

Proof. It suffices to show: For any non-adjacent {u, v} with dG(u) + dG(v) ≥ n, G is hamiltonian
if and only if G+ {uv} is Hamiltonian. (exercise)

This theorem implies Theorem 1.12 directly.

Definition 1.17. For S ⊆ V (G), define N(S) = {v /∈ S : v ∈ N(w) for some w ∈ S} to be the
neighborhood of S in G.

Lemma 1.18 (Pośa’s lemma). Let P be a longest path in graph G with endpoints u, v. Let S be
the set of all endpoints of paths obtained by repeatedly applying Posa’s rotations from P , while
preserving u as an endpoint. Clearly S ⊆ V (P ) and N(S) ⊆ V (P ). Let S+ and S− be subsets of
V (P ) as before. Then N(S) ⊆ S+ ∪ S−.

Proof. It suffices to show that for any x ∈ S, we have N(x) ⊆ S+ ∪ S ∪ S−. Suppose not, there
is a vertex y ∈ N(x) but y /∈ S+ ∪ S ∪ S−. Since y /∈ S+ ∪ S ∪ S−, then y−yy+ is always a
subpath of any new path obtained by Pósa’s rotation. Since xy ∈ E(G), we can use a Pósa’s
rotation to find a new longest P ′, which ends at y+ or y−. So y+ or y− ∈ S implies y ∈ S+ ∪S−,
a contradiction.
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Theorem 1.19. Suppose any S ⊆ V (G) satisfies N(S) ≥ min{n− |S|, 2|S|+ 1}. Then G has a
Hamiltonian path.

Proof. Let P be a longest path in G. Define S as in the Pósa’s lemma. So 2|S| ≥ |N(S)| ≥
min{n − |S|, 2|S| + 1}, which means min{n − |S|, 2|S| + 1} = n − |S| and |N(S)| ≥ n − |S|. As
N(S) ∩ S = ∅, |V (P )| ≥ |N(S)|+ |S| ≥ n, as desired.

3


