Extremal and Probabilistic Graph Theory

Instructor: Jie Ma, Scribed by Hongkui Wang, Tianchi Yang and Kefan Yu

May 20 2020, Wednesday

Lecture 21. Bipartite graphs with bounded degree in one side

Theorem 1.1 (Füredi, Alon-Krivelevich-Sudakov). Let H be a bipartite graph with bipartition (A, B) such that every vertex in A has degree at most t. We have

$$
\operatorname{ex}(n, H)=O\left(n^{2-\frac{1}{t}}\right)
$$

It's tight for $H=K_{t, s}$ when $s \gg t$.
Conjecture 1.2. Let H be a bipartite graph with bipartition (A, B) such that every vertex in A has degree at most t. If H is $K_{t, t}$-free, then there exists a constant $c=c(H)>0$, such that $\operatorname{ex}(n, H)=O\left(n^{2-\frac{1}{r}-c}\right)$.

We confirm the conjecture for $r=2$ by the following theorem.
Theorem 1.3 (Sudakov-Tomon). Let H be a $K_{t, t}$-free bipartite graph with bipartition (A, B) such that every vertex in A has degree at most t. Then

$$
\operatorname{ex}(n, H)=o\left(n^{2-\frac{1}{r}}\right)
$$

Notation 1.4.

- $X^{(t)}=\{$ all subset of size t in $X\}$.
- $K_{k}^{(t)}=$ complete t-graph on k vertices.
- $N_{G}(S)=\{v \notin V \backslash S \mid v s \in E(G)$ for any $s \in S\}$.
- A graph G is K-almost regular if $\Delta(G) \leq K \cdot \delta(G) \quad(K \geq 1)$.

Lemma 1. Let $0<c<10^{-4}$ and $\frac{1}{2} \leq \alpha<1$. Let n be a suffciently large integer compared to c and α. Let G be an n vertices graph with $e(G) \geq c n^{1+\alpha}$. Then G contains a bipartite graph G^{\prime}, whose both vertex classes have size $m \geq \frac{1}{2} n^{\frac{\alpha-\alpha^{2}}{4(1+\alpha)}}, e\left(G^{\prime}\right) \geq \frac{c}{10} m^{1+\alpha}$ and $\Delta\left(G^{\prime}\right)<m^{\alpha}$.

Proof. This can be derived from a lemma of previous lecture.
Lemma 2. Let k, t be integers. Then there exists $\Delta=\Delta(k, t)$ such that any 2-edge-colouring of $K_{\Delta}^{(t)}$ contains a monochromatic copy of $K_{k}^{(t)}$.

Proof. Omit (HW).

Lemma 3 (Hypergraph Removal Lemma; Nagle-Rödlt-Schacht \& Gowers). Let $k, t \in \mathbb{Z}^{+}$. For any $\beta>0$, there is a $\delta=\delta(k, t, \beta)>0$ such that the following holds. If H is a t-graph on n vertices such that one needs to delete at least βn^{t} edges of H to make it $K_{k}^{(t)}$-free, then H contains at least δn^{k} copies of $K_{k}^{(t)}$.

First, we introduce some ideas about Theorem 1.3.
Ideas. Using lemma 1, we assume G is a balanced complete bipartite graph, the two parts U, V has equal size. $e(G) \geq \epsilon n^{2-\frac{1}{r}}$ and K-almost regular $\Longrightarrow d(v) \approx n^{1-\frac{1}{r}}$.

1. $W \subseteq U, G^{\prime}=G[W \cup U],|W| \sim n^{1-\frac{1}{r}} \Longrightarrow$ Typical $S \in V^{(t-1)}$ has $\Omega(1)$ common neighbours in W.
2. Define t-graph H on W. $S \in W^{(t)}$ is an edge of H if and only if $|N(S)| \geq t-1$. If $|N(S)| \gg$ constant, we colour it by red, otherwise we colour it by blue. \Longrightarrow No red $K_{k}^{(t)}$ on $W \Longrightarrow$ all $K_{k}^{(t)}$ are blue.
3. Using Hypergraph Removal Lemma $\Longrightarrow W$ has $\Omega\left(|W|^{k}\right)$ copies of $K_{k}^{(t)}$.
4. Show NOT many "bad" $K_{k}^{(t)} \Longrightarrow$ Done.

