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1 Lecture 16. Randomized Constructions and Erdős-Renyi
Poloairty

Kövari-Sós-Turán Theorem tells us that for any bipartite H, ex(n,H) = O(n2−c). Now we will
use Randomized construction, Algebraic construction, and Randomized Algebraic construction
to find the lower bound of Turán numbers for bipartite graphs.

1.1 Randomized construction
Theorem 1.1. For any graph H with at least 2 edges, there exists a constant c > 0 such that

ex(n,H) ≥ cn
2− v(H)−2

e(H)−1 .

Proof. The idea is to use random graphs and the deletion/alternation method. Consider a random
graph G = G(n, p) where p = 1

2n
v(H)−2
e(H)−1 . Let #H be the number of H-copies in G. Then

E[#H] =
n(n− 1) · · · (n− v(H) + 1)

|Aut(H)|
pe(H) ≤ nv(H)pe(H).

Since p = 1
2n

− v(H)−2
e(H)−1 and E[e(G)] = p

(
n
2

)
, we get E[e(G)] ≥ 2E[#H], which implies that

E[e(G)−#H] ≥ 1

2
E[e(G)] ≥ 1

2
p

(
n

2

)
≥ 1

16
n
2− v(H)−2

e(H)−1 .

Thus there exists an n-vertex graph G with e(G)−#H ≥ 1
16n

2− v(H)−2
e(H)−1 .

Let G′ be obtained from G by deleting one edge for each copy of H in G. Then G′ is H-free
and

e(G′) ≥ e(G)−#H ≥ 1

16
n
2− v(H)−2

e(H)−1 .

So
ex(n,H) ≥ e(G′) ≥ 1

16
n
2− v(H)−2

e(H)−1 .

Definition 1.2. The 2-density of H is

m2(H) = max
H′⊂H
v(H′)≥3

e(H ′)− 1

v(H ′)− 2
.
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Theorem 1.3. For any H with at least 2 edges,

ex(n,H) = Ω(n
2− 1

m2(H) ).

Proof. The proof is similar to Theorem 1.1.

Let us look at some examples: if H = Ks,t with 2 ≤ s ≤ t, then

n2− s+t−2
st−1 ≲ ex(n,Ks,t) ≲ n2−1/s.

In particular, when s = t,
n2−1/(s+1) ≲ ex(n,Ks,t) ≲ n2−1/s.

1.2 Algebraic construction
For C4, we have Reiman’s bound:

ex(n,C4) ≤
n

4
(1 +

√
4n− 3) = (

1

2
+ o(1))n

3
2 .

By using algebraic construction we can prove the following theorem.

Theorem 1.4. ex(n,C4) = (12 + o(1))n3/2.

Proof. For a prime q, we first define the Erdös-Rényi polarity graph ERq as following:

• Its vertex set is {U : U is 1-dimension subspace in a 3-dimension space F3
q}.

• U,W are adjacent in ERq if and only if U and W (U ̸= W ) are perpendicular as 1-dimension
subspace.

Obviously |V (ERq)| = q3−1
q−1 = q2 + q + 1.

We see each vertex U has degree q or q + 1, since there are exactly q2−1
q−1 = q + 1 1-dimension

subspaces W perpendicular to U and it is possible U ⊥ U . Also ERq is C4-free, because given
any two vertices U,W , there is exactly one line L perpendicular to both U and W . Then we have

e(ERq) ≥
1

2
q(q2 + q + 1) = (

1

2
+ o(1))|V (ERq)|3/2,

where |V (ERq)| = q2 + q + 1 for primes q. By the number theory we know that for any large
integer n there exists a prime in the interval [n−n0.525, n]. Thus there exists an n-vertex C4-free
graph with at least 1

2 + o(1))n3/2 edges for any large n.

Remark 1.5. In ERq there are exactly q + 1 vertices of degree q which implies e(ERq) =
1
2q(q + 1)2.

Remark 1.6. We call vertex U is isotropic if U ⊥ U . Any isotropic vertex is not contained in
any triangle of ERq. No edges of ERq can join two isotropic vertices. And unless adjacent to the
isotropic vertex each edge is in exactly one triangle.
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Theorem 1.7 (Füredi). For large prime power q.

ex(q2 + q + 1, C4) =
1

2
q(q + 1)2,

where the ERq provides an extremal graph.
We also know the following bounds:

• (Füredi-Naor-Verstraete) 0.538n
4
3 ≤ ex(n,C6) ≤ 0.627n

4
3 .

• (Lazebnik etal) 0.58n6/5 ≈ 4
56/5

n6/5 ≤ ex(n,C10) ≤ O(n6/5).

• (Lazebnik etal) ((12)
3/2 + o(1))n3/2 ≤ ex(n, {C3, C4}) ≤ (12 + o(1))n3/2.

Conjecture 1.8 (Erdős-Simonovits). ex(n, {C3, C4}) ≤ (n2 )
3/2 + o(n3/2))

Definition 1.9. A Berge ℓ-cycle BCℓ in k-graphs is a k-graph consisting of ℓ distinct hyperedges
e1, e2, . . . , eℓ such that there are ℓ distinct vertices v1, v2, . . . , vℓ satisfying vi ∈ ei

∩
ei+1 for 1 ≤

i ≤ l − 1 and vl ∈ e1
∩
eℓ.

Let exk(n,F) be the Turán number of F in k-graph. For example exk(n,BC2) =
(
n
2

)
/
(
k
2

)
+

o(n2).
Theorem 1.10. Ω(n2−ϵ) = 2−c

√
lognn2 ≤ ex3(n,BC2, BC3) = o(n2)

Theorem 1.11 (Lazebnik-Verstraete). (i) ex3(n.BC2, BC3, BC4) ≤ n
6

√
n− 4

3 + n
12 .

(ii) There exists a 3-graph H on q2 vertices with
(
q+1
3

)
edges which is {BC2, BC3, BC4}-free

where q is a prime. Thus ex3(n, {BC2, BC3, BC4}) = (16 + o(1))n
3
2 .

Proof. First, let H be a {BC2, BC3, BC4}-free n-vertex 3-graph. For any v ∈ V (H) and edges
A,B which contain v, let v(A,B) be the set of {a, b} where a ∈ A − v and b ∈ B − v. Let
Dv =

∪
{A,B}:v∈A

∩
B

v(A,B). Then |Dv| = 4
(
dv
2

)
. Obviously we can get the following two claims.

• For u ̸= v we have Du
∩
Dv = ∅.

• No pair in Dv is contained in an edge.
Let m = e(H), we have(

n

2

)
− 3m ≥

∑
v

|Dv| = 4
∑
v

(
dv
2

)
≥ 4n

(∑
v dv/n

2

)
= 2(

9m2

n
− 3m).

Thus
e(H) = m ≤ n

6

√
n− 4

3
+

n

12
.

Next, for a prime q, consider ERq. Let H be a 3-graph obtained from ERq such that V (H)
is the set of all non-isotropic vertices and any triangle in ERq forms an hyperedge. By Remark
1.6, it is easy to see that H is {BC2, BC3, BC4}-free with V (H) = q2 + q + 1− (q + 1) = q2 and

e(H) =
e(ERq)− q(q + 1)

3
=

(q + 1)q(q − 1)

6
=

(
q + 1

3

)
.
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