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1 Lecture 13. Extremal Bounds on Cycles

Theorem 1.1. IfG is a 2-connected graph, then G has a cycle of length at least min{|V (G)],26(G)}.

Proof. Let P = zoxq - - - Ty, be alongest path in G. By an earlier theorem, m > min{n—1,26(G)}.
Case 1. Suppose there exist two vertices x; € N(zg) and z; € N(zy,) with ¢ > j. If i = j + 1,
obviously we are done. So we assume j < i — 2. Pick a pair {7, 5} with |i — j| minimum. Let C
be the cycle xox1 - T TmTm—1 - - - T;To, then we have N(zo) C V(C), (N(zm) \ {z;})T C V(O).
Since N(zg) N N(z,)" = @, we see that

C| = [N(20) U{zo} + [(N(zm) \ {z;}) 7| = d(0) + d(zm) = 20(G).

Case 2. Suppose for any z; € N(zp),z; € N(xg), we have ¢ < j. Let i be the maximum
index such that x; € N(xp), and let j be the minimum index such that z; € N(z;). Let
G1 = G[V(zoPx;)],Go = G[V(zjPxy,)]. By Menger’s Theorem, there are 2 internally disjoint
paths Pj, P, from V(G1) to V(G2). If neither Py nor P, starts at x;, we begin traveling from z;
along z; Px;, until we encounter some vertex of P or P%, then we would define two new paths
one of which starts at x; and do the same for x;. Hence we can choose such Pp, P» such that each
of z; and z; is an endpoint of P or P.
Then there are two cases to consider: (a) z;,z; € V(P1); (b) x; € V(P1),z; € V(Pa).

For (a), we can construct a cycle using P;, P> and all vertices in {xg, zp, } U N (x0) U N(zy,), that
is C = xowy - x5 Py - - Xy - - - xjPr; - - - T20, Where x4, 14 are two endpoints of P, xy is the
first neighbor of x( after x5 and x; is the first neighbor of x,, before x;. Since it is possible that
€Tg = Ty,

O] > d(0) + d(wm) +2 — 1> 25(G) + 1.

For (b), we can find a cycle of length at least 26(G) + 1 in a similar way. ]

Remark: Consider a union of cliques Ky 1, where any pair of the cliques share 2 common vetices.
The largest cycle in this graph has length 2k = 2§(G).

Theorem 1.2 (Erdos-Gallai).
ex(n,{Ciy1,Ciy2,---}) < t(n—1)/2.
This is tight for all n with (t — 1)|(n —1).
Proof. This can be derived from Theorem 1.1. (exercise) ]

Theorem 1.3. If G is a graph with §(G) > d > 5, then G has a cycle C and a subgraph H with
V(H)CV(C), E(H) CE(G)—E(C), and §(H) > d/6 + 1.



Proof. Let P = zgx1---x, be a longest path in G, and S be the set from Posad’s Lemma. For
each path P’ = v - - - v, obtained from Posd’s rotation, denote by /(P’) the minimum index ¢ such
that v; € N(vp).

For a new path @ from Poséd’s rotation with [(Q)) minimum among all new paths. Let C' =
v;Qup; be the cycle. Then S C V(C). By Posd’s lemma, |[N(S)| < 2|S|. Let H* be a subgraph
of G defined on SN N(S), when zy € E(H*) if and only if at least one of z and y is in S. Let H
be obtained from H* by deleting all edges in C' and then deleting those isolated vertices which
may result after the deletion of E(C'). Clearly, H is edge-disjoint from C and V(H) C V(C). For
any vertex a € S, dg(x) > dg(x) —do(x) > d—2 > 3, thus S C V(H). Let S* =V (H)\ S, so
S* C N(S) and |S*| < 2|S].

Now it suffices to show that H has a subgraph F' with §(F") > d/6 + 1. Suppose not, we have

e(H) < SIV(H)| = S(15] +15°]). (1)

On the other hand, e(H) = 3>, co|Nu(z) N S|+ 3 ,cq |Nu(x) N S*|, where for any z € S,
dp(z) = |Ng(z) N S|+ |Ng(x) NS*| > d—2 > 3. Since there is no isolated vertices in H N S*,
Y es | Nu(x) N S*| =e(S,S5%) > |S*|, implies that

1 1 1 1
> — 1> Z(d— + =15%]. .
e(H) > QerSdH(x)—i_ 2;65]1\2;1(1‘)(15’ | > 2(d 2)| 5] 2[5’ | (1.2)

By inequalities 1.1 and 1.2, we get (% — 3)[S*| > (4 —1)|5], that is, |S*| > 2|S|, a contradiction.
|

Corollary 1.4. Let f(k) = 2(4-6*2+1). Let G be any graph with 6(G) > f(k). Then G has k
edge-disjoint cycles C1,Ca,--- ,Cy with V(C1) D V(Cq) D --- D V(Cy). (nested)

Corollary 1.5. Let G be a graph onn > f(k)+1 vertices. If G has at least [(f(k) —1)n— f(k)]-
(f(k) —1)/2+ 1 edges, then G has k edge-disjoint cycles Cy,Ca,--- ,Cy with V(Ci) D V(Cs) D
LD V(CY).

Definition 1.6. Let g(n) be the smallest integer such that any n-vertex graph with at least g(n)
edges contains two edge-disjoint cycles C; and Co with V(C1) C V(Cb).

Question 1.7 (Chen-Erdés-Staton, 1994, open). g(n) = 3n — 6, for any n > 6.

Consider the graph P> @ I,,—3, obtained by adding two edges to the 3-vertex part of K3 ,_s.
It has 3(n — 3) +2 = 3n — 7 edges and only contains cycles of length 4, so g(n) > 3n — 6.

Question 1.8 (Erdés). How many edges or what min-degree will force the existence of a cycle
with as many chords as its vertices?

Show that §(G) > 24/n will do in your exercise.

Question 1.9. How many edges are necessary to force the existence of 2 edge-disjoint cycles with
the same vertex set? (The real question is: if 6(G) > C, where C is constant, there exist such
cycles.)



