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1 Lec 18. Random Algebraic Constructions
Theorem 1.1 (Bukh, 2015). For any s, there exists C relevant to s such that ex(n,Ks,C+1) =

Θ(n2− 1
s ).

In this lecture, we use algebraic construction to prove the theorem. Let q be a prime power,
and Fq be the field of order q. Let s ≥ 4 be fixed and q ≫ s. Let d = s2 − s+ 2, and n = qs.

Definition 1.2. Let X⃗ = {x1, x2, ..., xs} ∈ F s
q and Y⃗ = {y1, y2, ..., ys} ∈ F s

q . Let P be all
polynomials f(X⃗, Y⃗ ) of degree at most d in each of X⃗ and Y⃗ , that is,

f(X⃗, Y⃗ ) =
∑
(a⃗,⃗b)

α
a⃗,⃗b

· xa11 xa22 · · ·xass · yb11 yb22 · · · ybss ,

over all possible choices that
∑

i∈[s] ai ≤ d and
∑

j∈[s] bj ≤ d, where α
a⃗,⃗b

∈ Fq.

Definition 1.3. For any f(X⃗, Y⃗ ) ∈ P, we can define a bipartite graph Gf on partition (L,R) as
follows:

L = R = F s
q , and X⃗ ∈ L ∼ Y⃗ ∈ R if and only if f(X⃗, Y⃗ ) = 0.

Then by the linearity of expectation, E[e(G)] = n2/q. The key idea is to choose a polynomial
f ∈ P randomly at uniform and use it to define a bipartite graph Gf .

Lemma 1.4. For any u⃗, v⃗ ∈ F s
q , P r[f(u⃗, v⃗) = 0] = 1/q.

Proof. Note that if c is a uniformly random constant in Fq, then f(u⃗, v⃗) and f(u⃗, v⃗) + c are
identically distributed. Since all constant elements of f ∈ P are distributed uniformly at random
in Fq, then Pr[f(u⃗, v⃗) = 0] = Pr[f(u⃗, v⃗) = 1] = · · · . So Pr[f(u⃗, v⃗) = 0] = 1/q.

Fact 1.5 (Sampling conditional probability). Let A be an event in a probability space: P (A) =∑
events B P [A|B] · P [B]. If P [A|B] = a for any event B, then P (A) = a.

Lemma 1.6. Suppose r, s ≤ min{√q, d}. Let U ⊆ F s
q and V ⊆ F s

q be sets with |U | = s and
|V | = r. Then

Pr[f(u⃗, v⃗) = 0 for all u⃗ ∈ U, and v⃗ ∈ V ] = 1/qsr.

Proof. Call a set of points in F s
q simple if the first coordinate of the points are distinct.

(1). First, we give the proof when both U and V are simple. In this case, we decompose f = g+h,
where h contains the sr monomials xi1y

j
1 for i = 0, 1, ..., s− 1 and j = 0, 1, ..., r − 1, and g is the

linear combination of other monomials.
To prove that Pr[f(u⃗, v⃗) = 0 for all u⃗ ∈ U, and v⃗ ∈ V ] = 1/qsr, it suffices to prove that the

system of sr equations h(u⃗, v⃗) = −g(u⃗, v⃗) for all u⃗ ∈ U, v⃗ ∈ V has a unique solution when all
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−g(u⃗, v⃗) are given. Note that h(X⃗, Y⃗ ) =
∑

i<s,j<r αijx
i
1y

j
1 has sr terms and the system consists of

sr equations with sr unknown variables αij , 0 ≤ i ≤ s−1 and 0 ≤ j ≤ r−1. This is a consequence
of the Lagrange interpolation theorem twice:

• The first application gives for all fixed u⃗ ∈ U, the single-variable polynomials hu⃗(Y⃗ ) of
degree r − 1 such that hu⃗(v⃗) = −g(u⃗, v⃗) for all v⃗ ∈ V.

