Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Yuze Wu and Tianchi Yang

Apr 15th 2020, Wednesday

1 Lecture 14, Bondy-Simonovits Theorem on even cycles

We consider the upper bound of $\operatorname{ex}\left(n, C_{2 k}\right)$ for $k \geq 2$ in this lecture.
Theorem 1.1 (Bondy-Simonovits). There is a constant $c>0$ such that for any $k \geq 2$,

$$
\operatorname{ex}\left(n, C_{2 k}\right) \leq c k n^{1+1 / k}
$$

Remark: The orignal proof gives $c=100$.
In the following lecture, we will give two different proofs of Theorem 1.1. Let us get into the first one by introducing the $A-B$ path lemma.

Theorem 1.2 ($A-B$ path Lemma). Let H be a graph consisting of a cycle with a chord, and let (A, B) be a non-trivial partition of $V(H)$. Then for any $\ell<|V(H)|$, there is an (A, B)-path of length ℓ in H, unless ℓ is even and H is bipartite with the partition (A, B).

The first proof of Theorem 1.1. Let the cycle $C=(0,1, \ldots, n-1,0)$ with chord $(0, r)$. We take indices under modulos n. Denote $\chi: V(H) \rightarrow\{0,1\}$ by $\chi(i)=1$ for $i \in A$ and $\chi(i)=0$ for $i \in B$. Let $P=\left\{p \in Z_{n}^{+}: \chi(i)=\chi(i+p)\right.$ holds for any $\left.i\right\}$. So if $\ell \notin P$, we can find an (A, B)-path of length ℓ using only the edges of C.

It suffices for us to consider $\ell \in P$. Let $m \in P$ be the smallest positive integer in P. Then $m \mid n$ (exercise). For all ℓ with $m \nmid \ell$, there exists some (A, B)-path of length ℓ.(By the definition of m.) So we only need to consider $\ell=k m$.
Case 1: Suppose the chord $(0, r)$ satisfies that $1<r \leq m$. Since $m \nmid m+r-1)$, there is some $-m<j \leq 0$ such that $\chi(j) \neq \chi(j+m+r-1)=\chi(j+k m+r-1)$. Consider the path $(j, j+1, \ldots, 0, r, r+1, \ldots, j+m+r-1, \ldots, j+k m+r-1)$. This is an (A, B)-path of length $k m=\ell$.
Case 2: Suppose $m<r<n-m$. For $-m \leq j \leq 0$, we define 2 paths: $P_{j}=(j, j+1, \ldots, 0, r, r-$ $1, \ldots, r-j-m+1)$ and $Q_{j}=(m+j, m+j-1, \ldots, 0, r, r+1 \ldots, r-j-1)$. We see both paths have length m.
(i) Suppose there is a j with $-m \leq j \leq 0$ such that P_{j} or Q_{j} is an (A, B)-path. Then we can extend it to an (A, B)-path of length $k m=\ell$ by adding a subpath of length m at a time.
(ii) We may assume that P_{j} and Q_{j} are not (A, B)-paths for all $-m \leq j \leq 0$. Then we have $\chi(j)=\chi(r-j-m+1), \chi(m+j)=\chi(r-j-1)$ for any $-m \leq j \leq 0$. So $\chi(r-j+1)=\chi(r-j-1)$, for any $-m \leq j \leq 0$. That is $\chi(i)=\chi(i+2)$ for any i. Then for $m=2$, we have $2 \mid n$ and the vertices of C alternate between A and B. If the chord $(0, r)$ is in the same part, we can check that H contains $A-B$ paths of all possible lengths. Otherwise, the chord $(0, r)$ is between A and B, then H is bipartite with the partition (A, B).
Case 3: $n-m \leq r<n-1$. This case is the same as Case 1.

