Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Yuze Wu and Tianchi Yang

Apr 15th 2020, Wednesday

1 Lecture 14, Bondy-Simonovits Theorem on even cycles

We consider the upper bound of $ex(n, C_{2k})$ for $k \ge 2$ in this lecture.

Theorem 1.1 (Bondy-Simonovits). There is a constant c > 0 such that for any $k \ge 2$,

 $\operatorname{ex}(n, C_{2k}) \le ckn^{1+1/k}.$

Remark: The orignal proof gives c = 100.

In the following lecture, we will give two different proofs of Theorem 1.1. Let us get into the first one by introducing the A-B path lemma.

Theorem 1.2 (A-B path Lemma). Let H be a graph consisting of a cycle with a chord, and let (A, B) be a non-trivial partition of V(H). Then for any $\ell < |V(H)|$, there is an (A, B)-path of length ℓ in H, unless ℓ is even and H is bipartite with the partition (A, B).

The first proof of Theorem 1.1. Let the cycle C = (0, 1, ..., n - 1, 0) with chord (0, r). We take indices under modulos n. Denote $\chi : V(H) \to \{0,1\}$ by $\chi(i) = 1$ for $i \in A$ and $\chi(i) = 0$ for $i \in B$. Let $P = \{p \in Z_n^+ : \chi(i) = \chi(i+p) \text{ holds for any } i\}$. So if $\ell \notin P$, we can find an (A, B)-path of length ℓ using only the edges of C.

It suffices for us to consider $\ell \in P$. Let $m \in P$ be the smallest positive integer in P. Then m|n (exercise). For all ℓ with $m \nmid \ell$, there exists some (A, B)-path of length ℓ .(By the definition of m.) So we only need to consider $\ell = km$.

Case 1: Suppose the chord (0, r) satisfies that $1 < r \leq m$. Since $m \nmid (m + r - 1)$, there is some $-m < j \leq 0$ such that $\chi(j) \neq \chi(j + m + r - 1) = \chi(j + km + r - 1)$. Consider the path $(j, j + 1, \ldots, 0, r, r + 1, \ldots, j + m + r - 1, \ldots, j + km + r - 1)$. This is an (A, B)-path of length $km = \ell$.

Case 2: Suppose m < r < n-m. For $-m \le j \le 0$, we define 2 paths: $P_j = (j, j+1, \ldots, 0, r, r-1, \ldots, r-j-m+1)$ and $Q_j = (m+j, m+j-1, \ldots, 0, r, r+1, \ldots, r-j-1)$. We see both paths have length m.

(i) Suppose there is a j with $-m \le j \le 0$ such that P_j or Q_j is an (A, B)-path. Then we can extend it to an (A, B)-path of length $km = \ell$ by adding a subpath of length m at a time.

(ii) We may assume that P_j and Q_j are not (A, B)-paths for all $-m \leq j \leq 0$. Then we have $\chi(j) = \chi(r-j-m+1), \chi(m+j) = \chi(r-j-1)$ for any $-m \leq j \leq 0$. So $\chi(r-j+1) = \chi(r-j-1)$, for any $-m \leq j \leq 0$. That is $\chi(i) = \chi(i+2)$ for any *i*. Then for m = 2, we have 2|n and the vertices of *C* alternate between *A* and *B*. If the chord (0, r) is in the same part, we can check that *H* contains *A*-*B* paths of all possible lengths. Otherwise, the chord (0, r) is between *A* and *B*, then *H* is bipartite with the partition (A, B).

Case 3: $n - m \le r < n - 1$. This case is the same as Case 1.

Proof of Theorem 1.1. We will show

$$ex(n, C_{2k}) \le 2kn^{1+1/k} + 6(k-1)n$$

Let G be an n-vertex C_{2k} -free graph with more than $2kn^{1+1/k} + 6(k-1)n$ edges. Then G has a bipartite subgraph H' with $e(H') > kn^{1+1/k} + 3(k-1)n$. Further, H' contains a bipartite subgraph H with $\delta(H) > kn^{1/k} + 3(k-1)$. Let T be a breadth-first search tree (BFS tree) with root x in H. Let $L_i = \{u \in V(H) : d_H(x, u) = i\}$ for $i \ge 1$. Since H is bipartite, each L_i is stable.

First we claim that $e(L_{i-1}, L_i) \leq (k-1)(|L_{i-1}| + |L_i|)$ for each $1 \leq i \leq k$. Suppose not, $e(L_{i-1}, L_i) > (k-1)(|L_{i-1}| + |L_i|)$ for some $i \geq 2$. Then $H(L_{i-1}, L_i)$ contains a subgraph H_1 with $\delta(H_1) \geq k$. Then H_1 has an even cycle C of length at least 2k with a chord. Let $A = V(C) \cap L_{i-1}$ and $B = V(C) \cap L_i$. Let T' be a subtree of T such that $A \subseteq V(T')$ and subject to this, T' is minimal. Let y be the root of T'. As T' is minimal, y has at least 2 branches. Let A' be the subset of A formed by all vertices from one branch of T'. Then $A \setminus A' \neq \emptyset$. Let $B' = B \cup (A \setminus A')$. Then (A', B') is not a bipartition of H_1 . Let ℓ be the distance between x and y. Then $\ell < i - 1$ and $2k - 2i + 2\ell + 2 < 2k \leq |V(C)|$. By A-B path Lemma, we can find an (A', B')-path P of length $2k - 2i + 2\ell + 2$ in H_1 between $a \in A'$ and $b \in B'$. As |P| is even, $b \in A \setminus A'$. Let P_a, P_b be the unique paths in T' that connect y to a and b respectively. Then $P \cup P_a \cup P_b$ is a cycle of length 2k in H, a contradiction.

