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1 Lecture 14, Bondy-Simonovits Theorem on even cycles

We consider the upper bound of ex(n,C2k) for k ≥ 2 in this lecture.

Theorem 1.1 (Bondy-Simonovits). There is a constant c > 0 such that for any k ≥ 2,

ex(n,C2k) ≤ ckn1+1/k.

Remark: The orignal proof gives c = 100.
In the following lecture, we will give two different proofs of Theorem 1.1. Let us get into the

first one by introducing the A-B path lemma.

Theorem 1.2 (A-B path Lemma). Let H be a graph consisting of a cycle with a chord, and let
(A,B) be a non-trivial partition of V (H). Then for any ` < |V (H)|, there is an (A,B)-path of
length ` in H, unless ` is even and H is bipartite with the partition (A,B).

The first proof of Theorem 1.1. Let the cycle C = (0, 1, . . . , n − 1, 0) with chord (0, r). We
take indices under modulos n. Denote χ : V (H)→ {0, 1} by χ(i) = 1 for i ∈ A and χ(i) = 0 for
i ∈ B. Let P = {p ∈ Z+

n : χ(i) = χ(i+p) holds for any i}. So if ` 6∈ P, we can find an (A,B)-path
of length ` using only the edges of C.

It suffices for us to consider ` ∈ P. Let m ∈ P be the smallest positive integer in P . Then
m|n (exercise). For all ` with m - `, there exists some (A,B)-path of length `.(By the definition
of m.) So we only need to consider ` = km.
Case 1: Suppose the chord (0, r) satisfies that 1 < r ≤ m. Since m - (m + r − 1), there is
some −m < j ≤ 0 such that χ(j) 6= χ(j + m + r − 1) = χ(j + km + r − 1). Consider the path
(j, j + 1, . . . , 0, r, r + 1, . . . , j + m + r − 1, . . . , j + km + r − 1). This is an (A,B)-path of length
km = `.
Case 2: Suppose m < r < n−m. For −m ≤ j ≤ 0, we define 2 paths: Pj = (j, j+ 1, . . . , 0, r, r−
1, . . . , r− j −m+ 1) and Qj = (m+ j,m+ j − 1, . . . , 0, r, r+ 1 . . . , r− j − 1). We see both paths
have length m.
(i) Suppose there is a j with −m ≤ j ≤ 0 such that Pj or Qj is an (A,B)-path. Then we can
extend it to an (A,B)-path of length km = ` by adding a subpath of length m at a time.
(ii) We may assume that Pj and Qj are not (A,B)-paths for all −m ≤ j ≤ 0. Then we have
χ(j) = χ(r−j−m+1), χ(m+j) = χ(r−j−1) for any −m ≤ j ≤ 0. So χ(r−j+1) = χ(r−j−1),
for any −m ≤ j ≤ 0. That is χ(i) = χ(i + 2) for any i. Then for m = 2, we have 2|n and the
vertices of C alternate between A and B. If the chord (0, r) is in the same part, we can check
that H contains A-B paths of all possible lengths. Otherwise, the chord (0, r) is between A and
B, then H is bipartite with the partition (A,B).
Case 3: n−m ≤ r < n− 1. This case is the same as Case 1.
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Proof of Theorem 1.1. We will show

ex(n,C2k) ≤ 2kn1+1/k + 6(k − 1)n.

Let G be an n-vertex C2k-free graph with more than 2kn1+1/k + 6(k − 1)n edges. Then G has
a bipartite subgraph H ′ with e(H ′) > kn1+1/k + 3(k − 1)n. Further, H ′ contains a bipartite
subgraph H with δ(H) > kn1/k + 3(k − 1). Let T be a breadth-first search tree (BFS tree) with
root x in H. Let Li = {u ∈ V (H) : dH(x, u) = i} for i ≥ 1. Since H is bipartite, each Li is stable.

First we claim that e(Li−1, Li) ≤ (k − 1)(|Li−1| + |Li|) for each 1 ≤ i ≤ k. Suppose not,
e(Li−1, Li) > (k−1)(|Li−1|+ |Li|) for some i ≥ 2. Then H(Li−1, Li) contains a subgraph H1 with
δ(H1) ≥ k. Then H1 has an even cycle C of length at least 2k with a chord. Let A = V (C)∩Li−1
and B = V (C) ∩ Li. Let T ′ be a subtree of T such that A ⊆ V (T ′) and subject to this, T ′ is
minimal. Let y be the root of T ′. As T ′ is minimal, y has at least 2 branches. Let A′ be the
subset of A formed by all vertices from one branch of T ′. Then A \A′ 6= ∅. Let B′ = B ∪ (A \A′).
Then (A′, B′) is not a bipartition of H1. Let ` be the distance between x and y. Then ` < i − 1
and 2k − 2i + 2` + 2 < 2k ≤ |V (C)|. By A-B path Lemma, we can find an (A′, B′)-path P of
length 2k − 2i + 2` + 2 in H1 between a ∈ A′ and b ∈ B′. As |P | is even, b ∈ A \ A′. Let Pa, Pb

be the unique paths in T ′ that connect y to a and b respectively. Then P ∪ Pa ∪ Pb is a cycle of
length 2k in H, a contradiction.

