Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Yaobin Chen and Tianchi Yang

Apr 27th 2020, Monday

1 Lecture 17. Algebraic Constructions

1.1 New constructions of $\operatorname{ex}\left(n, C_{4}\right)$

Theorem 1.1 (Erdős-Renyi-Sos). $\operatorname{ex}\left(n, C_{4}\right) \geq\left(\frac{1}{2}-o(1)\right) n^{3 / 2}$
Proof. We have seen that the Erdös-Rényi polarity graphs $E R_{q}$ can give this lower bound. Now we give a different construction for C_{4}-free graphs which also yield the same lower bound.

Suppose $n=q^{2}-1$ for a prime q. Consider the following graph $G=(V, E)$, where $V=$ $F_{q}^{2} \backslash\{0,0\}, E=\left\{(x, y) \sim(a, b) \mid a x+b y=1\right.$ in $\left.F_{q}\right\}$. First, we see G is C_{4}-free: for any distinct vertices $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$, there is at most one solution(common neighbor) satisfying both $a x+$ $b y=1$ and $a^{\prime} x+b^{\prime} y=1$. It is easy to see that the degree of each vertex is q or $q-1$. So $e(G) \geq \frac{1}{2}\left(q^{2}-1\right)(q-1) \approx\left(\frac{1}{2}-o(1)\right) n^{3 / 2}$ (where $\left.n=q^{2}-1\right)$. Since primes are dense in integer, we can get ex $\left(n, C_{4}\right) \geq\left(\frac{1}{2}-o(1)\right) n^{3 / 2}$.

Remark 1.2. One can generalize this this to $K_{2, t}-$ free graphs.

1.2 Constructions of ex $\left(n, K_{3,3}\right)$

Theorem 1.3 (Brown).

$$
\operatorname{ex}\left(n, K_{3,3}\right) \geq \frac{1}{2} n^{5 / 3}+O\left(n^{4 / 3}\right)
$$

Proof. Let $n=q^{3}$ for some odd prime q. Consider the following G : $V(G)=F_{q}^{3}$ and $E(G)=$ $\left\{(x, y, z) \sim(a, b, c) \mid(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=d\right.$ in $\left.F_{q}\right\}$, where $d \neq 0$ is a quadratic residue ${ }^{1}$ if $q=4 k-1$ and d is a quadratic non-residue if $q=4 k-3$.

One can check that G is $K_{3,3}-\mathrm{free}$. We should omit the detailed proof, instead we give the following intuition : The $K_{3,3}$-freeness is equivalent to the statement that any 3 unit spheres have at most two common points. It is not hard to see that most vertices (x, y, z) have around q^{2} neighbors. Thus we have $e(G) \geq \frac{1}{2} q^{3} q^{2} \approx\left(\frac{1}{2}-o(1)\right) n^{5 / 3}$ when $n=q^{3}$.

Note that the best upper bound is due to Füredi: $\operatorname{ex}\left(n, K_{3,3}\right) \leq \frac{1}{2} n^{5 / 3}+n^{4 / 3}+3 n$.
Lemma 1.4. Let K be a field and $a_{i j}, b_{i} \in K$ for $1 \leq i, j \leq 2$ such that $a_{1 j} \neq a_{2 j}$. Then the system of equations

$$
\left\{\begin{array}{l}
\left(x_{1}-a_{11}\right)\left(x_{2}-a_{12}\right)=b_{1} \\
\left(x_{1}-a_{21}\right)\left(x_{2}-a_{22}\right)=b_{2}
\end{array}\right.
$$

has at most two solutions $\left(x_{1}, x_{2}\right) \in K \times K$.

[^0]Proof. Considering the difference of two equations, we get $\left(a_{11}-a_{21}\right) x_{2}+\left(a_{12}-a_{22}\right) x_{1}+a_{21} a_{22}-$ $a_{11} a_{12}=b_{2}-b_{1}$. Since $a_{11}-a_{21} \neq 0$, we can express x_{1} by an expression of x_{2}. Substituting this expression to any one of the equation, we get a quadratic equation in the variable x_{2}. It has at most two solutions for x_{2}, each of which determines the valus of x_{1}. So we have at most two solutions $\left(x_{1}, x_{2}\right) \in K \times K$.

