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1 Applications of Pésa’s Rotation

Theorem 1.1 (Bondy-Simonovits). There exists a constant ¢ > 0 such that for any k > 2,
ex(n,Coy) < ckn't1/k,

Lemma 1.2 (Pésa’s lemma). Let P be a longest path (from w to v) in a graph G. Let S be
the set of all endpoints of paths obtained by repeatedly applying Pdsa’s rotations from P, while
preserving u as an endpoint. Clearly, S C V(P) and N(S) C V(P). Then N(S) C STUS~

1.1 Finding cycles of consecutive even lengths

Theorem 1.3 (Sudakov-Verstraéte). Let G be a graph with average degree d(G) and with girth
9(G) >2g+ 1. Then G has cycles of Q(d9) consecutive even lengths.

Lemma 1.4 (Exercise in Hw4). Let G be a graph. If |[N(X)| > 2|X]| for all subsets X C V(QG)
with | X| < k, then G contains a cycle C' of length at least min{3k, |V (G)|}, which contains a
verter © and all its neighbors in G.

Definition 1.5. Let

r—1 )
1+dS(d—1) if g=2r+1
1=0

nO(d7.g) = r—1 )
2y (d-1) if g=2r.
1=0

This is called Moore Bound.

Lemma 1.6 (Moore Bound). Let G be an n-vertex graph with girth g and with min-degree at
least d. Then n > ny(g,d).

The proof is assigned as a homework.(Consider a BFS-tree)

Lemma 1.7. Let G be a graph with §(G) > 6(d+ 1) and with girth at least 29+ 1. Then for any
subset X C V(G) with | X| < d9/3, we have |[N(X)| > 2|X]|.

Proof. Suppose for a contradiction that there is a set X with |X| < % but |[N(X)| < 2|X|. Let
H=GXUN(X)]. So |V(H)| < 3|X|, and

1
e(H) > 2gdc(v) > 3(d+ 1)|X| > (d+ 1)|V(H)|.

So H has a subgraph H' with §(H') > d + 1, and its girth is no less than the girth of G, that is
at least > 2g + 1. By Lemma 1.6,
3IX| > [V(H)| = [V(H)| = no(d+1,2g+1) > 1+ (d+1) ) _d' > d.
1<g

This implies | X| > d9/3, a contradiction. ]



Now we choose r € V(G) and apply breadth-first search to G. We get a BFS-tree and let
L; ={x:dg(z,r) =i}

Lemma 1.8. If G(L;, Liy1) has a cycle C' of length 21 with a chord, then for some m € [i], G
contains cycles Com2, Comig...Comaoi—o.

The proof is assigned as an exercise(Using A-B path lemma).

Proof of Theorem 1.3. Let G be a graph with d(G) > 48(d + 1) and girth at least 2g + 1.
Then G has a connected bipartite subgraph H with d(H) > 24(d + 1). Consider BFS-tree T' of
H. Then e(H) = _;5qe(Li, Lit1) > 12n(d + 1), where n = |[V/(H)|.

We claim that there exists an ¢ such that e(L;, Lit1) > 6(d + 1)(|Li| + |Lit+1]). Otherwise,
e(H) < 6(d+ 1)[(|Lo| + |L1|) + (| L1| + |L2]) + ... + (| Lyp—1| + | Lr])] < 6(d + 1)2n = 12(d + 1)n,
a contradiction. Then H(L;, L;11) has a subgraph H' with 6(H') > 6(d + 1) with girth at least
2g + 1. By lemma 1.7, any X C V(H') with |X| < d9/3 has |[N(X)| > 2|X|. By Lemma 1.4, H’
has a cycle of length > d9 with a chord. By Lemma 1.8, G has Q(d¥) cycles of consecutive even
length. O |

1.2 Finding Hamilton cycles in G(n,p)

Lemma 1.9. Let G = G(n,p), where p = 9logn/n. Let S be the set defined in Pdsa’s lemma
for G. Then P(|S| <n/4) <n=12 for large n.

Proof. Suppose |S| = k. Then |[ST|,|S7| < k. By Pésa’s rotation, N(S) C ST U S~, then
e(S,V(G)\ (SUSTUST)) =0, where |[S| = k and |V(G)\ (SUSTUS™)| > n — 3k. The
probability that G has a set of k vertices all of which are non-adjacent to a set of n — 3k vertices

is at most <Z> (1—p)*(=3k)  Therefore, for large n, the probability that S has at most £ = n/4—1
vertices is at most

14 14

Z(Z)(l )k(n 3k) <Zn e —pk(n—3k) <i ne pn/4 k < Z _5/4 1.2’
k=1

k=1 k=1 k=1
a contradiction. |

Lemma 1.10. Let G = G(n,p), where p=9logn/n. Then G has a Hamilton path almost surely.
In other words, P,.(G has a H-path) — 1 as n — +o0.

Proof. For v € V(G), consider G — v = G(n — 1,p). Let S, be the set defined in Pdsa’s lemma,
applied to G — v. We consider the following two events:

(1). Ay :|Sy] < (n—1)/4,

(2). By :|Sy| > (n—1)/4 and there is a longest path in G which does not contain the vertex v.
By Lemma 1.9, P(4,) < (n — 1)712. On the other hand, if |S,| > (n — 1)/4 and there is a
longest path in G which does not contain v, then none of the longest paths in G — v which
terminate in a vertex of S, can be extended to contain v. This means v is not adjacent to
each vertex in S,. Thus, P(B,) < (1 — p)l%! < (1 — p)»=/4 < P(=D/% « =2 Thus,
ST (Po(Ay) 4+ Pr(By)) <nl(n—1)"12 +n=2) = 0.

veV



We have that N,ey (AN BS) C the event that for any v € V, every longest path in G contains
v C the event that every longest path contain every vertex, that means G has a Hamilton path.
So as n — oo,

P,(G has a H-path) > P.(Myev (A5 N BS)) > 1= > (Pr(Ay) + Pr(By)) = 1,
veV

finishing the proof. |

Theorem 1.11. Let G = G(n,p), where p = 10logn/n. Then G has a Hamilton cycle almost
surely .

Proof. Let H = G1 U G4, where G; = G(n,p;). Let py = 9logn/n and ps = logn/n. This means
H = G(n,p) for p = 10logn/n — 9(logn/n)%. Tt suffices to show that H almost surely has a
Hamilton cycle. By Lemma 1.10, G almost surely has a Hamilton path P. Let S be the set
defined in Pésa’s lemma(applied to G1). By Lemma 1.9, almost surely |S| > n/4. Let u be the
fixed end point of the Hamilton path. The probability that u is non-adjacent to S in G is at
most (1 — po)l¥l < e P27/4 5 0 (as n — 400), in other words, almost surely u is adjacent to S in
G2. Therefore, almost surely H has a Hamilton cycle. |



