Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Yaobin Chen and Tianchi Yang

Apr 27th 2020, Monday

1 Lecture 17. Algebraic Constructions

1.1 New constructions of $ex(n, C_4)$

Theorem 1.1 (Erdős-Renyi-Sos). $ex(n, C_4) \ge (\frac{1}{2} - o(1))n^{3/2}$

Proof. We have seen that the Erdös-Rényi polarity graphs ER_q can give this lower bound. Now we give a different construction for C_4 -free graphs which also yield the same lower bound.

Suppose $n = q^2 - 1$ for a prime q. Consider the following graph G = (V, E), where $V = F_q^2 \setminus \{0, 0\}$, $E = \{(x, y) \sim (a, b) | ax + by = 1 \text{ in } F_q\}$. First, we see G is C_4 -free: for any distinct vertices $(a, b) \neq (a', b')$, there is at most one solution(common neighbor) satisfying both ax + by = 1 and a'x + b'y = 1. It is easy to see that the degree of each vertex is q or q - 1. So $e(G) \geq \frac{1}{2}(q^2 - 1)(q - 1) \approx (\frac{1}{2} - o(1))n^{3/2}$ (where $n = q^2 - 1$). Since primes are dense in integer, we can get $ex(n, C_4) \geq (\frac{1}{2} - o(1))n^{3/2}$.

Remark 1.2. One can generalize this to $K_{2,t}$ -free graphs.

1.2 Constructions of $ex(n, K_{3,3})$

Theorem 1.3 (Brown).

$$\exp(n, K_{3,3}) \ge \frac{1}{2}n^{5/3} + O(n^{4/3}).$$

Proof. Let $n = q^3$ for some odd prime q. Consider the following G: $V(G) = F_q^3$ and $E(G) = \{(x, y, z) \sim (a, b, c) | (x - a)^2 + (y - b)^2 + (z - c)^2 = d \text{ in } F_q\}$, where $d \neq 0$ is a quadratic residue¹ if q = 4k - 1 and d is a quadratic non-residue if q = 4k - 3.

One can check that G is $K_{3,3}$ -free. We should omit the detailed proof, instead we give the following intuition : The $K_{3,3}$ -freeness is equivalent to the statement that any 3 unit spheres have at most two common points. It is not hard to see that most vertices (x, y, z) have around q^2 neighbors. Thus we have $e(G) \geq \frac{1}{2}q^3q^2 \approx (\frac{1}{2} - o(1))n^{5/3}$ when $n = q^3$.

Note that the best upper bound is due to Füredi: $ex(n, K_{3,3}) \leq \frac{1}{2}n^{5/3} + n^{4/3} + 3n$.

Lemma 1.4. Let K be a field and $a_{ij}, b_i \in K$ for $1 \leq i, j \leq 2$ such that $a_{1j} \neq a_{2j}$. Then the system of equations

$$\begin{cases} (x_1 - a_{11})(x_2 - a_{12}) = b_1\\ (x_1 - a_{21})(x_2 - a_{22}) = b_2 \end{cases}$$

has at most two solutions $(x_1, x_2) \in K \times K$.

¹there is an integer \overline{x} such that $x^2 \equiv d \pmod{q}$.

Proof. Considering the difference of two equations, we get $(a_{11} - a_{21})x_2 + (a_{12} - a_{22})x_1 + a_{21}a_{22} - a_{11}a_{12} = b_2 - b_1$. Since $a_{11} - a_{21} \neq 0$, we can express x_1 by an expression of x_2 . Substituting this expression to any one of the equation, we get a quadratic equation in the variable x_2 . It has at most two solutions for x_2 , each of which determines the value of x_1 . So we have at most two solutions $(x_1, x_2) \in K \times K$.

Lemma 1.5. Let K be a field with characteristic q. Then any $x, y \in K$ satisfy $(x+y)^q = x^q + y^q$

Definition 1.6. Let q be a prime. The norm map N is: $F_{q^s} \to F_q$ by $N(x) = xx^q x^{q^2} \dots x^{q^{s-1}}$, for $x \in F_{q^s}$.

Note that since $x^{q^s} = x$ for any $x \in F_{q^s}$, we have $(N(x))^q = x^q x^{q^2} \dots x^{q^s} = N(x)$, then $N(x) \in F_q$.

Theorem 1.7 (Alon-Rónyai-Szabó). For every $n = q^3 - q^2$ with prime power q,

$$ex(n, K_{3,3}) \ge \frac{1}{2}n^{5/3} + \frac{1}{3}n^{4/3} + C.$$

Proof. Let $N: F_{q^s} \to F_q$ be the norm map. The graph H = H(q, 3) is as follows. The vertex set of H is $F_{q^2} \times F_q^*$. Two vertices (A, a) and (B, b) in V(H) are adjacent if and only if $N(A+B) = a \cdot b$. The degree of each vertex $(A, a) \in V(H)$ is the number of pairs (B, b) with N(A + B) = ab. For any $B \neq -A$, we can have a unique b. So the degree of (A, a) is $q^2 - 1$ or $q^2 - 2$, as $N(A + A) = a^2$ may happen.

