Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Yixuan Huang and Tianchi Yang

April 8th 2020, Wednesday

1 Lecture 13. Extremal Bounds on Cycles

Theorem 1.1. If G is a 2-connected graph, then G has a cycle of length at least $\min \{|V(G)|, 2 \delta(G)\}$.
Proof. Let $P=x_{0} x_{1} \cdots x_{m}$ be a longest path in G. By an earlier theorem, $m \geq \min \{n-1,2 \delta(G)\}$. Case 1. Suppose there exist two vertices $x_{i} \in N\left(x_{0}\right)$ and $x_{j} \in N\left(x_{m}\right)$ with $i>j$. If $i=j+1$, obviously we are done. So we assume $j \leq i-2$. Pick a pair $\{i, j\}$ with $|i-j|$ minimum. Let C be the cycle $x_{0} x_{1} \cdots x_{j} x_{m} x_{m-1} \cdots x_{i} x_{0}$, then we have $N\left(x_{0}\right) \subseteq V(C),\left(N\left(x_{m}\right) \backslash\left\{x_{j}\right\}\right)^{+} \subseteq V(C)$. Since $N\left(x_{0}\right) \cap N\left(x_{m}\right)^{+}=\varnothing$, we see that

$$
|C| \geq\left|N\left(x_{0}\right) \cup\left\{x_{0}\right\}\right|+\left|\left(N\left(x_{m}\right) \backslash\left\{x_{j}\right\}\right)^{+}\right| \geq d\left(x_{0}\right)+d\left(x_{m}\right) \geq 2 \delta(G) .
$$

Case 2. Suppose for any $x_{j} \in N\left(x_{m}\right), x_{i} \in N\left(x_{0}\right)$, we have $i \leq j$. Let i be the maximum index such that $x_{i} \in N\left(x_{0}\right)$, and let j be the minimum index such that $x_{j} \in N\left(x_{j}\right)$. Let $G_{1}=G\left[V\left(x_{0} P x_{i}\right)\right], G_{2}=G\left[V\left(x_{j} P x_{m}\right)\right]$. By Menger's Theorem, there are 2 internally disjoint paths P_{1}, P_{2} from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$. If neither P_{1} nor P_{2} starts at x_{i}, we begin traveling from x_{i} along $x_{i} P x_{j}$, until we encounter some vertex of P_{1} or P_{2}, then we would define two new paths one of which starts at x_{i} and do the same for x_{j}. Hence we can choose such P_{1}, P_{2} such that each of x_{i} and x_{j} is an endpoint of P_{1} or P_{2}.

Then there are two cases to consider: (a) $x_{i}, x_{j} \in V\left(P_{1}\right)$; (b) $x_{i} \in V\left(P_{1}\right), x_{j} \in V\left(P_{2}\right)$.
For (a), we can construct a cycle using P_{1}, P_{2} and all vertices in $\left\{x_{0}, x_{m}\right\} \cup N\left(x_{0}\right) \cup N\left(x_{m}\right)$, that is $C=x_{0} x_{1} \cdots x_{s} P_{2} x_{t} \cdots x_{m} x_{l} \cdots x_{j} P_{1} x_{i} \cdots x_{k} x_{0}$, where x_{s}, x_{t} are two endpoints of P_{2}, x_{k} is the first neighbor of x_{0} after x_{s} and x_{l} is the first neighbor of x_{m} before x_{t}. Since it is possible that $x_{i}=x_{j}$,

$$
|C| \geq d\left(x_{0}\right)+d\left(x_{m}\right)+2-1 \geq 2 \delta(G)+1 .
$$

For (b), we can find a cycle of length at least $2 \delta(G)+1$ in a similar way.
Remark: Consider a union of cliques K_{k+1}, where any pair of the cliques share 2 common vetices. The largest cycle in this graph has length $2 k=2 \delta(G)$.

Theorem 1.2 (Erdös-Gallai).

$$
e x\left(n,\left\{C_{t+1}, C_{t+2}, \cdots\right\}\right) \leq t(n-1) / 2
$$

This is tight for all n with $(t-1) \mid(n-1)$.
Proof. This can be derived from Theorem 1.1. (exercise)
Theorem 1.3. If G is a graph with $\delta(G) \geq d \geq 5$, then G has a cycle C and a subgraph H with $V(H) \subseteq V(C), E(H) \subseteq E(G)-E(C)$, and $\delta(H) \geq d / 6+1$.

Proof. Let $P=x_{0} x_{1} \cdots x_{p}$ be a longest path in G, and S be the set from Posá's Lemma. For each path $P^{\prime}=v_{0} \cdots v_{p}$ obtained from Posá's rotation, denote by $l\left(P^{\prime}\right)$ the minimum index i such that $v_{i} \in N\left(v_{p}\right)$.

