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1 Lecture 13. Extremal Bounds on Cycles

Theorem 1.1. If G is a 2-connected graph, then G has a cycle of length at least min{|V (G)|, 2δ(G)}.

Proof. Let P = x0x1 · · ·xm be a longest path in G. By an earlier theorem, m ≥ min{n−1, 2δ(G)}.
Case 1. Suppose there exist two vertices xi ∈ N(x0) and xj ∈ N(xm) with i > j. If i = j + 1,
obviously we are done. So we assume j ≤ i − 2. Pick a pair {i, j} with |i − j| minimum. Let C
be the cycle x0x1 · · ·xjxmxm−1 · · ·xix0, then we have N(x0) ⊆ V (C), (N(xm) \ {xj})+ ⊆ V (C).
Since N(x0) ∩N(xm)+ = ∅, we see that

|C| ≥ |N(x0) ∪ {x0}|+ |(N(xm) \ {xj})+| ≥ d(x0) + d(xm) ≥ 2δ(G).

Case 2. Suppose for any xj ∈ N(xm), xi ∈ N(x0), we have i ≤ j. Let i be the maximum
index such that xi ∈ N(x0), and let j be the minimum index such that xj ∈ N(xj). Let
G1 = G[V (x0Pxi)], G2 = G[V (xjPxm)]. By Menger’s Theorem, there are 2 internally disjoint
paths P1, P2 from V (G1) to V (G2). If neither P1 nor P2 starts at xi, we begin traveling from xi
along xiPxj , until we encounter some vertex of P1 or P2, then we would define two new paths
one of which starts at xi and do the same for xj . Hence we can choose such P1, P2 such that each
of xi and xj is an endpoint of P1 or P2.

Then there are two cases to consider: (a) xi, xj ∈ V (P1); (b) xi ∈ V (P1), xj ∈ V (P2).
For (a), we can construct a cycle using P1, P2 and all vertices in {x0, xm}∪N(x0)∪N(xm), that
is C = x0x1 · · ·xsP2xt · · ·xmxl · · ·xjP1xi · · ·xkx0, where xs, xt are two endpoints of P2, xk is the
first neighbor of x0 after xs and xl is the first neighbor of xm before xt. Since it is possible that
xi = xj ,

|C| ≥ d(x0) + d(xm) + 2− 1 ≥ 2δ(G) + 1.

For (b), we can find a cycle of length at least 2δ(G) + 1 in a similar way.

Remark: Consider a union of cliques Kk+1, where any pair of the cliques share 2 common vetices.
The largest cycle in this graph has length 2k = 2δ(G).

Theorem 1.2 (Erdös-Gallai).

ex(n, {Ct+1, Ct+2, · · · }) ≤ t(n− 1)/2.

This is tight for all n with (t− 1)|(n− 1).

Proof. This can be derived from Theorem 1.1. (exercise)

Theorem 1.3. If G is a graph with δ(G) ≥ d ≥ 5, then G has a cycle C and a subgraph H with
V (H) ⊆ V (C), E(H) ⊆ E(G)− E(C), and δ(H) ≥ d/6 + 1.
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Proof. Let P = x0x1 · · ·xp be a longest path in G, and S be the set from Posá’s Lemma. For
each path P ′ = v0 · · · vp obtained from Posá’s rotation, denote by l(P ′) the minimum index i such
that vi ∈ N(vp).

For a new path Q from Posá’s rotation with l(Q) minimum among all new paths. Let C =
viQvpvi be the cycle. Then S ⊆ V (C). By Posá’s lemma, |N(S)| ≤ 2|S|. Let H∗ be a subgraph
of G defined on S ∩N(S), when xy ∈ E(H∗) if and only if at least one of x and y is in S. Let H
be obtained from H∗ by deleting all edges in C and then deleting those isolated vertices which
may result after the deletion of E(C). Clearly, H is edge-disjoint from C and V (H) ⊆ V (C). For
any vertex a ∈ S, dH(x) ≥ dG(x) − dC(x) ≥ d − 2 ≥ 3, thus S ⊆ V (H). Let S∗ = V (H) \ S, so
S∗ ⊆ N(S) and |S∗| ≤ 2|S|.

Now it suffices to show that H has a subgraph F with δ(F ) ≥ d/6 + 1. Suppose not, we have

e(H) <
d

6
|V (H)| = d

6
(|S|+ |S∗|). (1.1)

On the other hand, e(H) = 1
2

∑
x∈S |NH(x) ∩ S| +

∑
x∈S |NH(x) ∩ S∗|, where for any x ∈ S,

dH(x) = |NH(x) ∩ S| + |NH(x) ∩ S∗| ≥ d − 2 ≥ 3. Since there is no isolated vertices in H ∩ S∗,∑
x∈S |NH(x) ∩ S∗| = e(S, S∗) ≥ |S∗|, implies that

e(H) ≥ 1

2

∑
x∈S

dH(x) +
1

2

∑
x∈S
|NH(x) ∩ S∗| ≥ 1

2
(d− 2)|S|+ 1

2
|S∗|. (1.2)

By inequalities 1.1 and 1.2, we get (d6 −
1
2)|S∗| > (d3 − 1)|S|, that is, |S∗| > 2|S|, a contradiction.

Corollary 1.4. Let f(k) = 6
5(4 · 6k−2 + 1). Let G be any graph with δ(G) ≥ f(k). Then G has k

edge-disjoint cycles C1, C2, · · · , Ck with V (C1) ⊇ V (C2) ⊇ · · · ⊇ V (Ck). (nested)

Corollary 1.5. Let G be a graph on n ≥ f(k) + 1 vertices. If G has at least [(f(k)−1)n−f(k)] ·
(f(k)− 1)/2 + 1 edges, then G has k edge-disjoint cycles C1, C2, · · · , Ck with V (C1) ⊇ V (C2) ⊇
· · · ⊇ V (Ck).

Definition 1.6. Let g(n) be the smallest integer such that any n-vertex graph with at least g(n)
edges contains two edge-disjoint cycles C1 and C2 with V (C1) ⊆ V (C2).

Question 1.7 (Chen-Erdös-Staton, 1994, open). g(n) = 3n− 6, for any n ≥ 6.

Consider the graph P2
⊕
In−3, obtained by adding two edges to the 3-vertex part of K3,n−3.

It has 3(n− 3) + 2 = 3n− 7 edges and only contains cycles of length 4, so g(n) ≥ 3n− 6.

Question 1.8 (Erdös). How many edges or what min-degree will force the existence of a cycle
with as many chords as its vertices?

Show that δ(G) ≥ 2
√
n will do in your exercise.

Question 1.9. How many edges are necessary to force the existence of 2 edge-disjoint cycles with
the same vertex set? (The real question is: if δ(G) ≥ C, where C is constant, there exist such
cycles.)
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