Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianyun Tang and Tianchi Yang

April 20th 2020, Monday

1 Applications of Pósa's Rotation

Theorem 1.1 (Bondy-Simonovits). There exists a constant $c>0$ such that for any $k \geq 2$, $e x\left(n, C_{2 k}\right) \leq c k n^{1+1 / k}$.
Lemma 1.2 (Pósa's lemma). Let P be a longest path (from u to v) in a graph G. Let S be the set of all endpoints of paths obtained by repeatedly applying Pósa's rotations from P, while preserving u as an endpoint. Clearly, $S \subset V(P)$ and $N(S) \subset V(P)$. Then $N(S) \subset S^{+} \cup S^{-}$

1.1 Finding cycles of consecutive even lengths

Theorem 1.3 (Sudakov-Verstraëte). Let G be a graph with average degree $d(G)$ and with girth $g(G) \geq 2 g+1$. Then G has cycles of $\Omega\left(d^{g}\right)$ consecutive even lengths.

Lemma 1.4 (Exercise in Hw4). Let G be a graph. If $|N(X)|>2|X|$ for all subsets $X \subset V(G)$ with $|X| \leq k$, then G contains a cycle C of length at least $\min \{3 k,|V(G)|\}$, which contains a vertex x and all its neighbors in G.
Definition 1.5. Let

$$
n_{0}(d, g)= \begin{cases}1+d \sum_{i=0}^{r-1}(d-1)^{i} & \text { if } g=2 r+1 \\ 2 \sum_{i=0}^{r-1}(d-1)^{i} & \text { if } g=2 r .\end{cases}
$$

This is called Moore Bound.
Lemma 1.6 (Moore Bound). Let G be an n-vertex graph with girth g and with min-degree at least d. Then $n \geq n_{0}(g, d)$.
The proof is assigned as a homework. (Consider a BFS-tree)
Lemma 1.7. Let G be a graph with $\delta(G) \geq 6(d+1)$ and with girth at least $2 g+1$. Then for any subset $X \subseteq V(G)$ with $|X| \leq d^{g} / 3$, we have $|N(X)|>2|X|$.
Proof. Suppose for a contradiction that there is a set X with $|X| \leq \frac{d^{g}}{3}$ but $|N(X)| \leq 2|X|$. Let $H=G[X \cup N(X)]$. So $|V(H)| \leq 3|X|$, and

$$
e(H) \geq \frac{1}{2} \sum_{v \in X} d_{G}(v) \geq 3(d+1)|X| \geq(d+1)|V(H)|
$$

So H has a subgraph H^{\prime} with $\delta\left(H^{\prime}\right) \geq d+1$, and its girth is no less than the girth of G, that is at least $\geq 2 g+1$. By Lemma 1.6,

$$
3|X| \geq|V(H)| \geq\left|V\left(H^{\prime}\right)\right| \geq n_{0}(d+1,2 g+1) \geq 1+(d+1) \sum_{i<g} d^{i}>d^{g}
$$

This implies $|X|>d^{g} / 3$, a contradiction.

Now we choose $r \in V(G)$ and apply breadth-first search to G. We get a BFS-tree and let $L_{i}=\left\{x: d_{G}(x, r)=i\right\}$.

Lemma 1.8. If $G\left(L_{i}, L_{i+1}\right)$ has a cycle C of length $2 l$ with a chord, then for some $m \in[i], G$ contains cycles $C_{2 m+2}, C_{2 m+4} \ldots C_{2 m+2 l-2}$.

The proof is assigned as an exercise(Using A-B path lemma).
Proof of Theorem 1.3. Let G be a graph with $d(G) \geq 48(d+1)$ and girth at least $2 g+1$. Then G has a connected bipartite subgraph H with $d(H) \geq 24(d+1)$. Consider BFS-tree T of H. Then $e(H)=\sum_{i \geq 0} e\left(L_{i}, L_{i+1}\right) \geq 12 n(d+1)$, where $n=|V(H)|$.

We claim that there exists an i such that $e\left(L_{i}, L_{i+1}\right) \geq 6(d+1)\left(\left|L_{i}\right|+\left|L_{i+1}\right|\right)$. Otherwise, $e(H)<6(d+1)\left[\left(\left|L_{0}\right|+\left|L_{1}\right|\right)+\left(\left|L_{1}\right|+\left|L_{2}\right|\right)+\ldots+\left(\left|L_{r-1}\right|+\left|L_{r}\right|\right)\right]<6(d+1) 2 n=12(d+1) n$, a contradiction. Then $H\left(L_{i}, L_{i+1}\right)$ has a subgraph H^{\prime} with $\delta\left(H^{\prime}\right) \geq 6(d+1)$ with girth at least $2 g+1$. By lemma 1.7, any $X \subset V\left(H^{\prime}\right)$ with $|X| \leq d^{g} / 3$ has $|N(X)|>2|X|$. By Lemma 1.4, H^{\prime} has a cycle of length $\geq d^{g}$ with a chord. By Lemma 1.8, G has $\Omega\left(d^{g}\right)$ cycles of consecutive even length.