For a new path Q from Posá's rotation with $l(Q)$ minimum among all new paths. Let $C=$ $v_{i} Q v_{p} v_{i}$ be the cycle. Then $S \subseteq V(C)$. By Posá's lemma, $|N(S)| \leq 2|S|$. Let H^{*} be a subgraph of G defined on $S \cap N(S)$, when $x y \in E\left(H^{*}\right)$ if and only if at least one of x and y is in S. Let H be obtained from H^{*} by deleting all edges in C and then deleting those isolated vertices which may result after the deletion of $E(C)$. Clearly, H is edge-disjoint from C and $V(H) \subseteq V(C)$. For any vertex $a \in S, d_{H}(x) \geq d_{G}(x)-d_{C}(x) \geq d-2 \geq 3$, thus $S \subseteq V(H)$. Let $S^{*}=V(H) \backslash S$, so $S^{*} \subseteq N(S)$ and $\left|S^{*}\right| \leq 2|S|$.

Now it suffices to show that H has a subgraph F with $\delta(F) \geq d / 6+1$. Suppose not, we have

$$
\begin{equation*}
e(H)<\frac{d}{6}|V(H)|=\frac{d}{6}\left(|S|+\left|S^{*}\right|\right) \tag{1.1}
\end{equation*}
$$

On the other hand, $e(H)=\frac{1}{2} \sum_{x \in S}\left|N_{H}(x) \cap S\right|+\sum_{x \in S}\left|N_{H}(x) \cap S^{*}\right|$, where for any $x \in S$, $d_{H}(x)=\left|N_{H}(x) \cap S\right|+\left|N_{H}(x) \cap S^{*}\right| \geq d-2 \geq 3$. Since there is no isolated vertices in $H \cap S^{*}$, $\sum_{x \in S}\left|N_{H}(x) \cap S^{*}\right|=e\left(S, S^{*}\right) \geq\left|S^{*}\right|$, implies that

$$
\begin{equation*}
e(H) \geq \frac{1}{2} \sum_{x \in S} d_{H}(x)+\frac{1}{2} \sum_{x \in S}\left|N_{H}(x) \cap S^{*}\right| \geq \frac{1}{2}(d-2)|S|+\frac{1}{2}\left|S^{*}\right| \tag{1.2}
\end{equation*}
$$

By inequalities 1.1 and 1.2 , we get $\left(\frac{d}{6}-\frac{1}{2}\right)\left|S^{*}\right|>\left(\frac{d}{3}-1\right)|S|$, that is, $\left|S^{*}\right|>2|S|$, a contradiction.

Corollary 1.4. Let $f(k)=\frac{6}{5}\left(4 \cdot 6^{k-2}+1\right)$. Let G be any graph with $\delta(G) \geq f(k)$. Then G has k edge-disjoint cycles $C_{1}, C_{2}, \cdots, C_{k}$ with $V\left(C_{1}\right) \supseteq V\left(C_{2}\right) \supseteq \cdots \supseteq V\left(C_{k}\right)$. (nested)

Corollary 1.5. Let G be a graph on $n \geq f(k)+1$ vertices. If G has at least $[(f(k)-1) n-f(k)]$. $(f(k)-1) / 2+1$ edges, then G has k edge-disjoint cycles $C_{1}, C_{2}, \cdots, C_{k}$ with $V\left(C_{1}\right) \supseteq V\left(C_{2}\right) \supseteq$ $\cdots \supseteq V\left(C_{k}\right)$.

Definition 1.6. Let $g(n)$ be the smallest integer such that any n-vertex graph with at least $g(n)$ edges contains two edge-disjoint cycles C_{1} and C_{2} with $V\left(C_{1}\right) \subseteq V\left(C_{2}\right)$.

Question 1.7 (Chen-Erdös-Staton, 1994, open). $g(n)=3 n-6$, for any $n \geq 6$.
Consider the graph $P_{2} \bigoplus I_{n-3}$, obtained by adding two edges to the 3 -vertex part of $K_{3, n-3}$. It has $3(n-3)+2=3 n-7$ edges and only contains cycles of length 4 , so $g(n) \geq 3 n-6$.

Question 1.8 (Erdös). How many edges or what min-degree will force the existence of a cycle with as many chords as its vertices?

Show that $\delta(G) \geq 2 \sqrt{n}$ will do in your exercise.
Question 1.9. How many edges are necessary to force the existence of 2 edge-disjoint cycles with the same vertex set? (The real question is: if $\delta(G) \geq C$, where C is constant, there exist such cycles.)

