Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by: HongJun Ge and Tianchi Yang

Apr 22nd 2020, Wednesday

1 Lecture 16. Randomized Constructions and Erdős-Renyi Poloairty

Kövari-Sós-Turán Theorem tells us that for any bipartite $H, \operatorname{ex}(n, H)=O\left(n^{2-c}\right)$. Now we will use Randomized construction, Algebraic construction, and Randomized Algebraic construction to find the lower bound of Turán numbers for bipartite graphs.

1.1 Randomized construction

Theorem 1.1. For any graph H with at least 2 edges, there exists a constant $c>0$ such that

$$
\operatorname{ex}(n, H) \geq c n^{2-\frac{v(H)-2}{e(H)-1}}
$$

Proof. The idea is to use random graphs and the deletion/alternation method. Consider a random graph $G=G(n, p)$ where $p=\frac{1}{2} n^{\frac{v(H)-2}{e(H)-1}}$. Let $\# H$ be the number of H-copies in G. Then

$$
\mathbb{E}[\# H]=\frac{n(n-1) \cdots(n-v(H)+1)}{|\operatorname{Aut}(H)|} p^{e(H)} \leq n^{v(H)} p^{e(H)} .
$$

Since $p=\frac{1}{2} n^{-\frac{v(H)-2}{e(H)-1}}$ and $\mathbb{E}[e(G)]=p\binom{n}{2}$, we get $\mathbb{E}[e(G)] \geq 2 \mathbb{E}[\# H]$, which implies that

$$
\mathbb{E}[e(G)-\# H] \geq \frac{1}{2} \mathbb{E}[e(G)] \geq \frac{1}{2} p\binom{n}{2} \geq \frac{1}{16} n^{2-\frac{v(H)-2}{e(H)-1}} .
$$

Thus there exists an n-vertex graph G with $e(G)-\# H \geq \frac{1}{16} n^{2-\frac{v(H)-2}{e(H)-1}}$.
Let G^{\prime} be obtained from G by deleting one edge for each copy of H in G. Then G^{\prime} is H-free and

$$
e\left(G^{\prime}\right) \geq e(G)-\# H \geq \frac{1}{16} n^{2-\frac{v(H)-2}{e(H)-1}}
$$

So

$$
e x(n, H) \geq e\left(G^{\prime}\right) \geq \frac{1}{16} n^{2-\frac{v(H)-2}{e(H)-1}}
$$

Definition 1.2. The 2-density of H is

$$
m_{2}(H)=\max _{\substack{H^{\prime} H \\ v\left(H^{\prime}\right) \geq 3}} \frac{e\left(H^{\prime}\right)-1}{v\left(H^{\prime}\right)-2}
$$

Theorem 1.3. For any H with at least 2 edges,

$$
\operatorname{ex}(n, H)=\Omega\left(n^{2-\frac{1}{m_{2}(H)}}\right) .
$$

Proof. The proof is similar to Theorem 1.1.
Let us look at some examples: if $H=K_{s, t}$ with $2 \leq s \leq t$, then

$$
n^{2-\frac{s+t-2}{s t-1}} \lesssim \operatorname{ex}\left(n, K_{s, t}\right) \lesssim n^{2-1 / s}
$$

In particular, when $s=t$,

$$
n^{2-1 /(s+1)} \lesssim \operatorname{ex}\left(n, K_{s, t}\right) \lesssim n^{2-1 / s} .
$$

1.2 Algebraic construction

For C_{4}, we have Reiman's bound:

$$
\operatorname{ex}\left(n, C_{4}\right) \leq \frac{n}{4}(1+\sqrt{4 n-3})=\left(\frac{1}{2}+o(1)\right) n^{\frac{3}{2}} .
$$

By using algebraic construction we can prove the following theorem.
Theorem 1.4. $\operatorname{ex}\left(n, C_{4}\right)=\left(\frac{1}{2}+o(1)\right) n^{3 / 2}$.
Proof. For a prime q, we first define the Erdös-Rényi polarity graph $E R_{q}$ as following:

- Its vertex set is $\left\{U: U\right.$ is 1 -dimension subspace in a 3-dimension space $\left.\mathbb{F}_{q}^{3}\right\}$.
- U, W are adjacent in $E R_{q}$ if and only if U and $W(U \neq W)$ are perpendicular as 1-dimension subspace.

Obviously $\left|V\left(E R_{q}\right)\right|=\frac{q^{3}-1}{q-1}=q^{2}+q+1$.
We see each vertex U has degree q or $q+1$, since there are exactly $\frac{q^{2}-1}{q-1}=q+1$ 1-dimension subspaces W perpendicular to U and it is possible $U \perp U$. Also $E R_{q}$ is C_{4}-free, because given any two vertices U, W, there is exactly one line L perpendicular to both U and W. Then we have

$$
e\left(E R_{q}\right) \geq \frac{1}{2} q\left(q^{2}+q+1\right)=\left(\frac{1}{2}+o(1)\right)\left|V\left(E R_{q}\right)\right|^{3 / 2}
$$

where $\left|V\left(E R_{q}\right)\right|=q^{2}+q+1$ for primes q. By the number theory we know that for any large integer n there exists a prime in the interval $\left[n-n^{0.525}, n\right]$. Thus there exists an n-vertex C_{4}-free graph with at least $\left.\frac{1}{2}+o(1)\right) n^{3 / 2}$ edges for any large n.

