Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Chen Wang and Tianchi Yang

May 13 2020, Wednesday

1 Lecture 20.

Conjecture 1.1. Let H be a $K_{r,r}$ -free bipartite graph on (A, B) such that any $a \in A$ has degree at most r. Then there are constants c, C > 0 such that $ex(n, H) \leq Cn^{2-1/r-c}$.

Theorem 1.2. Let H be a $K_{2,2}$ -free bipartite graph on bipartition (A, B) such that each vertex in A has degree at most 2. Then there are constant c, C > 0 such that $ex(n, H) \leq Cn^{3/2-c}$.

Definition 1.3. For a graph H, the k-subdivision $H^{(k)}$ of H is a graph obtained from H by replacing each edge ab of H with a internally distinct path P_{ab} of length k + 1 with endpoints a and b, where all such paths P_{ab} are mutually internally distinct.

Theorem 1.4. For all $t \ge 3$, there exists $c_t > 0$ such that $ex(n, K_t^{(1)}) = O(n^{3/2-c_t})$.

We observe that Theorem 1.4 can imply Theorem 1.2.

Definition 1.5. A graph G is called K-regular if $\Delta(G) \leq K\delta(G)$.

Lemma 1.6 (Erdös-Simonovits; Jiang, Bukh-Jiang, Colon-Lee). For all $0 < \alpha < 1$, there exists constants $\beta, K > 0$ such that for all C > 0 and sufficiently large n, every n-vertex graph G with at least $Cn^{1+\alpha}$ edges has a subgraph G' satisfying:

- G' is K-regular and bipartite with two parts of size differencing by a factor at most 2;
- $v(G') \ge n^{\beta};$
- $\frac{e(G')}{v(G')^{1+\alpha}} \ge \frac{1}{10} \frac{e(G)}{v(G)^{1+\alpha}}.$

We will not give a detailed proof for this lemma.

Definition 1.7. Fix t and for $u, v \in V(G)$, we say the pair (u, v) is **light**, if $1 \leq |N(u) \cap N(v)| < {t \choose 2}$, and is **heavy** if $|N(u) \cap N(v)| \geq {t \choose 2}$.

Lemma 1.8. Let G be a $K_t^{(1)}$ -free bipartite graph with bipartition $X \cup B$, where $d(x) \ge \delta$ for all $x \in X$ and $|X| \ge \frac{4|B|t}{\delta}$. Then there exists $u \in X$ in $\Omega(\delta^2|X|/|B|)$ light pairs in X.

Proof. Let $S = \{(\{u, v\}, b) : b \in B, u, v \in X \cap N(b)\}$. We see that

$$|S| = \sum_{b \in B} \binom{d(b)}{2} \ge |B| \binom{\frac{e(G)}{|B|}}{2} \ge \frac{|B|}{4} (\frac{\delta|X|}{B})^2 = \frac{\delta^2 |X|^2}{4|B|}.$$

Let $B^* = \{b \in B : d(b) \ge 2t\}$. Since

$$\sum_{b\in B\setminus B^*} \binom{d(b)}{2} \le 2t^2 |B| \le \frac{\delta^2 |X|^2}{8|B|},$$

we have

$$\sum_{b\in B^*}\binom{d(b)}{2}\geq \frac{\delta^2|X|^2}{8|B|}.$$

Next, we claim that there are no t vertices in X such that any pair of which is heavy. If not, suppose there exists t vertices, say $x_1, x_2, ..., x_t$, such that $\{x_i, x_j\}$ is heavy, then it is easy to check that there exists a $K_t^{(1)}$ in G, a contradiction!

Consider $b \in B^*$. Any pair in N(b) is eigher light or heavy. By Turán Theorem and the above claim, the number of heavy pairs in N(b) is at most $e(T_{t-1}(d(b)))$. Then for $b \in B^*$, there are at least

$$\binom{d(b)}{2} - e(T_{t-1}(d(b))) \ge \binom{d(b)}{2} - \binom{t-1}{2} \left(\frac{d(b)}{t-1}\right)^2 \ge \frac{d(b)^2}{2(t-1)} - \frac{1}{2}d(b) \ge \Omega(d(b)^2)$$

light pairs in N(b). Sum over all $b \in B^*$, then

$$\# \triangleq \#_{\substack{b \in B^* \text{ and} \\ \{u,v\} \text{ is light in } N(b)}} (\{u,v\},b) \ge \sum_{b \in B^*} \Omega(d(b)^2) \ge \Omega(\frac{\delta^2 |X|^2}{|B|}).$$

Since $\{u, v\}$ is light, we get

light pairs in
$$X \ge \frac{\#}{\binom{t}{2}} \ge \Omega(\frac{\delta^2 |X|^2}{|B|}).$$

Thus there exists a vertex $u \in X$ which is in at least $\Omega(\frac{\delta^2|X|}{|B|})$ light pairs in X.