• The second application gives a polynomial h(X⃗, Y⃗ ) =
∑

0≤j≤r−1 aj(x1)y
j
1 such that each of

the coefficients of h(u⃗, Y⃗ ) is equal to the respective coefficient of hu⃗(Y⃗ ) for all u⃗ ∈ U.

Using this twice, we show the solution is unique.
(2). Now we consider the general U and V. It suffices to find invertible linear transformation T
and S : F s

q → F s
q such that TU and SV are simple. Indeed, P is invariant under the actions of

these transformations on the first s variables X⃗ and then on the latter s variables Y⃗ . Hence, if we
array for TU and SV to be the simple, we reduce to (1). To find such T : F s

q → F s
q , it suffices to

find a linear map T1 : F
s
q → Fq, that injective on U. We then find an invertible map T : F s

q → F s
q ,

where first coordinate is T1. To find such a T1, we pick T1 uniformly at random among all linear
maps F s

q → Fq. Then for all points (u⃗1, u⃗2) ∈ U, Pr[T1(u⃗1) = T1(u⃗2)] = 1/q. So by union bound,

Pr[u⃗1, u⃗2 ∈ U with T1(u⃗1) = T1(u⃗2)] =
1

q

(
|U |
2

)
< 1,

impling the existence of the desired T1 : F
s
q → Fq. And the construction for S is similar.

Fix U ⊆ F s
q with |U | = s. We want to count the common neighbours of the vertices in U.

We will use the moments method. Let I(v⃗) = 1 if v⃗ is adjacent to any u⃗ ∈ U, and otherwise
I(v⃗) = 0. Let X = |N(U)|. Then X =

∑
v⃗ I(v⃗), and

E[Xd] = E[(
∑
v⃗∈F s

q

I(v⃗))d] =
∑

v⃗1,··· ,v⃗d∈F s
q

E[I(v⃗1)I(v⃗2) · · · I(v⃗d)] =
∑

1≤r≤d

(
qs

r

)
q−rsMr ≤

∑
r≤d

Mr ≜ M,

where Mr is defined to the number of surjective mappings from [d] to [r]. By Markov’s inequality,

Pr(X ≥ λ) = Pr(Xd ≥ λd) ≤ E[Xd]

λd
≤ M

λd

Lemma 1.7. For all s, d, there exists a constant C such that if f1(Y⃗ ), f2(Y⃗ ), ..., fs(Y⃗ ) are poly-
nomials over Y ∈ F s

q of degree at most d, then

{y⃗ ∈ F s
q : f1(y⃗) = f2(y⃗) = ... = fs(y⃗) = 0}

has size either at most C or at least q − C
√
q ≥ q/2.

Remark 1.8. This lemma can be reduced for an important result in algebraic geometry, known
as the Lang-Weil Bound (1954). It says that roughly, the number of points in an r-dimensional
algebraic variety in F s

q is around qr (assuming some irreducibility conditions)
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Let X be the number of common neighbours of vectors u⃗1, u⃗2, ..., u⃗s ∈ U , then

X = |{v⃗ ∈ F s
q : v⃗ ∼ u⃗i, i ∈ [s]}| = |{v⃗ ∈ F s

q : f(u⃗i, v⃗) = 0, i ∈ [s]}|
= |{y⃗ ∈ F s

q : fu⃗1
(y⃗) = fu⃗2

(y⃗) = ... = fu⃗s(y⃗) = 0}|.

By lemma 1.7, if X > C, then X > q/2 implies

Pr(X > C) = Pr(X ≥ q

2
) ≤ E[Xd]

(q/2)d
≤ M

(q/2)d
.

So the number of s-subsets in L or in R with more than C common neighbours is at most
2
(
n
s

)
M

(q/2)d
= O(qs−2) in expectation. Take such a G and remove a vertex from every such s-

subset to creat a new graph G′. We see that G′ is Ks,C+1-free, v(G′) ≤ 2n, and

e(G′) ≥ e(G)− |#s-subsets| · n ≥ n2

q
−O(qs−2)n = (1− o(1))n2− 1

s .
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