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Lecture 21. Bipartite graphs with bounded degree in one side
Theorem 1.1 (Füredi, Alon-Krivelevich-Sudakov). Let H be a bipartite graph with bipartition
(A,B) such that every vertex in A has degree at most t. We have

ex(n,H) = O(n2− 1
t ).

It’s tight for H = Kt,s when s ≫ t.

Conjecture 1.2. Let H be a bipartite graph with bipartition (A,B) such that every vertex in
A has degree at most t. If H is Kt,t-free, then there exists a constant c=c(H)>0, such that
ex(n,H) = O(n2− 1

r
−c).

We confirm the conjecture for r = 2 by the following theorem.

Theorem 1.3 (Sudakov-Tomon). Let H be a Kt,t-free bipartite graph with bipartition (A,B) such
that every vertex in A has degree at most t. Then

ex(n,H) = o(n2− 1
r ).

Notation 1.4.

• X(t) = {all subset of size t in X}.

• K
(t)
k =complete t-graph on k vertices.

• NG(S) = {v /∈ V \S| vs ∈ E(G) for any s ∈ S}.

• A graph G is K-almost regular if ∆(G) ≤ K · δ(G) (K ≥ 1).

Lemma 1. Let 0 < c < 10−4 and 1
2 ≤ α < 1. Let n be a suffciently large integer compared to c

and α. Let G be an n vertices graph with e(G) ≥ cn1+α. Then G contains a bipartite graph G′,
whose both vertex classes have size m ≥ 1

2n
α−α2

4(1+α) , e(G′) ≥ c
10m

1+α and ∆(G′) < mα.

Proof. This can be derived from a lemma of previous lecture.

Lemma 2. Let k, t be integers. Then there exists ∆ = ∆(k, t) such that any 2-edge-colouring of
K

(t)
∆ contains a monochromatic copy of K(t)

k .

Proof. Omit (HW).
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Lemma 3 (Hypergraph Removal Lemma; Nagle-Rödlt-Schacht & Gowers). Let k, t ∈ Z+. For
any β > 0, there is a δ = δ(k, t, β) > 0 such that the following holds. If H is a t-graph on n

vertices such that one needs to delete at least βnt edges of H to make it K(t)
k -free, then H contains

at least δnk copies of K(t)
k .

First, we introduce some ideas about Theorem 1.3.

Ideas. Using lemma 1, we assume G is a balanced complete bipartite graph, the two parts U, V

has equal size. e(G) ≥ ϵn2− 1
r and K-almost regular =⇒ d(v) ≈ n1− 1

r .

1. W ⊆ U, G′ = G[W∪U ], |W | ∼ n1− 1
r =⇒ Typical S ∈ V (t−1) has Ω(1) common neighbours

in W .

2. Define t-graph H on W . S ∈ W (t) is an edge of H if and only if |N(S)| ≥ t − 1. If
|N(S)| ≫constant, we colour it by red, otherwise we colour it by blue. =⇒ No red K

(t)
k

on W =⇒ all K(t)
k are blue.

3. Using Hypergraph Removal Lemma =⇒ W has Ω(|W |k) copies of K(t)
k .

4. Show NOT many “bad” K
(t)
k =⇒ Done.

Proposition 1.5 (Chernoff’s Inequality). If X ∼ binomial distribution B(n,p) i.e. X=
n∑

i=1

xi,

where for any i with
{
Pr[xi = 1] = p

Pr[xi = 0] = 1− p
, we have

Pr[X ≥ (1 + λ)pn] ≤ e
−λ2pn

3

Pr[X ≤ (1 + λ)pn] ≤ e
−λ2pn

3

.

Proof of Theorem 1.3. Let Hk be the bipartite graph on parts X,Y such that |X| = k, |Y | =
(t− 1)

(
k
t

)
, and for every S ∈ X(t), there are exactly (t− 1) vertices in Y where neighbourhood is

equal to S.
Note that any H satisfy the condition is contained in some Hk.

• It is enough to only prove that for any k, ex(n,Hk) = o(n2− 1
t ). (∗)

• We will assume t ≥ 3.

• We will show that for 0 < ϵ < 10−4, if n is suffciently large, ex(n,Hk) ≤ ϵn2− 1
t . =⇒ (∗)

Let G0 be an n0 vertices graph with e(G0) > 10ϵn
2− 1

t
0 . By lemma 1, G0 has a H-free bipartite

subgraph with parts U, V such that n = |U | = |V | > 1
2n

(1−1/t)/(8t−4)
0 , e(G) ≥ ϵn2− 1

t , ∆(G) ≤ n1− 1
t

and G is Hk-free with n ≫ k, t, s. By lemma 2, there exists a ∆ = ∆(k, t) such that any red-blue
edge-colouring of K(t)

∆ contains either a red or blue copy of K(t)
k .

Claim 1. Let p = αn− 1
t , where α = ∆( t−1

ϵ )t−123t−3. Then there exists W ⊂ U such that

• pn
2 < |W | < 2pn

• G′ = G[W ∪ V ] has ≥ p
4e(G) edges
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• dG′(x) < 2pn1− 1
t for x ∈ V .