Lemma 1.5. Let K be a field with characteristic q. Then any $x, y \in K$ satisfy $(x+y)^{q}=x^{q}+y^{q}$
Definition 1.6. Let q be a prime. The norm map N is: $F_{q^{s}} \rightarrow F_{q}$ by $N(x)=x x^{q} x^{q^{2}} \ldots x^{q^{s}-1}$, for $x \in F_{q^{s}}$.

Note that since $x^{q^{s}}=x$ for any $x \in F_{q^{s}}$, we have $(N(x))^{q}=x^{q} x^{q^{2}} \ldots x^{q^{s}}=N(x)$, then $N(x) \in F_{q}$.
Theorem 1.7 (Alon-Rónyai-Szabó). For every $n=q^{3}-q^{2}$ with prime power q,

$$
\operatorname{ex}\left(n, K_{3,3}\right) \geq \frac{1}{2} n^{5 / 3}+\frac{1}{3} n^{4 / 3}+C .
$$

Proof. Let $N: F_{q^{s}} \rightarrow F_{q}$ be the norm map. The graph $H=H(q, 3)$ is as follows. The vertex set of H is $F_{q^{2}} \times F_{q}^{*}$. Two vertices (A, a) and (B, b) in $V(H)$ are adjacent if and only if $N(A+B)=a \cdot b$. The degree of each vertex $(A, a) \in V(H)$ is the number of pairs (B, b) with $N(A+B)=a b$. For any $B \neq-A$, we can have a unique b. So the degree of (A, a) is $q^{2}-1$ or $q^{2}-2$, as $N(A+A)=a^{2}$ may happen.

Now it suffices to show H is $K_{3,3}$-free, which is enough to show that for any three distinct vertices $\left(D_{i}, d_{i}\right)$ with $i \in[3]$, they have at most 2 common neighbors. That is, the system of equations:

$$
\left\{\begin{array}{l}
N\left(X+D_{1}\right)=x d_{1} \tag{1.1}\\
N\left(X+D_{2}\right)=x d_{2} \\
N\left(X+D_{3}\right)=x d_{3}
\end{array}\right.
$$

has at most 2 solutions $(X, x) \in F_{q^{2}} \times F_{q}^{*}$. Observe that if (X, x) is a solution, then:

1) $X \neq-D_{i}$, for $i \in[3]$, and
2) $D_{i} \neq D_{j}$, for $i \neq j$.

Divide equations 1.1 and 1.2 by equation 1.3 , we can get

$$
\frac{d_{i}}{d_{3}}=\frac{N\left(X+D_{i}\right)}{N\left(X+D_{3}\right)}=N\left(\frac{X+D_{i}}{X+D_{3}}\right)=N\left(1+\frac{D_{i}-D_{3}}{X+D_{3}}\right), \text { for } i=1,2 .
$$

Let $Y=\frac{1}{X+D_{3}}, A_{i}=\frac{1}{D_{i}-D_{3}}$, and $b_{i}=\frac{d_{i}}{d_{3} N\left(D_{i}-D_{3}\right)}, i \in[2]$. Then,

$$
\left\{\begin{array}{l}
\left(Y+A_{1}\right)\left(Y^{q}+A_{1}^{q}\right)=N\left(Y+A_{1}\right)=b_{1} \\
\left(Y+A_{2}\right)\left(Y^{q}+A_{2}^{q}\right)=N\left(Y+A_{2}\right)=b_{2}
\end{array}\right.
$$

It is clear that $A_{1} \neq A_{2}$ and $A_{1}^{q} \neq A_{2}^{q}$. Then by lemma 1.4, this system has at most 2 solutions $\left(Y, Y^{q}\right)$. Therefore, we have at most two pairs of (X, x).