Next we show that $|L_i| \ge n^{1/k} |L_{i-1}|$ for any $i \in [k]$. We prove this by induction on i. Base case i = 1 is trivial since $\delta(H) > kn^{1/k} + 3(k-1)$. For $i \ge 2$, we have

$$(kn^{1/k} + 3(k-1))|L_{i-1}| \le \sum_{v \in L_{i-1}} d_H(v) = e(L_{i-2}, L_{i-1}) + e(L_{i-1}, L_i)$$
$$\le (k-1)(|L_{i-2}| + 2|L_{i-1}| + |L_i|) \le (k-1)(3|L_{i-1}| + |L_i|).$$

So $|L_i| \ge \frac{kn^{1/k}}{k-1} |L_{i-1}| \ge n^{1/k} |L_{i-1}|$, as desired. Now we see $|L_k| \ge n$, a contradiction.

Next, we move into the second proof of Theorem 1.1.

Lemma 1.3 (Lemma 2.6 in [1]). Let H be a connected graph where each edge is colored by color 1 or color 2. Suppose that there is at least one edge of each color. If the number of edges of color 1 is at least (p+1)|V(H)|, then there exists a path of length p in H, whose first edge is colored by color 2 and all other edges are colored by color 1.

Proof. Exercise.

The second proof of Theorem 1.1. This is gave by Jiang-Ma in [1]. We aim to show

$$ex(n, C_{2k}) \le 8kn^{1+1/k} + 24kn.$$

Let G be a n-vertex C_{2k} -free graph with more than $8kn^{1+1/k} + 24kn$ edges. Then G has a bipartite subgraph H' with $e(H') > 4kn^{1+1/k} + 12kn$. Further, H' contains a bipartite subgraph H with $\delta(H) > 4kn^{1/k} + 12k$. Similarly, let T be a breadth-first search tree (BFS tree) with root x in H. Let $L_i = \{u \in V(H) | d_H(x, u) = i\}$ for $i \ge 1$. Since H is bipartite, each L_i is stable.

First we claim that $e(L_{i-1}, L_i) \leq 4k(|L_{i-1}| + |L_i|)$ for each $1 \leq i \leq k$. Suppose not, $e(L_{i-1}, L_i) > 4k(|L_{i-1}| + |L_i|)$ for some $i \geq 2$. Take a connected component H^* with $d(H^*) \geq 8k$ in $H(L_{i-1}, L_i)$. Let T' be a subtree of T with $V(H^*) \cap L_{i-1} \subseteq V(T')$, and subject to this, T' is

minimal. Let X be the subset of $V(H^*) \cap L_{i-1}$ which formed by all vertices from one branch of T'. Let $Y = (V(H^*) \cap L_{i-1}) \setminus X$. Color all edges in H^* by color 1 if it has an end in X and by color 2 if it has an end in Y. Then we can assume that the number of edges with color 1 is at least $2k|V(H^*)|$. By Lemma 1.3, there is a path P of length at least 2k - 1 whose first edge is colored by color 2 and all other edges are colored by color 1. So we can find consecutive even cycles of length $2t + 2, 2t + 4, \ldots, 2t + 2k - 2$ where t is the distance between L_{i-1} and the root of T'. Since $t < i \leq k$, there is a cycle of length 2k, a contradiction.

Next, we claim that $|L_i| \ge n^{1/k} |L_{i-1}|$ for any $i \in [k]$. We prove this by induction on i. Base case i = 1 holds as $\delta(H) > 4kn^{1/k} + 12k$. For $i \ge 2$, we have

$$(4kn^{1/k} + 12k)|L_{i-1}| \le \sum_{v \in L_{i-1}} d_H(v) = e(L_{i-2}, L_{i-1}) + e(L_{i-1}, L_i)$$

$$\le 4k(|L_{i-2}| + 2|L_{i-1}| + |L_i|) \le 4k(3|L_{i-1}| + |L_i|),$$

then $|L_i| \ge n^{1/k} |L_{i-1}|$. Finally, we get $|L_k| \ge n$, a contradiction.

the end, let us give some remark	5. The current best bour	and on $ex(n, C_{2k})$	is as follows.
----------------------------------	--------------------------	------------------------	----------------

Theorem 1.4 (Bukh-Jiang, 2016).

$$\exp(n, C_{2k}) \le 80\sqrt{k}\log k \cdot n^{1+1/k} + 10k^2n.$$

Their proof heavily replies on A-B path Lemma.

Conjecture 1.5 (Erdős-Simonovits). For $k \ge 2$,

$$\operatorname{ex}(n, C_{2k}) = \Theta(n^{1+1/k}).$$

This conjecture is known for k = 2, 3, 5 only.

References

 T. Jiang and J. Ma, Cycles of given lengths in hypergraphs, J. Combin. Theory Ser. B 133 (2018), 54–77.

