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1 Lecture 20.
Conjecture 1.1. Let H be a Kr,r-free bipartite graph on (A,B) such that any a ∈ A has degree
at most r. Then there are constants c, C > 0 such that ex(n,H) ≤ Cn2−1/r−c.

Theorem 1.2. Let H be a K2,2-free bipartite graph on bipartition (A,B) such that each vertex
in A has degree at most 2. Then there are constant c, C > 0 such that ex(n,H) ≤ Cn3/2−c.

Definition 1.3. For a graph H, the k-subdivision H(k) of H is a graph obtained from H by
replacing each edge ab of H with a internally distinct path Pab of length k + 1 with endpoints a
and b, where all such paths Pab are mutually internally distinct.

Theorem 1.4. For all t ≥ 3, there exists ct > 0 such that ex(n,K(1)
t ) = O(n3/2−ct).

We observe that Theorem 1.4 can imply Theorem 1.2.

Definition 1.5. A graph G is called K-regular if ∆(G) ≤ Kδ(G).

Lemma 1.6 (Erdös-Simonovits; Jiang, Bukh-Jiang, Colon-Lee). For all 0 < α < 1, there exists
constants β,K > 0 such that for all C > 0 and sufficently large n, every n-vertex graph G with
at least Cn1+α edges has a subgraph G′ satisfying:

• G′ is K-regular and bipartite with two parts of size differencing by a factor at most 2;

• v(G′) ≥ nβ;

• e(G′)
v(G′)1+α ≥ 1

10
e(G)

v(G)1+α .

We will not give a detailed proof for this lemma.

Definition 1.7. Fix t and for u, v ∈ V (G), we say the pair (u, v) is light, if 1 ≤ |N(u)∩N(v)| <(
t
2

)
, and is heavy if |N(u) ∩N(v)| ≥

(
t
2

)
.

Lemma 1.8. Let G be a K
(1)
t -free bipartite graph with bipartition X ∪B, where d(x) ≥ δ for all

x ∈ X and |X| ≥ 4|B|t
δ . Then there exists u ∈ X in Ω(δ2|X|/|B|) light pairs in X.

Proof. Let S = {({u, v}, b) : b ∈ B, u, v ∈ X ∩N(b)}. We see that

|S| =
∑
b∈B

(
d(b)

2

)
≥ |B|

( e(G)
|B|
2

)
≥ |B|

4
(
δ|X|
B

)2 =
δ2|X|2

4|B|
.

Let B∗ = {b ∈ B : d(b) ≥ 2t}. Since∑
b∈B\B∗

(
d(b)

2

)
≤ 2t2|B| ≤ δ2|X|2

8|B|
,
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we have ∑
b∈B∗

(
d(b)

2

)
≥ δ2|X|2

8|B|
.

Next, we claim that there are no t vertices in X such that any pair of which is heavy. If not,
suppose there exists t vertices, say x1, x2, ..., xt, such that {xi, xj} is heavy, then it is easy to
check that there exists a K

(1)
t in G, a contradiction!

Consider b ∈ B∗. Any pair in N(b) is eigher light or heavy. By Turán Theorem and the above
claim, the number of heavy pairs in N(b) is at most e(Tt−1(d(b))). Then for b ∈ B∗, there are at
least (

d(b)

2

)
− e(Tt−1(d(b))) ≥

(
d(b)

2

)
−
(
t− 1

2

)(
d(b)

t− 1

)2

≥ d(b)2

2(t− 1)
− 1

2
d(b) ≥ Ω(d(b)2)

light pairs in N(b). Sum over all b ∈ B∗, then

# ≜ #
b∈B∗ and

{u,v} is light in N(b)

({u, v}, b) ≥
∑
b∈B∗

Ω(d(b)2) ≥ Ω(
δ2|X|2

|B|
).

Since {u, v} is light, we get

# light pairs in X ≥ #(
t
2

) ≥ Ω(
δ2|X|2

|B|
).

Thus there exists a vertex u ∈ X which is in at least Ω( δ
2|X|
|B| ) light pairs in X.

In the following, we will give a proof of Theorem 1.4 due to Janzer, who proved that ct = 1
4t−6

for t ≥ 3. Since we know K
(1)
3 = C6 and ex(n,C6) = Θ(n4/3), one may ask that whether ct = 1

4t−6
is tight for all t ≥ 3.

Proof of Theorem 1.4. Let G be a K
(1)
t -free graph on n vertices and with at least Dn3/2−ct =

Dn1+α (α = t−2
2t−3) edges. By lemma 1.6, there exists a G′ ⊂ G which is K-regular and bipartite on

parts A∪B, such that e(G′)/v(G′)1+α ≥ e(G)/(10v(G)1+α) and v(G′) is large, |B|/2 ≤ |A| ≤ 2|B|.
If δ(G′) ≤ C(v(G′))α, we have

∆(G′) ≤ KC(v(G′))α ⇒ e(G′) ≤ KC(v(G′))1+α ⇒ e(G) ≤ 10KCn1+α,

then we are done. Therefore, we may assume that δ ≜ δ(G′) > C(v(G′))α = C(v(G′))
t−2
2t−3 .

Our plan is to find t vertices u1, ..., ut ∈ A such that {ui, uj} is light for all 1 ≤ i < j ≤ t

and ui, uj , uk has no commom neighbors for all distinct i, j, k. If so, then we can find a K
(1)
t in

G easily.
We will find these t vertices by repeatedly using lemma 1.8 on a stronger hypothesis: for each

1 ≤ i ≤ t, there exists A = X1 ⊃ X2 ⊃ ... ⊃ Xi and u1 ∈ X1, ..., ui ∈ Xi such that:

(1) uj is in at least Θ(δ2|Xj |/v(G′)) light pairs in Xj , for 1 ≤ j ≤ i− 1.

(2) uj is light to every vertex w in Xj+1, for 1 ≤ j ≤ i− 1.
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(3) No 3 vertices of v1, ..., vi has commom neighbors.

(4) |Xj+1| = Ω(δ2|Xj |/v(G′)), for 1 ≤ j ≤ i.

This is holds clearly for i = 1 by choices u1 to be the vertex founded by lemma 1.8 when applied
to A ∪ B. Now suppose we have obtained this for i − 1: A = X1 ⊃ X2 ⊃ ... ⊃ Xi−1 with
uj ∈ Xj , j ≤ i−1. Let Yi = {y ∈ Xi−1 : {y, ui−1} is light}. By (1), |Yi| ≥ δ2|Xj |/v(G′). Consider
any ujul with j, l ≤ i − 1, take any common neighbor u of them and delete N(u) from Yi. We
know there are

(
i−1
2

)
pairs uiul and |N(u)| < Kδ. For each uiul there are at most

(
t
2

)
many

choices of u as otherwise we can get a K
(1)
t . So the number of deleted vertices is at most(

i− 1

2

)(
t

2

)
Kδ = O(δ).

As long as |Yi| ≥ δ2|Xi−1|/v(G′) ≥ Ω(δ), we can get a Xi ⊆ Yi of size at least Ω(δ2/v(G′))|Xi−1|,
which satisfies (3). This is true, because i ≤ t and(

δ2

v(G′)

)i−1

|A| ≥
(
δ2

n

)i−1

· n ≥ Ω(δ),

which implies δ2t−3 ≥ nt−2. This shows that the algorithm can keep going until we have X1 ⊃
... ⊃ Xt and uj ∈ Xj for 1 ≤ j ≤ t. It is clear from this to see {uiuj} is light and any 3 of u1, ..., ut
has no common neighbors.
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