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1 Lec 18. Random Algebraic Constructions

Theorem 1.1 (Bukh, 2015). For any s, there exists C relevant to s such that ex(n, Ksc41) =
@(n2_%).

In this lecture, we use algebraic construction to prove the theorem. Let ¢ be a prime power,
and Fj, be the field of order ¢. Let s > 4 be fixed and ¢ > s. Let d = s2 —s+2,and n = ¢°.

Definition 1.2. Let X = {w1,22,...,25} € F; and Y = {v1,92,..,ys} € F7. Let P be all
polynomials f ()2 ) }7) of degree at most d in each of X and Y, that is,

3 <3 ai,.a as , b1, b bs
f(XvY):Z%g‘%l«’Uzz'“ﬂﬁs byl ybs

over all possible choices that 3. ai < d and 31 bj < d, where a7 € Fy.

j€ls]
Definition 1.3. For any f()_f, }7) € P, we can define a bipartite graph G on partition (L, R) as
follows:

L=R=F;], and X € L~Y € Rif and only if f(X,Y)=0.

Then by the linearity of expectation, E[e(G)] = n?/q. The key idea is to choose a polynomial
f € P randomly at uniform and use it to define a bipartite graph G.

Lemma 1.4. For any u,v € F,;, Pr[f(u,v) =0] =1/q.

Proof. Note that if ¢ is a uniformly random constant in F,, then f(@,7) and f(@,7) + ¢ are
identically distributed. Since all constant elements of f € P are distributed uniformly at random
in Fy, then Pr(f(u,v) =0] = Pr(f(d,0) =1] =--- . So Pr(f(4,7) =0] =1/q. 1

Fact 1.5 (Sampling conditional probability). Let A be an event in a probability space: P(A) =
Y events g PIA|B] - P[B]. If P[A|B] = a for any event B, then P(A) = a.

Lemma 1.6. Suppose r,s < min{,/q,d}. Let U C F;7 and V C F; be sets with |U| = s and
\V| =r. Then
Pr(f(d,0) =0 foralli e U, and 7€ V] =1/q".

Proof. Call a set of points in F} simple if the first coordinate of the points are distinct.
(1). First, we give the proof when both U and V" are simple. In this case, we decompose f = g+h,
where h contains the sr monomials xﬁy{ fori=0,1,...,s—1and 7 =0,1,...,7 — 1, and g is the
linear combination of other monomials.

To prove that Pr{f(u,v) =0 for all @ € U, and ¥ € V| = 1/¢°", it suffices to prove that the
system of sr equations h(u,v) = —g(u,v) for all @ € U,¥ € V has a unique solution when all



—g(i, ¥) are given. Note that h(X,Y) = D icsj<r aijxily{ has sr terms and the system consists of
sr equations with sr unknown variables c;;,0 <7 < s—1and 0 < j < r—1. This is a consequence
of the Lagrange interpolation theorem twice:

e The first application gives for all fixed 4@ € U, the single-variable polynomials hﬂ(}_}) of
degree r — 1 such that hyz(v) = —g(@, V) for all ¥ € V.

o The second application gives a polynomial h()z , 37) = Zog i<r—1 aj(arl)y{ such that each of
the coefficients of h(, 57) is equal to the respective coefficient of hg(?) for all @ € U.

Using this twice, we show the solution is unique.

(2). Now we consider the general U and V. It suffices to find invertible linear transformation T’
and S : Fj — FJ such that TU and SV are simple. Indeed, P is invariant under the actions of
these transformations on the first s variables X and then on the latter s variables Y. Hence, if we
array for TU and SV to be the simple, we reduce to (1). To find such T': F,; — F, it suffices to
find a linear map 17 : Fj — Fy, that injective on U. We then find an invertible map 7" : ] — F,
where first coordinate is 77. To find such a T, we pick 7T} uniformly at random among all linear
maps F; — Fy. Then for all points (ui,u3) € U, Pr[Ti(ui1) = T1(u2)] = 1/q. So by union bound,

17U
Pr[ui,uy € U with Ty (uy) = Th(u3)] = q(‘ 2|> <1,

impling the existence of the desired T} : F;j — Fj;. And the construction for S is similar. |

Fix U C F; with [U| = s. We want to count the common neighbours of the vertices in U.
We will use the moments method. Let I(7) = 1 if ¥ is adjacent to any @ € U, and otherwise
I() =0. Let X = [N(U)|. Then X =) - I(¥), and

S
Elx = B 1@y = Y BU@I@) - 1) = Y <qr ) oM, <M, 2 M
EEFQS U], ,v}EF; 1<r<d r<d
where M, is defined to the number of surjective mappings from [d] to [r]. By Markov’s inequality,

E[X]

Pr(X >\ =Pr(X?> ) < X

<

XI=

Lemma 1.7. For all s,d, there exists a constant C such that if fl(?),fg(?), ...,fs(}?) are poly-
nomials over Y € Fy of degree at most d, then

{yeFy: 1i(§) = f2(§) = ... = fs(¥) = 0}
has size either at most C' or at least ¢ — C\/q > q/2.

Remark 1.8. This lemma can be reduced for an important result in algebraic geometry, known
as the Lang-Weil Bound (1954). It says that roughly, the number of points in an r-dimensional
algebraic variety in Fy is around ¢" (assuming some irreducibility conditions)



Let X be the number of common neighbours of vectors i, u, ..., us € U, then
X={veF;:v~ujicls]}|={veF,;: f(uiv) =0,i€ [s]}]
={ye Fy: fa(§) = fa(¥) = .. = fu(§) = O}].
By lemma 1.7, if X > C, then X > ¢/2 implies
E[X9) .M
(q/2)* ~ (q/2)*
So the number of s-subsets in L or in R with more than C common neighbours is at most

2(;‘)% = O(¢*?) in expectation. Take such a G and remove a vertex from every such s-

subset to creat a new graph G'. We see that G’ is K c41-free, v(G’) < 2n, and

Pr(X > C) = Pr(X > g) <

2
e(G") > e(G) — |#s-subsets| - n > % —O(¢"H)n = (1 — o(1))n®"s.