Proof of Theorem 1.1. We will show

$$
\operatorname{ex}\left(n, C_{2 k}\right) \leq 2 k n^{1+1 / k}+6(k-1) n .
$$

Let G be an n-vertex $C_{2 k}$-free graph with more than $2 k n^{1+1 / k}+6(k-1) n$ edges. Then G has a bipartite subgraph H^{\prime} with $e\left(H^{\prime}\right)>k n^{1+1 / k}+3(k-1) n$. Further, H^{\prime} contains a bipartite subgraph H with $\delta(H)>k n^{1 / k}+3(k-1)$. Let T be a breadth-first search tree (BFS tree) with root x in H. Let $L_{i}=\left\{u \in V(H): d_{H}(x, u)=i\right\}$ for $i \geq 1$. Since H is bipartite, each L_{i} is stable.

First we claim that $e\left(L_{i-1}, L_{i}\right) \leq(k-1)\left(\left|L_{i-1}\right|+\left|L_{i}\right|\right)$ for each $1 \leq i \leq k$. Suppose not, $e\left(L_{i-1}, L_{i}\right)>(k-1)\left(\left|L_{i-1}\right|+\left|L_{i}\right|\right)$ for some $i \geq 2$. Then $H\left(L_{i-1}, L_{i}\right)$ contains a subgraph H_{1} with $\delta\left(H_{1}\right) \geq k$. Then H_{1} has an even cycle C of length at least $2 k$ with a chord. Let $A=V(C) \cap L_{i-1}$ and $B=V(C) \cap L_{i}$. Let T^{\prime} be a subtree of T such that $A \subseteq V\left(T^{\prime}\right)$ and subject to this, T^{\prime} is minimal. Let y be the root of T^{\prime}. As T^{\prime} is minimal, y has at least 2 branches. Let A^{\prime} be the subset of A formed by all vertices from one branch of T^{\prime}. Then $A \backslash A^{\prime} \neq \emptyset$. Let $B^{\prime}=B \cup\left(A \backslash A^{\prime}\right)$. Then $\left(A^{\prime}, B^{\prime}\right)$ is not a bipartition of H_{1}. Let ℓ be the distance between x and y. Then $\ell<i-1$ and $2 k-2 i+2 \ell+2<2 k \leq|V(C)|$. By $A-B$ path Lemma, we can find an (A^{\prime}, B^{\prime})-path P of length $2 k-2 i+2 \ell+2$ in H_{1} between $a \in A^{\prime}$ and $b \in B^{\prime}$. As $|P|$ is even, $b \in A \backslash A^{\prime}$. Let P_{a}, P_{b} be the unique paths in T^{\prime} that connect y to a and b respectively. Then $P \cup P_{a} \cup P_{b}$ is a cycle of length $2 k$ in H, a contradiction.

Next we show that $\left|L_{i}\right| \geq n^{1 / k}\left|L_{i-1}\right|$ for any $i \in[k]$. We prove this by induction on i. Base case $i=1$ is trivial since $\delta(H)>k n^{1 / k}+3(k-1)$. For $i \geq 2$, we have

$$
\begin{aligned}
\left(k n^{1 / k}+3(k-1)\right)\left|L_{i-1}\right| & \leq \sum_{v \in L_{i-1}} d_{H}(v)=e\left(L_{i-2}, L_{i-1}\right)+e\left(L_{i-1}, L_{i}\right) \\
& \leq(k-1)\left(\left|L_{i-2}\right|+2\left|L_{i-1}\right|+\left|L_{i}\right|\right) \leq(k-1)\left(3\left|L_{i-1}\right|+\left|L_{i}\right|\right) .
\end{aligned}
$$

So $\left|L_{i}\right| \geq \frac{k n^{1 / k}}{k-1}\left|L_{i-1}\right| \geq n^{1 / k}\left|L_{i-1}\right|$, as desired. Now we see $\left|L_{k}\right| \geq n$, a contradiction.

Next, we move into the second proof of Theorem 1.1.
Lemma 1.3 (Lemma 2.6 in [1]). Let H be a connected graph where each edge is colored by color 1 or color 2. Suppose that there is at least one edge of each color. If the number of edges of color 1 is at least $(p+1)|V(H)|$, then there exists a path of length p in H, whose first edge is colored by color 2 and all other edges are colored by color 1.