1.2 Finding Hamilton cycles in $G(n, p)$

Lemma 1.9. Let $G=G(n, p)$, where $p=9 \log n / n$. Let S be the set defined in Pósa's lemma for G. Then $P(|S|<n / 4) \leq n^{-1.2}$ for large n.

Proof. Suppose $|S|=k$. Then $\left|S^{+}\right|,\left|S^{-}\right| \leq k$. By Pósa's rotation, $N(S) \subset S^{+} \cup S^{-}$, then $e\left(S, V(G) \backslash\left(S \cup S^{+} \cup S^{-}\right)\right)=0$, where $|S|=k$ and $\left|V(G) \backslash\left(S \cup S^{+} \cup S^{-}\right)\right| \geq n-3 k$. The probability that G has a set of k vertices all of which are non-adjacent to a set of $n-3 k$ vertices is at most $\binom{n}{k}(1-p)^{k(n-3 k)}$. Therefore, for large n, the probability that S has at most $\ell=n / 4-1$ vertices is at most

$$
\sum_{k=1}^{\ell}\binom{n}{k}(1-p)^{k(n-3 k)}<\sum_{k=1}^{\ell} n^{k} e^{-p k(n-3 k)}<\sum_{k=1}^{\ell}\left(n e^{-p n / 4}\right)^{k} \leq \sum_{k=1}^{\ell}\left(n^{-5 / 4}\right)^{k} \leq n^{-1.2}
$$

a contradiction.
Lemma 1.10. Let $G=G(n, p)$, where $p=9 \log n / n$. Then G has a Hamilton path almost surely. In other words, $\mathbb{P}_{r}(G$ has a H-path $) \rightarrow 1$ as $n \rightarrow+\infty$.

Proof. For $v \in V(G)$, consider $G-v=G(n-1, p)$. Let S_{v} be the set defined in Pósa's lemma, applied to $G-v$. We consider the following two events:
(1). $A_{v}:\left|S_{v}\right|<(n-1) / 4$,
(2). $B_{v}:\left|S_{v}\right| \geq(n-1) / 4$ and there is a longest path in G which does not contain the vertex v. By Lemma 1.9, $P\left(A_{v}\right) \leq(n-1)^{-1.2}$. On the other hand, if $\left|S_{v}\right| \geq(n-1) / 4$ and there is a longest path in G which does not contain v, then none of the longest paths in $G-v$ which terminate in a vertex of S_{v} can be extended to contain v. This means v is not adjacent to each vertex in S_{v}. Thus, $P\left(B_{v}\right) \leq(1-p)^{\left|S_{v}\right|} \leq(1-p)^{(n-1) / 4} \leq e^{-p(n-1) / 4} \ll n^{-2}$. Thus, $\sum_{v \in V}\left(P_{r}\left(A_{v}\right)+P_{r}\left(B_{v}\right)\right) \leq n\left((n-1)^{-1.2}+n^{-2}\right) \rightarrow 0$.

We have that $\cap_{v \in V}\left(A_{v}^{c} \cap B_{v}^{c}\right) \subseteq$ the event that for any $v \in V$, every longest path in G contains $v \subseteq$ the event that every longest path contain every vertex, that means G has a Hamilton path. So as $n \rightarrow \infty$,

$$
\mathbb{P}_{r}(G \text { has a H-path }) \geq P_{r}\left(\cap_{v \in V}\left(A_{v}^{c} \cap B_{v}^{c}\right)\right) \geq 1-\sum_{v \in V}\left(P_{r}\left(A_{v}\right)+P_{r}\left(B_{v}\right)\right) \rightarrow 1,
$$

finishing the proof.
Theorem 1.11. Let $G=G(n, p)$, where $p=10 \log n / n$. Then G has a Hamilton cycle almost surely.

Proof. Let $H=G_{1} \cup G_{2}$, where $G_{i}=G\left(n, p_{i}\right)$. Let $p_{1}=9 \log n / n$ and $p_{2}=\log n / n$. This means $H=G(n, p)$ for $p=10 \log n / n-9(\log n / n)^{2}$. It suffices to show that H almost surely has a Hamilton cycle. By Lemma 1.10, G_{1} almost surely has a Hamilton path P. Let S be the set defined in Pósa's lemma(applied to G_{1}). By Lemma 1.9, almost surely $|S| \geq n / 4$. Let u be the fixed end point of the Hamilton path. The probability that u is non-adjacent to S in G_{2} is at most $\left(1-p_{2}\right)^{|S|} \leq e^{-p_{2} n / 4} \rightarrow 0$ (as $n \rightarrow+\infty$), in other words, almost surely u is adjacent to S in G_{2}. Therefore, almost surely H has a Hamilton cycle.

