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1 Lecture 17. Algebraic Constructions

1.1 New constructions of ex(n, Cy)
Theorem 1.1 (Erdés-Renyi-Sos). ex(n,Cy) > (3 — o(1))n?/?

Proof. We have seen that the Erdos-Rényi polarity graphs FR, can give this lower bound. Now
we give a different construction for Cy-free graphs which also yield the same lower bound.
Suppose n = ¢> — 1 for a prime q. Consider the following graph G = (V, E), where V =
Fg\{0,0}, E = {(z,y) ~ (a,b)lax + by = 1 in F,;}. First, we see G is Cy-free: for any distinct
vertices (a,b) # (a’,V'), there is at most one solution(common neighbor) satisfying both az +
by = 1 and d’z + 'y = 1. It is easy to see that the degree of each vertex is ¢ or ¢ — 1. So
e(G) > 3(¢®> — 1)(g — 1) = (3 — o(1))n*/? (where n = ¢ — 1). Since primes are dense in integer,
we can get ex(n,Cy) > (% o(1))n?/2. ]

Remark 1.2. One can generalize this this to Kj-free graphs.

1.2 Constructions of ex(n, K 3)

Theorem 1.3 (Brown).
1
ex(n, K33) > 5715/3 +O0(n*?).

Proof. Let n = ¢ for some odd prime g. Consider the following G: V(G) = Fq3 and E(G) =
{(z,y,2) ~ (a,b,¢)|(x —a)? + (y — b)? + (2 — ¢)?> = d in F,}, where d # 0 is a quadratic residue!
if ¢ =4k — 1 and d is a quadratic non-residue if ¢ = 4k — 3.

One can check that G is K3 3-free. We should omit the detailed proof, instead we give the
following intuition : The K3 3-freeness is equivalent to the statement that any 3 unit spheres have
at most two common points. It is not hard to see that most vertices (x,y,z) have around ¢>
neighbors. Thus we have e(G) > 3¢%¢*> = (3 — 0o(1))n/® when n = ¢°. ]

Note that the best upper bound is due to Fiiredi: ex(n, K33) < %ng‘/?’ +n4/3 + 3n.

Lemma 1.4. Let K be a field and a;j,b; € K for 1 < i,5 < 2 such that ai1j # azj. Then the
system of equations

{ (r1 —a11)(z2 —ai2) = by

(x1 — a21)(x2 — az) = by

has at most two solutions (x1,x2) € K X K.

'there is an integer x such that > = d (mod q).



Proof. Considering the difference of two equations, we get (a11 — ag1)z2 + (a12 — age)x1 + azia9 —
ai1a12 = ba — by. Since a1 — a9 # 0, we can express 1 by an expression of zo. Substituting
this expression to any one of the equation, we get a quadratic equation in the variable zo. It has
at most two solutions for x5, each of which determines the valus of x;. So we have at most two
solutions (x1,z2) € K x K. ]

Lemma 1.5. Let K be a field with characteristic q. Then any x,y € K satisfy (x +y)? = 294y

Definition 1.6. Let ¢ be a prime. The norm map N is: Fys — F, by N(z) = zaxiz? . T,
for x € Fys.

Note that since ¢ = x for any x € Fjs, we have (N(z))? = 2927 .29 = N(z), then
N(z) € Fy,.

Theorem 1.7 (Alon-Rényai-Szabd). For every n = ¢> — ¢* with prime power g,
1 1
ex(n, K373) > 5715/3 + §n4/3 +C.

Proof. Let N : Fys — F, be the norm map. The graph H = H(q, 3) is as follows. The vertex set of
H is Fp x Fy. Two vertices (4,a) and (B,b) in V(H) are adjacent if and only if N(A+ B) = a-b.
The degree of each vertex (A,a) € V(H) is the number of pairs (B,b) with N(A + B) = ab. For
any B # — A, we can have a unique b. So the degree of (4,a)is ¢> —1 or ¢ —2, as N(A+ A) = a?
may happen.

Now it suffices to show H is K3 3-free, which is enough to show that for any three distinct
vertices (D;,d;) with ¢ € [3], they have at most 2 common neighbors. That is, the system of
equations:

N(X + Dy) = zdy (1.1)
N(X + D9) = xdy
N(X + D3) = xds

has at most 2 solutions (X, x) € Fyz x F;. Observe that if (X, ) is a solution, then:
1) X # —D;, for i € [3], and
2) DZ 75 Dj, for ¢ 75]

Divide equations 1.1 and 1.2 by equation 1.3, we can get

d; N(X + D) (X—FDZ) < Di—Dg) .
=Y _N =N|[14+———], fori=1,2.
d3s N(X + D3) X+ D3 X + Ds
_ 1 _ 1 _ d; .
Let Y = X+D3’Ai = D.—D3’ and bz = m,@ S [2] Then,

Y+A)YI+A)=NY +A) =b
(Y + Ag) (Y2 + AD) = N(Y + As) = by

It is clear that Ay # As and A? # A% Then by lemma 1.4, this system has at most 2 solutions
(Y,Y?). Therefore, we have at most two pairs of (X, x). ]



1.3 Construction of ex(n, K;;)

Lemma 1.8. Let K be a filed and a;j,b; € K for 1 <i,j < s such that a;, j # ai,; for i1 # ia.
Then the system
(X1 — an)(XQ — alg) e (Xs — (115) = b1

(X1 —a21)(X2 —a2) ... (Xs — azs) = by

(Xl — aﬂ)(XQ — CLSQ) . (Xs — ass) = bs
has at most s! solutions (x1,z2,...,xs) € K*.
Proof. Omit 1

Definition 1.9. Let q be a prime. The norm-graph G = G(q, s) is as follows: V(H) = F,;s and
two vertices A, B are adjacent if and only if N(A+ B) = 1, where N : Fys — F, is the norm map.

Theorem 1.10 (Kollar-Rényai-Szabd). Graph G(q,s) is K, s141-free. Therefore, fort > s! +1,
ex(n, Kst) = @(n2_1/8).

Proof. 1t suffices to show that any s vertices di,ds . .. ds have at most s! common neighbors. That
is, the system

NX+dy)=1
N(X +dg) =1

has at most s! solutions. Then

l=(x+d)(x+d)?...(x+dy)%?
l=(x+do)(x+d2)?...(x+dy)¥!

l=(z+ds)(x+ds)?...(x+ds)%1.

o i—1

Let x; = 2 "for j e [s] and a;; = —d? . Then we have the system in Lemma 1.8. So G is
K sy1-free. Also, since the number of solutions in Fgs for the equation N(x) =1 is q;_—_ll, the
minimum degree §(G) is at least ’1;_—_11—1 > ¢*~!. Thus, when n = ¢%, e(G) > %qsqs_1 > %n2_1/5.
|

Definition 1.11. For a prime ¢, the projective norm graph H = H(q, s) is as follows: V(H) =

Fys—1 x Fj7 and two vertices (4,a), (B,b) € V(H) are adjacent if and only if N(A+ B) = a b,

where N : Fis—1 — Fy is the norm map.

Theorem 1.12 (Alon-Rényai-Szab6). H(q,s) is K, s_1y141-free. Therefore, fort > (s —1)!+1,
ex(n, Kqz) = O(n*1/9).

Proof. Exercise (similar to the proof of Theorem 1.7 for H (g, 3)). ]



