Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Tianchi Yang and Xinyang Ye

Apr 29th 2020, Wednesday

1 Lec 18. Random Algebraic Constructions

Theorem 1.1 (Bukh, 2015). For any s, there exists C relevant to s such that $\operatorname{ex}\left(n, K_{s, C+1}\right)=$ $\Theta\left(n^{2-\frac{1}{s}}\right)$.

In this lecture, we use algebraic construction to prove the theorem. Let q be a prime power, and F_{q} be the field of order q. Let $s \geq 4$ be fixed and $q \gg s$. Let $d=s^{2}-s+2$, and $n=q^{s}$.

Definition 1.2. Let $\vec{X}=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} \in F_{q}^{s}$ and $\vec{Y}=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\} \in F_{q}^{s}$. Let \mathcal{P} be all polynomials $f(\vec{X}, \vec{Y})$ of degree at most d in each of \vec{X} and \vec{Y}, that is,

$$
f(\vec{X}, \vec{Y})=\sum_{(\vec{a}, \vec{b})} \alpha_{\vec{a}, \vec{b}} \cdot x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{s}^{a_{s}} \cdot y_{1}^{b_{1}} y_{2}^{b_{2}} \cdots y_{s}^{b_{s}},
$$

over all possible choices that $\sum_{i \in[s]} a_{i} \leq d$ and $\sum_{j \in[s]} b_{j} \leq d$, where $\alpha_{\vec{a}, \vec{b}} \in F_{q}$.
Definition 1.3. For any $f(\vec{X}, \vec{Y}) \in \mathcal{P}$, we can define a bipartite graph G_{f} on partition (L, R) as follows:

$$
L=R=F_{q}^{s}, \text { and } \vec{X} \in L \sim \vec{Y} \in R \text { if and only if } f(\vec{X}, \vec{Y})=0 .
$$

Then by the linearity of expectation, $E[e(G)]=n^{2} / q$. The key idea is to choose a polynomial $f \in \mathcal{P}$ randomly at uniform and use it to define a bipartite graph G_{f}.

Lemma 1.4. For any $\vec{u}, \vec{v} \in F_{q}^{s}, \operatorname{Pr}[f(\vec{u}, \vec{v})=0]=1 / q$.
Proof. Note that if c is a uniformly random constant in F_{q}, then $f(\vec{u}, \vec{v})$ and $f(\vec{u}, \vec{v})+c$ are identically distributed. Since all constant elements of $f \in \mathcal{P}$ are distributed uniformly at random in F_{q}, then $\operatorname{Pr}[f(\vec{u}, \vec{v})=0]=\operatorname{Pr}[f(\vec{u}, \vec{v})=1]=\cdots$. So $\operatorname{Pr}[f(\vec{u}, \vec{v})=0]=1 / q$.

Fact 1.5 (Sampling conditional probability). Let A be an event in a probability space: $P(A)=$ $\sum_{\text {events } B} P[A \mid B] \cdot P[B]$. If $P[A \mid B]=a$ for any event B, then $P(A)=a$.

Lemma 1.6. Suppose $r, s \leq \min \{\sqrt{q}, d\}$. Let $U \subseteq F_{q}^{s}$ and $V \subseteq F_{q}^{s}$ be sets with $|U|=s$ and $|V|=r$. Then

$$
\operatorname{Pr}[f(\vec{u}, \vec{v})=0 \text { for all } \vec{u} \in U, \text { and } \vec{v} \in V]=1 / q^{s r} .
$$

Proof. Call a set of points in F_{q}^{s} simple if the first coordinate of the points are distinct.
(1). First, we give the proof when both U and V are simple. In this case, we decompose $f=g+h$, where h contains the $s r$ monomials $x_{1}^{i} y_{1}^{j}$ for $i=0,1, \ldots, s-1$ and $j=0,1, \ldots, r-1$, and g is the linear combination of other monomials.

To prove that $\operatorname{Pr}[f(\vec{u}, \vec{v})=0$ for all $\vec{u} \in U$, and $\vec{v} \in V]=1 / q^{s r}$, it suffices to prove that the system of sr equations $h(\vec{u}, \vec{v})=-g(\vec{u}, \vec{v})$ for all $\vec{u} \in U, \vec{v} \in V$ has a unique solution when all
$-g(\vec{u}, \vec{v})$ are given. Note that $h(\vec{X}, \vec{Y})=\sum_{i<s, j<r} \alpha_{i j} x_{1}^{i} y_{1}^{j}$ has $s r$ terms and the system consists of $s r$ equations with $s r$ unknown variables $\alpha_{i j}, 0 \leq i \leq s-1$ and $0 \leq j \leq r-1$. This is a consequence of the Lagrange interpolation theorem twice:

- The first application gives for all fixed $\vec{u} \in U$, the single-variable polynomials $h_{\vec{u}}(\vec{Y})$ of degree $r-1$ such that $h_{\vec{u}}(\vec{v})=-g(\vec{u}, \vec{v})$ for all $\vec{v} \in V$.
- The second application gives a polynomial $h(\vec{X}, \vec{Y})=\sum_{0 \leq j \leq r-1} a_{j}\left(x_{1}\right) y_{1}^{j}$ such that each of the coefficients of $h(\vec{u}, \vec{Y})$ is equal to the respective coefficient of $h_{\vec{u}}(\vec{Y})$ for all $\vec{u} \in U$.