Proposition 1.5 (Chernoff's Inequality). If $X \sim$ binomial distribution $B(n, p)$ i.e. $X=\sum_{i=1}^{n} x_{i}$, where for any i with $\left\{\begin{array}{l}\operatorname{Pr}\left[x_{i}=1\right]=p \\ \operatorname{Pr}\left[x_{i}=0\right]=1-p\end{array}\right.$, we have $\left\{\begin{array}{l}\operatorname{Pr}[X \geq(1+\lambda) p n] \leq e^{\frac{-\lambda^{2} p n}{3}} \\ \operatorname{Pr}[X \leq(1+\lambda) p n] \leq e^{\frac{-\lambda^{2} p n}{3}}\end{array}\right.$.

Proof of Theorem 1.3. Let H_{k} be the bipartite graph on parts X, Y such that $|X|=k,|Y|=$ $(t-1)\binom{k}{t}$, and for every $\mathrm{S} \in X^{(t)}$, there are exactly $(t-1)$ vertices in Y where neighbourhood is equal to S.

Note that any H satisfy the condition is contained in some H_{k}.

- It is enough to only prove that for any $k, \operatorname{ex}\left(n, H_{k}\right)=o\left(n^{2-\frac{1}{t}}\right)$.
- We will assume $t \geq 3$.
- We will show that for $0<\epsilon<10^{-4}$, if n is suffciently large, $\operatorname{ex}\left(n, H_{k}\right) \leq \epsilon n^{2-\frac{1}{t}} . \Longrightarrow(*)$

Let G_{0} be an n_{0} vertices graph with $e\left(G_{0}\right)>10 \epsilon n_{0}^{2-\frac{1}{t}}$. By lemma $1, G_{0}$ has a H-free bipartite subgraph with parts U, V such that $n=|U|=|V|>\frac{1}{2} n_{0}^{(1-1 / t) /(8 t-4)}, e(G) \geq \epsilon n^{2-\frac{1}{t}}, \Delta(G) \leq n^{1-\frac{1}{t}}$ and G is H_{k}-free with $n \gg k, t, s$. By lemma 2, there exists a $\Delta=\Delta(k, t)$ such that any red-blue edge-colouring of $K_{\Delta}^{(t)}$ contains either a red or blue copy of $K_{k}^{(t)}$.
Claim 1. Let $p=\alpha n^{-\frac{1}{t}}$, where $\alpha=\Delta\left(\frac{t-1}{\epsilon}\right)^{t-1} 2^{3 t-3}$. Then there exists $W \subset U$ such that

- $\frac{p n}{2}<|W|<2 p n$
- $G^{\prime}=G[W \cup V] h a s \geq \frac{p}{4} e(G)$ edges
- $d_{G^{\prime}}(x)<2 p n^{1-\frac{1}{t}}$ for $x \in V$.

Proof. Pick each vertex of U with probability p (independant with each other) and let W be the set of selected vertices. Then the statement follow by standary concentration inequalities. For $x \in V$ with $d_{G}(x) \geq n^{\frac{1}{4}}$, by Chernoff's bounds,

$$
\operatorname{Pr}\left[\left|d_{G^{\prime}}(x)-p d_{G}(x)\right|<\frac{1}{2} p d_{G}(x)\right] \geq 1-2 e^{-\frac{p d_{G}(x)}{12}} \geq 1-2 e^{-n^{1 / 4} / 12}
$$

where $p d_{G}(x)=\Omega\left(n^{1-\frac{2}{t}}\right) \gg n^{\frac{1}{4}}$. So with high probability $(1-o(1)),\left|d_{G^{\prime}}(x)-p d_{G}(x)\right|<\frac{1}{2} p d_{G}(x)$ for $x \in V$. Also with high probability $(1-o(1)),||W|-p n|<\frac{1}{2} p n$.