Now it suffices to show H is $K_{3,3}$ -free, which is enough to show that for any three distinct vertices (D_i, d_i) with $i \in [3]$, they have at most 2 common neighbors. That is, the system of equations:

$$\int N(X+D_1) = xd_1$$
 (1.1)

$$N(X+D_2) = xd_2$$
 (1.2)

$$N(X + D_3) = xd_3 (1.3)$$

has at most 2 solutions $(X, x) \in F_{q^2} \times F_q^*$. Observe that if (X, x) is a solution, then:

- 1) $X \neq -D_i$, for $i \in [3]$, and
- 2) $D_i \neq D_j$, for $i \neq j$.

Divide equations 1.1 and 1.2 by equation 1.3, we can get

$$\frac{d_i}{d_3} = \frac{N(X+D_i)}{N(X+D_3)} = N\left(\frac{X+D_i}{X+D_3}\right) = N\left(1 + \frac{D_i - D_3}{X+D_3}\right), \text{ for } i = 1, 2.$$

Let $Y = \frac{1}{X+D_3}, A_i = \frac{1}{D_i - D_3}, \text{ and } b_i = \frac{d_i}{d_3 N(D_i - D_3)}, i \in [2].$ Then,
$$\begin{cases} (Y+A_1)(Y^q + A_1^q) = N(Y+A_1) = b_1\\ (Y+A_2)(Y^q + A_2^q) = N(Y+A_2) = b_2 \end{cases}$$

It is clear that $A_1 \neq A_2$ and $A_1^q \neq A_2^q$. Then by lemma 1.4, this system has at most 2 solutions (Y, Y^q) . Therefore, we have at most two pairs of (X, x).

1.3 Construction of $ex(n, K_{s,t})$

Lemma 1.8. Let K be a filed and $a_{ij}, b_i \in K$ for $1 \leq i, j \leq s$ such that $a_{i_1,j} \neq a_{i_2,j}$ for $i_1 \neq i_2$. Then the system

$$\begin{cases} (X_1 - a_{11})(X_2 - a_{12})\dots(X_s - a_{1s}) = b_1 \\ (X_1 - a_{21})(X_2 - a_{22})\dots(X_s - a_{2s}) = b_2 \\ \dots \\ (X_1 - a_{t1})(X_2 - a_{s2})\dots(X_s - a_{ss}) = b_s \end{cases}$$

has at most s! solutions $(x_1, x_2, \ldots, x_s) \in K^s$.

Proof. Omit

Definition 1.9. Let q be a prime. The norm-graph G = G(q, s) is as follows: $V(H) = F_{q^s}$ and two vertices A, B are adjacent if and only if N(A+B) = 1, where $N : F_{q^s} \to F_q$ is the norm map.

Theorem 1.10 (Kollár-Rónyai-Szabó). Graph G(q, s) is $K_{s,s!+1}$ -free. Therefore, for $t \ge s! + 1$,

$$\operatorname{ex}(n, K_{s,t}) = \Theta(n^{2-1/s}).$$

Proof. It suffices to show that any s vertices $d_1, d_2 \dots d_s$ have at most s! common neighbors. That is, the system

$$\begin{cases} N(X + d_1) = 1\\ N(X + d_2) = 1\\ \dots\\ N(X + d_s) = 1 \end{cases}$$

has at most s! solutions. Then

$$\begin{cases} 1 = (x+d_1)(x+d_1)^q \dots (x+d_1)^{q_{s-1}} \\ 1 = (x+d_2)(x+d_2)^q \dots (x+d_2)^{q_{s-1}} \\ \dots \\ 1 = (x+d_s)(x+d_s)^q \dots (x+d_s)^{q_{s-1}}. \end{cases}$$

Let $x_j = x^{q^{j-1}}$ for $j \in [s]$ and $a_{ij} = -d_j^{q^{i-1}}$. Then we have the system in Lemma 1.8. So G is $K_{s,s+1}$ -free. Also, since the number of solutions in F_{q^s} for the equation N(x) = 1 is $\frac{q^s-1}{q-1}$, the minimum degree $\delta(G)$ is at least $\frac{q^s-1}{q-1} - 1 \ge q^{s-1}$. Thus, when $n = q^s$, $e(G) \ge \frac{1}{2}q^s \cdot q^{s-1} \ge \frac{1}{2}n^{2-1/s}$.

Definition 1.11. For a prime q, the projective norm graph H = H(q, s) is as follows: $V(H) = F_{q^{s-1}} \times F_q^*$ and two vertices $(A, a), (B, b) \in V(H)$ are adjacent if and only if $N(A + B) = a \cdot b$, where $N : F_{q^{s-1}} \to F_q$ is the norm map.

Theorem 1.12 (Alon-Rónyai-Szabó). H(q, s) is $K_{s,(s-1)!+1}$ -free. Therefore, for $t \ge (s-1)!+1$,

$$\operatorname{ex}(n, K_{s,t}) = \Theta(n^{2-1/s}).$$

Proof. Exercise (similar to the proof of Theorem 1.7 for H(q, 3)).