In the following, we will give a proof of Theorem 1.4 due to Janzer, who proved that $c_t = \frac{1}{4t-6}$ for $t \ge 3$. Since we know $K_3^{(1)} = C_6$ and $ex(n, C_6) = \Theta(n^{4/3})$, one may ask that whether $c_t = \frac{1}{4t-6}$ is tight for all $t \ge 3$.

Proof of Theorem 1.4. Let G be a $K_t^{(1)}$ -free graph on n vertices and with at least $Dn^{3/2-c_t} = Dn^{1+\alpha}$ $(\alpha = \frac{t-2}{2t-3})$ edges. By lemma 1.6, there exists a $G' \subset G$ which is K-regular and bipartite on parts $A \cup B$, such that $e(G')/v(G')^{1+\alpha} \ge e(G)/(10v(G)^{1+\alpha})$ and v(G') is large, $|B|/2 \le |A| \le 2|B|$. If $\delta(G') \le C(v(G'))^{\alpha}$, we have

$$\Delta(G') \le KC(v(G'))^{\alpha} \Rightarrow e(G') \le KC(v(G'))^{1+\alpha} \Rightarrow e(G) \le 10KCn^{1+\alpha},$$

then we are done. Therefore, we may assume that $\delta \triangleq \delta(G') > C(v(G'))^{\alpha} = C(v(G'))^{\frac{t-2}{2t-3}}$.

Our plan is to find t vertices $u_1, ..., u_t \in A$ such that $\{u_i, u_j\}$ is light for all $1 \leq i < j \leq t$ and u_i, u_j, u_k has no common neighbors for all distinct i, j, k. If so, then we can find a $K_t^{(1)}$ in G easily.

We will find these t vertices by repeatedly using lemma 1.8 on a stronger hypothesis: for each $1 \le i \le t$, there exists $A = X_1 \supset X_2 \supset ... \supset X_i$ and $u_1 \in X_1, ..., u_i \in X_i$ such that:

- (1) u_j is in at least $\Theta(\delta^2 |X_j| / v(G'))$ light pairs in X_j , for $1 \le j \le i 1$.
- (2) u_j is light to every vertex w in X_{j+1} , for $1 \le j \le i-1$.

(3) No 3 vertices of $v_1, ..., v_i$ has common neighbors.

(4)
$$|X_{j+1}| = \Omega(\delta^2 |X_j| / v(G')), \text{ for } 1 \le j \le i.$$

This is holds clearly for i = 1 by choices u_1 to be the vertex founded by lemma 1.8 when applied to $A \cup B$. Now suppose we have obtained this for i - 1: $A = X_1 \supset X_2 \supset ... \supset X_{i-1}$ with $u_j \in X_j, j \leq i - 1$. Let $Y_i = \{y \in X_{i-1} : \{y, u_{i-1}\}$ is light}. By (1), $|Y_i| \geq \delta^2 |X_j| / v(G')$. Consider any $u_j u_l$ with $j, l \leq i - 1$, take any common neighbor u of them and delete N(u) from Y_i . We know there are $\binom{i-1}{2}$ pairs $u_i u_l$ and $|N(u)| < K\delta$. For each $u_i u_l$ there are at most $\binom{t}{2}$ many choices of u as otherwise we can get a $K_t^{(1)}$. So the number of deleted vertices is at most

$$\binom{i-1}{2}\binom{t}{2}K\delta = O(\delta).$$

As long as $|Y_i| \ge \delta^2 |X_{i-1}| / v(G') \ge \Omega(\delta)$, we can get a $X_i \subseteq Y_i$ of size at least $\Omega(\delta^2 / v(G')) |X_{i-1}|$, which satisfies (3). This is true, because $i \le t$ and

$$\left(\frac{\delta^2}{v(G')}\right)^{i-1}|A| \ge \left(\frac{\delta^2}{n}\right)^{i-1} \cdot n \ge \Omega(\delta),$$

which implies $\delta^{2t-3} \ge n^{t-2}$. This shows that the algorithm can keep going until we have $X_1 \supset \ldots \supset X_t$ and $u_j \in X_j$ for $1 \le j \le t$. It is clear from this to see $\{u_i u_j\}$ is light and any 3 of u_1, \ldots, u_t has no common neighbors.