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1 Lecture 17. Algebraic Constructions

1.1 New constructions of ex(n,C4)

Theorem 1.1 (Erdős-Renyi-Sos). ex(n,C4) ≥ (12 − o(1))n3/2

Proof. We have seen that the Erdös-Rényi polarity graphs ERq can give this lower bound. Now
we give a different construction for C4-free graphs which also yield the same lower bound.

Suppose n = q2 − 1 for a prime q. Consider the following graph G = (V,E), where V =
F 2
q \{0, 0}, E = {(x, y) ∼ (a, b)|ax + by = 1 in Fq}. First, we see G is C4-free: for any distinct

vertices (a, b) 6= (a′, b′), there is at most one solution(common neighbor) satisfying both ax +
by = 1 and a′x + b′y = 1. It is easy to see that the degree of each vertex is q or q − 1. So
e(G) ≥ 1

2(q2 − 1)(q − 1) ≈ (12 − o(1))n3/2 (where n = q2 − 1). Since primes are dense in integer,

we can get ex(n,C4) ≥ (12 − o(1))n3/2.

Remark 1.2. One can generalize this this to K2,t-free graphs.

1.2 Constructions of ex(n,K3,3)

Theorem 1.3 (Brown).

ex(n,K3,3) ≥
1

2
n5/3 +O(n4/3).

Proof. Let n = q3 for some odd prime q. Consider the following G: V (G) = F 3
q and E(G) =

{(x, y, z) ∼ (a, b, c)|(x− a)2 + (y − b)2 + (z − c)2 = d in Fq}, where d 6= 0 is a quadratic residue1

if q = 4k − 1 and d is a quadratic non-residue if q = 4k − 3.
One can check that G is K3,3-free. We should omit the detailed proof, instead we give the

following intuition : The K3,3-freeness is equivalent to the statement that any 3 unit spheres have
at most two common points. It is not hard to see that most vertices (x, y, z) have around q2

neighbors. Thus we have e(G) ≥ 1
2q

3q2 ≈ (12 − o(1))n5/3 when n = q3.

Note that the best upper bound is due to Füredi: ex(n,K3,3) ≤ 1
2n

5/3 + n4/3 + 3n.

Lemma 1.4. Let K be a field and aij , bi ∈ K for 1 ≤ i, j ≤ 2 such that a1j 6= a2j. Then the
system of equations {

(x1 − a11)(x2 − a12) = b1

(x1 − a21)(x2 − a22) = b2

has at most two solutions (x1, x2) ∈ K ×K.

1there is an integer x such that x2 ≡ d (mod q).
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Proof. Considering the difference of two equations, we get (a11−a21)x2 +(a12−a22)x1 +a21a22−
a11a12 = b2 − b1. Since a11 − a21 6= 0, we can express x1 by an expression of x2. Substituting
this expression to any one of the equation, we get a quadratic equation in the variable x2. It has
at most two solutions for x2, each of which determines the valus of x1. So we have at most two
solutions (x1, x2) ∈ K ×K.

Lemma 1.5. Let K be a field with characteristic q. Then any x, y ∈ K satisfy (x+y)q = xq +yq

Definition 1.6. Let q be a prime. The norm map N is: Fqs → Fq by N(x) = xxqxq
2
. . . xq

s−1,
for x ∈ Fqs .

Note that since xq
s

= x for any x ∈ Fqs , we have (N(x))q = xqxq
2
. . . xq

s
= N(x), then

N(x) ∈ Fq.

Theorem 1.7 (Alon-Rónyai-Szabó). For every n = q3 − q2 with prime power q,

ex(n,K3,3) ≥
1

2
n5/3 +

1

3
n4/3 + C.