Remark 1.5. In $E R_{q}$ there are exactly $q+1$ vertices of degree q which implies $e\left(E R_{q}\right)=$ $\frac{1}{2} q(q+1)^{2}$.

Remark 1.6. We call vertex U is isotropic if $U \perp U$. Any isotropic vertex is not contained in any triangle of $E R_{q}$. No edges of $E R_{q}$ can join two isotropic vertices. And unless adjacent to the isotropic vertex each edge is in exactly one triangle.

Theorem 1.7 (Füredi). For large prime power q.

$$
\operatorname{ex}\left(q^{2}+q+1, C_{4}\right)=\frac{1}{2} q(q+1)^{2}
$$

where the $E R_{q}$ provides an extremal graph.
We also know the following bounds:

- (Füredi-Naor-Verstraete) $0.538 n^{\frac{4}{3}} \leq \operatorname{ex}\left(n, C_{6}\right) \leq 0.627 n^{\frac{4}{3}}$.
- (Lazebnik etal) $0.58 n^{6 / 5} \approx \frac{4}{5^{6 / 5}} n^{6 / 5} \leq \operatorname{ex}\left(n, C_{10}\right) \leq O\left(n^{6 / 5}\right)$.
- (Lazebnik etal) $\left(\left(\frac{1}{2}\right)^{3 / 2}+o(1)\right) n^{3 / 2} \leq \operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right) \leq\left(\frac{1}{2}+o(1)\right) n^{3 / 2}$.

Conjecture 1.8 (Erdős-Simonovits). $\left.\operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right) \leq\left(\frac{n}{2}\right)^{3 / 2}+o\left(n^{3 / 2}\right)\right)$
Definition 1.9. A Berge ℓ-cycle $B C_{\ell}$ in k-graphs is a k-graph consisting of ℓ distinct hyperedges $e_{1}, e_{2}, \ldots, e_{\ell}$ such that there are ℓ distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell}$ satisfying $v_{i} \in e_{i} \bigcap e_{i+1}$ for $1 \leq$ $i \leq l-1$ and $v_{l} \in e_{1} \bigcap e_{\ell}$.

Let $\operatorname{ex}_{k}(n, \mathcal{F})$ be the Turán number of \mathcal{F} in k-graph. For example $\operatorname{ex}_{k}\left(n, B C_{2}\right)=\binom{n}{2} /\binom{k}{2}+$ $o\left(n^{2}\right)$.

Theorem 1.10. $\Omega\left(n^{2-\epsilon}\right)=2^{-c \sqrt{l o g n}} n^{2} \leq e x_{3}\left(n, B C_{2}, B C_{3}\right)=o\left(n^{2}\right)$
Theorem 1.11 (Lazebnik-Verstraete). (i) $e x_{3}\left(n . B C_{2}, B C_{3}, B C_{4}\right) \leq \frac{n}{6} \sqrt{n-\frac{4}{3}}+\frac{n}{12}$.
(ii) There exists a 3-graph H on q^{2} vertices with $\binom{q+1}{3}$ edges which is $\left\{B C_{2}, B C_{3}, B C_{4}\right\}$-free where q is a prime. Thus ex $x_{3}\left(n,\left\{B C_{2}, B C_{3}, B C_{4}\right\}\right)=\left(\frac{1}{6}+o(1)\right) n^{\frac{3}{2}}$.
Proof. First, let H be a $\left\{B C_{2}, B C_{3}, B C_{4}\right\}$-free n-vertex 3 -graph. For any $v \in V(H)$ and edges A, B which contain v, let $v(A, B)$ be the set of $\{a, b\}$ where $a \in A-v$ and $b \in B-v$. Let $D_{v}=\underset{\{A, B\}: v \in A \cap B}{\bigcup} v(A, B)$. Then $\left|D_{v}\right|=4\binom{d_{v}}{2}$. Obviously we can get the following two claims.

- For $u \neq v$ we have $D_{u} \bigcap D_{v}=\emptyset$.
- No pair in D_{v} is contained in an edge.

Let $m=e(H)$, we have

$$
\binom{n}{2}-3 m \geq \sum_{v}\left|D_{v}\right|=4 \sum_{v}\binom{d_{v}}{2} \geq 4 n\binom{\sum_{v} d_{v} / n}{2}=2\left(\frac{9 m^{2}}{n}-3 m\right) .
$$

Thus

$$
e(H)=m \leq \frac{n}{6} \sqrt{n-\frac{4}{3}}+\frac{n}{12} .
$$

Next, for a prime q, consider $E R_{q}$. Let H be a 3-graph obtained from $E R_{q}$ such that $V(H)$ is the set of all non-isotropic vertices and any triangle in $E R_{q}$ forms an hyperedge. By Remark 1.6 , it is easy to see that H is $\left\{B C_{2}, B C_{3}, B C_{4}\right\}$-free with $V(H)=q^{2}+q+1-(q+1)=q^{2}$ and

$$
e(H)=\frac{e\left(E R_{q}\right)-q(q+1)}{3}=\frac{(q+1) q(q-1)}{6}=\binom{q+1}{3} .
$$