1.3 Construction of $\operatorname{ex}\left(n, K_{s, t}\right)$

Lemma 1.8. Let K be a filed and $a_{i j}, b_{i} \in K$ for $1 \leq i, j \leq s$ such that $a_{i_{1}, j} \neq a_{i_{2}, j}$ for $i_{1} \neq i_{2}$. Then the system

$$
\left\{\begin{array}{c}
\left(X_{1}-a_{11}\right)\left(X_{2}-a_{12}\right) \ldots\left(X_{s}-a_{1 s}\right)=b_{1} \\
\left(X_{1}-a_{21}\right)\left(X_{2}-a_{22}\right) \ldots\left(X_{s}-a_{2 s}\right)=b_{2} \\
\ldots \\
\left(X_{1}-a_{t 1}\right)\left(X_{2}-a_{s 2}\right) \ldots\left(X_{s}-a_{s s}\right)=b_{s}
\end{array}\right.
$$

has at most s! solutions $\left(x_{1}, x_{2}, \ldots, x_{s}\right) \in K^{s}$.
Proof. Omit
Definition 1.9. Let q be a prime. The norm-graph $G=G(q, s)$ is as follows: $V(H)=F_{q^{s}}$ and two vertices A, B are adjacent if and only if $N(A+B)=1$, where $N: F_{q^{s}} \rightarrow F_{q}$ is the norm map.

Theorem 1.10 (Kollár-Rónyai-Szabó). Graph $G(q, s)$ is $K_{s, s!+1-f r e e . ~ T h e r e f o r e, ~ f o r ~} t \geq s!+1$,

$$
\operatorname{ex}\left(n, K_{s, t}\right)=\Theta\left(n^{2-1 / s}\right)
$$

Proof. It suffices to show that any s vertices $d_{1}, d_{2} \ldots d_{s}$ have at most s ! common neighbors. That is, the system

$$
\left\{\begin{array}{c}
N\left(X+d_{1}\right)=1 \\
N\left(X+d_{2}\right)=1 \\
\cdots \\
N\left(X+d_{s}\right)=1
\end{array}\right.
$$

has at most s ! solutions. Then

$$
\left\{\begin{array}{c}
1=\left(x+d_{1}\right)\left(x+d_{1}\right)^{q} \ldots\left(x+d_{1}\right)^{q_{s-1}} \\
1=\left(x+d_{2}\right)\left(x+d_{2}\right)^{q} \ldots\left(x+d_{2}\right)^{q_{s-1}} \\
\quad \cdots \\
1=\left(x+d_{s}\right)\left(x+d_{s}\right)^{q} \ldots\left(x+d_{s}\right)^{q_{s-1}} .
\end{array}\right.
$$

Let $x_{j}=x^{q^{j-1}}$ for $j \in[s]$ and $a_{i j}=-d_{j}^{q^{i-1}}$. Then we have the system in Lemma 1.8. So G is $K_{s, s+1}$-free. Also, since the number of solutions in $F_{q^{s}}$ for the equation $N(x)=1$ is $\frac{q^{s}-1}{q-1}$, the minimum degree $\delta(G)$ is at least $\frac{q^{s}-1}{q-1}-1 \geq q^{s-1}$. Thus, when $n=q^{s}, e(G) \geq \frac{1}{2} q^{s} \cdot q^{s-1} \geq \frac{1}{2} n^{2-1 / s}$.

Definition 1.11. For a prime q, the projective norm graph $H=H(q, s)$ is as follows: $V(H)=$ $F_{q^{s-1}} \times F_{q}^{*}$ and two vertices $(A, a),(B, b) \in V(H)$ are adjacent if and only if $N(A+B)=a \cdot b$, where $N: F_{q^{s-1}} \rightarrow F_{q}$ is the norm map.

Theorem 1.12 (Alon-Rónyai-Szabó). $H(q, s)$ is $K_{s,(s-1)!+1}-$ free. Therefore, for $t \geq(s-1)!+1$,

$$
\operatorname{ex}\left(n, K_{s, t}\right)=\Theta\left(n^{2-1 / s}\right) .
$$

Proof. Exercise (similar to the proof of Theorem 1.7 for $H(q, 3)$).

[^0]: ${ }^{1}$ there is an integer x such that $x^{2} \equiv d(\bmod q)$.