Proof. Exercise.
The second proof of Theorem 1.1. This is gave by Jiang-Ma in [1]. We aim to show

$$
\operatorname{ex}\left(n, C_{2 k}\right) \leq 8 k n^{1+1 / k}+24 k n
$$

Let G be a n-vertex $C_{2 k}$-free graph with more than $8 k n^{1+1 / k}+24 k n$ edges. Then G has a bipartite subgraph H^{\prime} with $e\left(H^{\prime}\right)>4 k n^{1+1 / k}+12 k n$. Further, H^{\prime} contains a bipartite subgraph H with $\delta(H)>4 k n^{1 / k}+12 k$. Similarly, let T be a breadth-first search tree (BFS tree) with root x in H. Let $L_{i}=\left\{u \in V(H) \mid d_{H}(x, u)=i\right\}$ for $i \geq 1$. Since H is bipartite, each L_{i} is stable.

First we claim that $e\left(L_{i-1}, L_{i}\right) \leq 4 k\left(\left|L_{i-1}\right|+\left|L_{i}\right|\right)$ for each $1 \leq i \leq k$. Suppose not, $e\left(L_{i-1}, L_{i}\right)>4 k\left(\left|L_{i-1}\right|+\left|L_{i}\right|\right)$ for some $i \geq 2$. Take a connected component H^{*} with $d\left(H^{*}\right) \geq 8 k$ in $H\left(L_{i-1}, L_{i}\right)$. Let T^{\prime} be a subtree of T with $V\left(H^{*}\right) \cap L_{i-1} \subseteq V\left(T^{\prime}\right)$, and subject to this, T^{\prime} is
minimal. Let X be the subset of $V\left(H^{*}\right) \cap L_{i-1}$ which formed by all vertices from one branch of T^{\prime}. Let $Y=\left(V\left(H^{*}\right) \cap L_{i-1}\right) \backslash X$. Color all edges in H^{*} by color 1 if it has an end in X and by color 2 if it has an end in Y. Then we can assume that the number of edges with color 1 is at least $2 k\left|V\left(H^{*}\right)\right|$. By Lemma 1.3, there is a path P of length at least $2 k-1$ whose first edge is colored by color 2 and all other edges are colored by color 1 . So we can find consecutive even cycles of length $2 t+2,2 t+4, \ldots, 2 t+2 k-2$ where t is the distance between L_{i-1} and the root of T^{\prime}. Since $t<i \leq k$, there is a cycle of length $2 k$, a contradiction.

Next, we claim that $\left|L_{i}\right| \geq n^{1 / k}\left|L_{i-1}\right|$ for any $i \in[k]$. We prove this by induction on i. Base case $i=1$ holds as $\delta(H)>4 k n^{1 / k}+12 k$. For $i \geq 2$, we have

$$
\begin{aligned}
\left(4 k n^{1 / k}+12 k\right)\left|L_{i-1}\right| & \leq \sum_{v \in L_{i-1}} d_{H}(v)=e\left(L_{i-2}, L_{i-1}\right)+e\left(L_{i-1}, L_{i}\right) \\
& \leq 4 k\left(\left|L_{i-2}\right|+2\left|L_{i-1}\right|+\left|L_{i}\right|\right) \leq 4 k\left(3\left|L_{i-1}\right|+\left|L_{i}\right|\right)
\end{aligned}
$$

then $\left|L_{i}\right| \geq n^{1 / k}\left|L_{i-1}\right|$. Finally, we get $\left|L_{k}\right| \geq n$, a contradiction.

In the end, let us give some remarks. The current best bound on $\mathrm{ex}\left(n, C_{2 k}\right)$ is as follows.
Theorem 1.4 (Bukh-Jiang, 2016).

$$
\operatorname{ex}\left(n, C_{2 k}\right) \leq 80 \sqrt{k} \log k \cdot n^{1+1 / k}+10 k^{2} n
$$

Their proof heavily replies on $A-B$ path Lemma.
Conjecture 1.5 (Erdős-Simonovits). For $k \geq 2$,

$$
\operatorname{ex}\left(n, C_{2 k}\right)=\Theta\left(n^{1+1 / k}\right)
$$

This conjecture is known for $k=2,3,5$ only.

References

[1] T. Jiang and J. Ma, Cycles of given lengths in hypergraphs, J. Combin. Theory Ser. B 133 (2018), 54-77.