Proof. Pick each vertex of U with probability p (independant with each other) and let W be the
set of selected vertices. Then the statement follow by standary concentration inequalities. For
x ∈ V with dG(x) ≥ n

1
4 , by Chernoff’s bounds,

Pr[|dG′(x)− pdG(x)| <
1

2
pdG(x)] ≥ 1− 2e−

pdG(x)

12 ≥ 1− 2e−n1/4/12,

where pdG(x) = Ω(n1− 2
t ) ≫ n

1
4 . So with high probability (1−o(1)), |dG′(x)−pdG(x)| < 1

2pdG(x)
for x ∈ V . Also with high probability (1− o(1)), ||W | − pn| < 1

2pn.
Lastly,

e(G′) =
∑
x∈V

dG′(x) ≥
∑

x∈V,dG(x)≥n
1
4

1

2
pdG(x) ≥

1

2
pe(G)− n1+ 1

4 ≥ 1

4
pe(G).

We consider

L =
∑

C∈V (t−1)

|NG′(C)| = #(t− 1)-stars =
∑
x∈W

(
dG′(x)

t− 1

)
≥ |W |

(
e(G′)/|W |

t− 1

)

> (t− 1)−(t−1)e(G′)t−1|W |−(t−2) ≥
(

ϵ

t− 1

)(t−1)

· 2−3t+4 · p · nt−1+ 1
t = 2∆nt−1.

We point out α
2n

1− 1
t < |W | < 2αn1− 1

t and any x ∈ V has degree at most 2pn1− 1
t = 2αn1− 2

t in
G′, where α is independent of n. Let H be the t-graph on W such that S ∈ W (t) is an edge of H
if and only if |NG′(S)| ≥ t− 1. Then we colour an edge S ∈ E(H) by red if |NG′(S)| ≥ (t− 1)

(
k
t

)
and colour it by blue if t− 1 ≤ |NG′(S)| < (t− 1)

(
k
t

)
.

Claim 2. H has NO red K
(t)
k .

Proof. If so, then we can find a copy of Hk by a greedy algorithm applied to this K
(t)
k .

Let C ∈ V (t−1) and consider T = NG′(C). Let r = ⌊ |T |
∆ ⌋ ≥ |T |

∆ − 1 and let T1, T2, · · · , Tr

be disjoint sets of size ∆ in T. Note that H[Ti] is a clique K
(t)
∆ . By lemma 2 and claim 2, each

Ti contains a blue K
(t)
k in H, called Ai. Set ZC = {A1, A2, · · · , Ar} and Z =

∪
C∈V (t−1)

ZC is a

multiset (different sets C may have the same Ai). Note

|Z| =
∑

C∈V (t−1)

|ZC | ≥
∑

C∈V (t−1)

(
|NG′(C)|

∆
− 1) ≥ L

∆
−
(

n

t− 1

)
≥ nt−1.

Claim 3. There is a constant β = β(k, t, ε) > 0 and Z ′ ⊆ Z such that |Z ′| ≥ β|w|t and any two
clique are edge-disjoint.
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Proof. Let D be the auxiliary graph on vertex set Z,where A,B ∈ Z are jointed by an edge if
and only if |A

∩
B| ≥ t, we want to show that ∆(D) ≤

(
k
t

)(
n

t−1

)
, where u = (t− 1)

(
k
t

)
.

Let A ∈ Z be any (blue) Kk
(t) and S ∈ A(t). So S is blue implies |NG(S)| ≤ (t − 1)

(
k
t

)
≜ u.

There are at most
(

u
t−1

)
sets C ∈ V (t−1) such that S ⊆ NG′(C). For each such C, at most one

element of ZC can contain S. In total at most
(

u
t−1

)
elements of Z can contain S. Since A has

degree at most
(
k
t

)(
u

t−1

)
.

Therefore, D contains an independent set Z ′ of size at least |Z|
∆(D)+1 ≥ nt−1

∆(D)+1 ≥ β|w|t.

Claim 4. Let M denote the number of copies of Kk
(t) in H. Then there is a γ = γ(k, t, ε) such

that |M | ≥ γn
(t−1)k

t .

Proof. By claim 3, we see there are at least |Z ′| ≥ γβ|w|t edge-disjoint Kk
(t). To destroy all

copies of Kk
(t) in H, one needs to delete one edge in each of these edge-disjoint Kk

(t), which
results in the removal of at least β|w|t edges. By lemma 3(HRL), then |M | ≥ δ|w|k ≥ γn

(t−1)k
t ,

where |w| = Θ(n1−1/t).

Definition 1.6. A copy R of Kk
(t) in H is bad, if there are two distinct S, S′ ∈ E(R) with

N(S)
∩
N(S′) ̸= ∅. Otherwise, R is good.

Claim 5. A good copy R of Kk
(t) in H can give a copy of Hk in W

∪
V . Then all copies of Kk

(t)

are blue and bad.

Claim 6. There exists a γ′ = γ′(k, t, ε) such that the number of bad copies of Kk
(t) is at most

γ′n
(t−1)k−1

t .

Proof. If R is bad, we have S, S′ ∈ E(R) with N(S)
∩
N(S′) ̸= ∅. Let x ∈ N(S)

∩
N(S′). Then

|NG′(x)
∩

V (R)| ≥ |S
∪
S′| ≥ t+1. Summing over all vertices X ∈ V , we see that the number of

bad Kk
(t) is at most∑

x∈V

(
N(x)

∩
W

t+ 1

)
|w|k−t−1 ≤ n(2αn1−2/t)t+1(2αn1−1/t)k−t−1 = (2α)kn

(t−1)k−1
t .

Claim 4 and Claim 6 contradict to each other. This proves the theorem 1.3.
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