Next we show that |Li| ≥ n1/k|Li−1| for any i ∈ [k]. We prove this by induction on i. Base
case i = 1 is trivial since δ(H) > kn1/k + 3(k − 1). For i ≥ 2, we have

(kn1/k + 3(k − 1))|Li−1| ≤
∑

v∈Li−1

dH(v) = e(Li−2, Li−1) + e(Li−1, Li)

≤ (k − 1)(|Li−2|+ 2|Li−1|+ |Li|) ≤ (k − 1)(3|Li−1|+ |Li|).

So |Li| ≥ kn1/k

k−1 |Li−1| ≥ n1/k|Li−1|, as desired. Now we see |Lk| ≥ n, a contradiction.

Next, we move into the second proof of Theorem 1.1.

Lemma 1.3 (Lemma 2.6 in [1]). Let H be a connected graph where each edge is colored by color
1 or color 2. Suppose that there is at least one edge of each color. If the number of edges of color
1 is at least (p + 1)|V (H)|, then there exists a path of length p in H, whose first edge is colored
by color 2 and all other edges are colored by color 1.

Proof. Exercise.

The second proof of Theorem 1.1. This is gave by Jiang-Ma in [1]. We aim to show

ex(n,C2k) ≤ 8kn1+1/k + 24kn.

Let G be a n-vertex C2k-free graph with more than 8kn1+1/k+24kn edges. Then G has a bipartite
subgraph H ′ with e(H ′) > 4kn1+1/k + 12kn. Further, H ′ contains a bipartite subgraph H with
δ(H) > 4kn1/k + 12k. Similarly, let T be a breadth-first search tree (BFS tree) with root x in H.
Let Li = {u ∈ V (H)|dH(x, u) = i} for i ≥ 1. Since H is bipartite, each Li is stable.

First we claim that e(Li−1, Li) ≤ 4k(|Li−1| + |Li|) for each 1 ≤ i ≤ k. Suppose not,
e(Li−1, Li) > 4k(|Li−1|+ |Li|) for some i ≥ 2. Take a connected component H∗ with d(H∗) ≥ 8k
in H(Li−1, Li). Let T ′ be a subtree of T with V (H∗) ∩ Li−1 ⊆ V (T ′), and subject to this, T ′ is
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minimal. Let X be the subset of V (H∗) ∩ Li−1 which formed by all vertices from one branch of
T ′. Let Y = (V (H∗) ∩ Li−1) \X. Color all edges in H∗ by color 1 if it has an end in X and by
color 2 if it has an end in Y. Then we can assume that the number of edges with color 1 is at
least 2k|V (H∗)|. By Lemma 1.3, there is a path P of length at least 2k − 1 whose first edge is
colored by color 2 and all other edges are colored by color 1. So we can find consecutive even
cycles of length 2t+ 2, 2t+ 4, . . . , 2t+ 2k − 2 where t is the distance between Li−1 and the root
of T ′. Since t < i ≤ k, there is a cycle of length 2k, a contradiction.

Next, we claim that |Li| ≥ n1/k|Li−1| for any i ∈ [k]. We prove this by induction on i. Base
case i = 1 holds as δ(H) > 4kn1/k + 12k. For i ≥ 2, we have

(4kn1/k + 12k)|Li−1| ≤
∑

v∈Li−1

dH(v) = e(Li−2, Li−1) + e(Li−1, Li)

≤ 4k(|Li−2|+ 2|Li−1|+ |Li|) ≤ 4k(3|Li−1|+ |Li|),

then |Li| ≥ n1/k|Li−1|. Finally, we get |Lk| ≥ n, a contradiction.

In the end, let us give some remarks. The current best bound on ex(n,C2k) is as follows.

Theorem 1.4 (Bukh-Jiang, 2016).

ex(n,C2k) ≤ 80
√
k log k · n1+1/k + 10k2n.

Their proof heavily replies on A-B path Lemma.

Conjecture 1.5 (Erdős-Simonovits). For k ≥ 2,

ex(n,C2k) = Θ(n1+1/k).

This conjecture is known for k = 2, 3, 5 only.
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