Proof. Let N : Fqs → Fq be the norm map. The graph H = H(q, 3) is as follows. The vertex set of
H is Fq2×F ∗q . Two vertices (A, a) and (B, b) in V (H) are adjacent if and only if N(A+B) = a ·b.
The degree of each vertex (A, a) ∈ V (H) is the number of pairs (B, b) with N(A+B) = ab. For
any B 6= −A, we can have a unique b. So the degree of (A, a) is q2−1 or q2−2, as N(A+A) = a2

may happen.
Now it suffices to show H is K3,3-free, which is enough to show that for any three distinct

vertices (Di, di) with i ∈ [3], they have at most 2 common neighbors. That is, the system of
equations: 

N(X +D1) = xd1 (1.1)

N(X +D2) = xd2 (1.2)

N(X +D3) = xd3 (1.3)

has at most 2 solutions (X,x) ∈ Fq2 × F ∗q . Observe that if (X,x) is a solution, then:

1) X 6= −Di, for i ∈ [3], and

2) Di 6= Dj , for i 6= j.

Divide equations 1.1 and 1.2 by equation 1.3, we can get

di
d3

=
N(X +Di)

N(X +D3)
= N

(
X +Di

X +D3

)
= N

(
1 +

Di −D3

X +D3

)
, for i = 1, 2.

Let Y = 1
X+D3

, Ai = 1
Di−D3

, and bi = di
d3N(Di−D3)

, i ∈ [2]. Then,{
(Y +A1)(Y

q +Aq
1) = N(Y +A1) = b1

(Y +A2)(Y
q +Aq

2) = N(Y +A2) = b2

It is clear that A1 6= A2 and Aq
1 6= Aq

2. Then by lemma 1.4, this system has at most 2 solutions
(Y, Y q). Therefore, we have at most two pairs of (X,x).

.
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1.3 Construction of ex(n,Ks,t)

Lemma 1.8. Let K be a filed and aij , bi ∈ K for 1 ≤ i, j ≤ s such that ai1,j 6= ai2,j for i1 6= i2.
Then the system 

(X1 − a11)(X2 − a12) . . . (Xs − a1s) = b1

(X1 − a21)(X2 − a22) . . . (Xs − a2s) = b2

· · ·
(X1 − at1)(X2 − as2) . . . (Xs − ass) = bs

has at most s! solutions (x1, x2, . . . , xs) ∈ Ks.

Proof. Omit

Definition 1.9. Let q be a prime. The norm-graph G = G(q, s) is as follows: V (H) = Fqs and
two vertices A,B are adjacent if and only if N(A+B) = 1, where N : Fqs → Fq is the norm map.

Theorem 1.10 (Kollár-Rónyai-Szabó). Graph G(q, s) is Ks,s!+1-free. Therefore, for t ≥ s! + 1,

ex(n,Ks,t) = Θ(n2−1/s).

Proof. It suffices to show that any s vertices d1, d2 . . . ds have at most s! common neighbors. That
is, the system 

N(X + d1) = 1

N(X + d2) = 1

· · ·
N(X + ds) = 1

has at most s! solutions. Then
1 = (x+ d1)(x+ d1)

q . . . (x+ d1)
qs−1

1 = (x+ d2)(x+ d2)
q . . . (x+ d2)

qs−1

· · ·
1 = (x+ ds)(x+ ds)

q . . . (x+ ds)
qs−1 .

Let xj = xq
j−1

for j ∈ [s] and aij = −dq
i−1

j . Then we have the system in Lemma 1.8. So G is

Ks,s+1-free. Also, since the number of solutions in Fqs for the equation N(x) = 1 is qs−1
q−1 , the

minimum degree δ(G) is at least qs−1
q−1 −1 ≥ qs−1. Thus, when n = qs, e(G) ≥ 1

2q
s ·qs−1 ≥ 1

2n
2−1/s.

Definition 1.11. For a prime q, the projective norm graph H = H(q, s) is as follows: V (H) =
Fqs−1 × F ∗q and two vertices (A, a), (B, b) ∈ V (H) are adjacent if and only if N(A + B) = a · b,
where N : Fqs−1 → Fq is the norm map.

Theorem 1.12 (Alon-Rónyai-Szabó). H(q, s) is Ks,(s−1)!+1-free. Therefore, for t ≥ (s− 1)! + 1,

ex(n,Ks,t) = Θ(n2−1/s).

Proof. Exercise (similar to the proof of Theorem 1.7 for H(q, 3)).
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