Using this twice, we show the solution is unique.
(2). Now we consider the general U and V. It suffices to find invertible linear transformation T and $S: F_{q}^{s} \rightarrow F_{q}^{s}$ such that $T U$ and $S V$ are simple. Indeed, \mathcal{P} is invariant under the actions of these transformations on the first s variables \vec{X} and then on the latter s variables \vec{Y}. Hence, if we array for $T U$ and $S V$ to be the simple, we reduce to (1). To find such $T: F_{q}^{s} \rightarrow F_{q}^{s}$, it suffices to find a linear map $T_{1}: F_{q}^{s} \rightarrow F_{q}$, that injective on U. We then find an invertible map $T: F_{q}^{s} \rightarrow F_{q}^{s}$, where first coordinate is T_{1}. To find such a T_{1}, we pick T_{1} uniformly at random among all linear maps $F_{q}^{s} \rightarrow F_{q}$. Then for all points $\left(\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right) \in U, \operatorname{Pr}\left[T_{1}\left(\overrightarrow{u_{1}}\right)=T_{1}\left(\overrightarrow{u_{2}}\right)\right]=1 / q$. So by union bound,

$$
\operatorname{Pr}\left[\overrightarrow{u_{1}}, \overrightarrow{u_{2}} \in U \text { with } T_{1}\left(\overrightarrow{u_{1}}\right)=T_{1}\left(\overrightarrow{u_{2}}\right)\right]=\frac{1}{q}\binom{|U|}{2}<1,
$$

impling the existence of the desired $T_{1}: F_{q}^{s} \rightarrow F_{q}$. And the construction for S is similar.
Fix $U \subseteq F_{q}^{s}$ with $|U|=s$. We want to count the common neighbours of the vertices in U. We will use the moments method. Let $I(\vec{v})=1$ if \vec{v} is adjacent to any $\vec{u} \in U$, and otherwise $I(\vec{v})=0$. Let $X=|N(U)|$. Then $X=\sum_{\vec{v}} I(\vec{v})$, and
$E\left[X^{d}\right]=E\left[\left(\sum_{\vec{v} \in F_{q}^{s}} I(\vec{v})\right)^{d}\right]=\sum_{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{d}} \in F_{q}^{s}} E\left[I\left(\overrightarrow{v_{1}}\right) I\left(\overrightarrow{v_{2}}\right) \cdots I\left(\overrightarrow{v_{d}}\right)\right]=\sum_{1 \leq r \leq d}\binom{q^{s}}{r} q^{-r s} M_{r} \leq \sum_{r \leq d} M_{r} \triangleq M$,
where M_{r} is defined to the number of surjective mappings from $[d]$ to $[r]$. By Markov's inequality,

$$
\operatorname{Pr}(X \geq \lambda)=\operatorname{Pr}\left(X^{d} \geq \lambda^{d}\right) \leq \frac{E\left[X^{d}\right]}{\lambda^{d}} \leq \frac{M}{\lambda^{d}}
$$

Lemma 1.7. For all s, d, there exists a constant C such that if $f_{1}(\vec{Y}), f_{2}(\vec{Y}), \ldots, f_{s}(\vec{Y})$ are polynomials over $Y \in F_{q}^{s}$ of degree at most d, then

$$
\left\{\vec{y} \in F_{q}^{s}: f_{1}(\vec{y})=f_{2}(\vec{y})=\ldots=f_{s}(\vec{y})=0\right\}
$$

has size either at most C or at least $q-C \sqrt{q} \geq q / 2$.
Remark 1.8. This lemma can be reduced for an important result in algebraic geometry, known as the Lang-Weil Bound (1954). It says that roughly, the number of points in an r-dimensional algebraic variety in F_{q}^{s} is around q^{r} (assuming some irreducibility conditions)

Let X be the number of common neighbours of vectors $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{s}} \in U$, then

$$
\begin{aligned}
X & =\left|\left\{\vec{v} \in F_{q}^{s}: \vec{v} \sim \overrightarrow{u_{i}}, i \in[s]\right\}\right|=\left|\left\{\vec{v} \in F_{q}^{s}: f\left(\overrightarrow{u_{i}}, \vec{v}\right)=0, i \in[s]\right\}\right| \\
& =\left|\left\{\vec{y} \in F_{q}^{s}: f_{\overrightarrow{u_{1}}}(\vec{y})=f_{\overrightarrow{u_{2}}}(\vec{y})=\ldots=f_{\overrightarrow{u_{s}}}(\vec{y})=0\right\}\right| .
\end{aligned}
$$

By lemma 1.7, if $X>C$, then $X>q / 2$ implies

$$
\operatorname{Pr}(X>C)=\operatorname{Pr}\left(X \geq \frac{q}{2}\right) \leq \frac{E\left[X^{d}\right]}{(q / 2)^{d}} \leq \frac{M}{(q / 2)^{d}} .
$$

So the number of s-subsets in L or in R with more than C common neighbours is at most $2\binom{n}{s} \frac{M}{(q / 2)^{d}}=O\left(q^{s-2}\right)$ in expectation. Take such a G and remove a vertex from every such s subset to creat a new graph G^{\prime}. We see that G^{\prime} is $K_{s, C+1}$-free, $v\left(G^{\prime}\right) \leq 2 n$, and

$$
e\left(G^{\prime}\right) \geq e(G)-\mid \# s \text {-subsets } \left\lvert\, \cdot n \geq \frac{n^{2}}{q}-O\left(q^{s-2}\right) n=(1-o(1)) n^{2-\frac{1}{s}} .\right.
$$

