Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Hao Chen and Tianchi Yang

May 11 2020, Monday

1 Lecture 19. Dependent Random Choice

Theorem 1.1. Let H be a bipartite graph with bipartition (A, B) such that every vertex in A has degree at most r. Then there exists a constant $C=C_{H}$ such that

$$
e x(n, H) \leq C n^{2-1 / r}
$$

Remark 1.2. This theorem was first proved by Füredi(1991) and then was reproved by Alon-Krivelevich-Sudakov(2002).

We will give the proof of Alon-Krivelevich-Sudakov, which has been extended to a powerful probabilistic tool called "dependent random choice". The main idea of this is the following lemma: If G has many many edges, then one can find a large subset A in G such that all small subsets of A have many common neighbors.

Definition 1.3. For $S \subseteq V(G), N(S)=\{w \in V(G): w s \in E(G)$ for every $s \in S\}$.
Lemma 1.4 (Dependent random choice). Let $u, n, r, m, t \in \mathbb{N}$ and a real number $\alpha \in(0,1)$ be such that

$$
n \alpha^{t}-\binom{n}{r}\left(\frac{m}{n}\right)^{t} \geq u
$$

Then every n-vertex graph G with at least $\frac{\alpha}{2} n^{2}$ edges contains a subset U of at least u vertices such that every r-element subset S of U has at least m common neighbors.
Proof. Let T be a list of t vertices chosen uniformly at random from $V(G)$ (allowing repetition). Let $A=N(T)$. Then

$$
\mathbb{E}[|A|]=\sum_{v \in V} \mathbb{P}(v \in A)=\sum_{v \in V} \mathbb{P}(T \subseteq N(v))=\sum_{v \in V}\left(\frac{d(v)}{n}\right)^{t} \geq n\left(\frac{1}{n} \sum_{v \in V} \frac{d(v)}{n}\right)^{t} \geq n \alpha^{t}
$$

Call an r-element subset $S \subseteq V(G)$ bad if S has less than m common neighbors $(|N(S)|<m)$. Given an r-element subset $S \subseteq V(G)$, we have

$$
\mathbb{P}(S \subseteq A)=\mathbb{P}(T \subseteq N(S))=\left(\frac{|N(S)|}{n}\right)^{t}
$$

So

$$
\mathbb{E}[\# \text { bad } r \text {-element subsets in } A]<\binom{n}{r}\left(\frac{m}{n}\right)^{t} .
$$

Combining, there exists a choice of T such that $A=N(T)$ satisfies that

$$
|A|-\# \text { bad } r \text {-element subsets in } A \geq n \alpha^{t}-\binom{n}{r}\left(\frac{m}{n}\right)^{t} \geq u .
$$

Let U be obtained from A by deleting one vertex from each bad r-element subset in A. Then we have that $|U| \geq u$ and U satisfies the condition.

Now we can prove the Theorem 1.1.
Proof. (Theorem 1.1) Let H be a bipartite graph with bipartition (A, B) such that every vertex in A has degree at most r. We want to show $\operatorname{ex}(n, H) \leq C n^{2-1 / r}$, where $C=C_{H}$ is a constant. Let G be any n-vertex graph with at least $C n^{2-1 / r}$ edges, where C satisfies

$$
n\left(2 C n^{-1 / r}\right)^{r}-\binom{n}{r}\left(\frac{|A|+|B|}{n}\right)^{r} \geq|B| .
$$

By dependent random choice lemma, taking $u=|B|, m=|A|+|B|, t=r, \alpha=2 C n^{-1 / r}$, we see

$$
n \alpha^{t}-\binom{n}{r}\left(\frac{m}{n}\right)^{t} \geq u
$$

So there exists a subset U with $|U| \geq u$ such that any r-element subsets of U has at least $m=|A|+|B|$ common neighbors.

We label $A=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ and $B=\left\{u_{1}, u_{2}, \ldots, u_{b}\right\}$. We find any one-to-one mapping $\phi: B \rightarrow U, u_{i} \mapsto \phi\left(u_{i}\right)$. Next, we want to extend this ϕ from B to $A \cup B$ and then we can find a copy of H in G. Suppose for $A^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$, we have $\phi: A^{\prime} \cup B \rightarrow V(G)$ such that $H\left[A^{\prime} \cup B\right] \subseteq G\left[\phi\left(A^{\prime}\right) \cup \phi\left(B^{\prime}\right)\right]$. Consider v_{s+1} and $N_{H}\left(v_{s+1}\right) \subseteq B$, we have that $N_{H}\left(v_{s+1}\right) \leq r$. We consider $\phi\left(N_{H}\left(v_{s+1}\right)\right) \subseteq U$ of size at most r. By the property of $U, \phi\left(N_{H}\left(v_{s+1}\right)\right)$ has at least $|A|+|B|$ common neighbors in G. Then we can get a vertex $\phi\left(v_{s+1}\right)$ which is a common neighbor of $\phi\left(N_{H}\left(v_{s+1}\right)\right)$ but is not in $\phi\left(A^{\prime} \cup B\right)$. Repeatedly, we can extend ϕ to be $\phi: A \cup B \rightarrow V(G)$ such that $\phi(A \cup B)$ is a copy of H, a contradiction.

The result ex $(n, H)=O\left(n^{2-1 / r}\right)$ is tight for $H=K_{r, s}$ if $s \gg r$.
Conjecture 1.5. Let H be a bipartite graph with bipartition (A, B) such that each vertex in A has degree at most r and H is $K_{r, r}$-free. Then there exist $C, c>0$ depending on H such that

$$
e x(n, H) \leq C n^{2-1 / r-c}
$$

Remark 1.6. The conjecture is only known for $r=2$. For $r \geq 3, \operatorname{ex}(n, H)=o\left(n^{2-1 / r}\right)$ is proved by Sudakov and Tomon recently.