Lastly,

$$
e\left(G^{\prime}\right)=\sum_{x \in V} d_{G^{\prime}}(x) \geq \sum_{x \in V, d_{G}(x) \geq n^{\frac{1}{4}}} \frac{1}{2} p d_{G}(x) \geq \frac{1}{2} p e(G)-n^{1+\frac{1}{4}} \geq \frac{1}{4} p e(G) .
$$

We consider

$$
\begin{aligned}
L & =\sum_{C \in V^{(t-1)}}\left|N_{G^{\prime}}(C)\right|=\#(t-1) \text {-stars }=\sum_{x \in W}\binom{d_{G^{\prime}}(x)}{t-1} \geq|W|\binom{e\left(G^{\prime}\right) /|W|}{t-1} \\
& >(t-1)^{-(t-1)} e\left(G^{\prime}\right)^{t-1}|W|^{-(t-2)} \geq\left(\frac{\epsilon}{t-1}\right)^{(t-1)} \cdot 2^{-3 t+4} \cdot p \cdot n^{t-1+\frac{1}{t}}=2 \Delta n^{t-1} .
\end{aligned}
$$

We point out $\frac{\alpha}{2} n^{1-\frac{1}{t}}<|W|<2 \alpha n^{1-\frac{1}{t}}$ and any $x \in V$ has degree at most $2 p n^{1-\frac{1}{t}}=2 \alpha n^{1-\frac{2}{t}}$ in G^{\prime}, where α is independent of n. Let H be the t-graph on W such that $S \in W^{(t)}$ is an edge of H if and only if $\left|N_{G^{\prime}}(S)\right| \geq t-1$. Then we colour an edge $S \in E(H)$ by red if $\left|N_{G^{\prime}}(S)\right| \geq(t-1)\binom{k}{t}$ and colour it by blue if $t-1 \leq\left|N_{G^{\prime}}(S)\right|<(t-1)\binom{k}{t}$.
Claim 2. H has NO red $K_{k}^{(t)}$.
Proof. If so, then we can find a copy of H_{k} by a greedy algorithm applied to this $K_{k}^{(t)}$.
Let $C \in V^{(t-1)}$ and consider $T=N_{G^{\prime}}(C)$. Let $r=\left\lfloor\frac{\lfloor T \mid}{\Delta}\right\rfloor \geq \frac{|T|}{\Delta}-1$ and let $T_{1}, T_{2}, \cdots, T_{r}$ be disjoint sets of size Δ in T. Note that $H\left[T_{i}\right]$ is a clique $K_{\Delta}^{(t)}$. By lemma 2 and claim 2, each T_{i} contains a blue $K_{k}^{(t)}$ in H, called A_{i}. Set $Z_{C}=\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ and $Z=\bigcup_{C \in V^{(t-1)}} Z_{C}$ is a multiset (different sets C may have the same A_{i}). Note

$$
|Z|=\sum_{C \in V^{(t-1)}}\left|Z_{C}\right| \geq \sum_{C \in V^{(t-1)}}\left(\frac{\left|N_{G^{\prime}}(C)\right|}{\Delta}-1\right) \geq \frac{L}{\Delta}-\binom{n}{t-1} \geq n^{t-1} .
$$

Claim 3. There is a constant $\beta=\beta(k, t, \varepsilon)>0$ and $Z^{\prime} \subseteq Z$ such that $\left|Z^{\prime}\right| \geq \beta|w|^{t}$ and any two clique are edge-disjoint.

Proof. Let D be the auxiliary graph on vertex set Z,where $A, B \in Z$ are jointed by an edge if and only if $|A \bigcap B| \geq t$, we want to show that $\Delta(D) \leq\binom{ k}{t}\binom{n}{t-1}$, where $u=(t-1)\binom{k}{t}$.

Let $A \in Z$ be any (blue) $K_{k}{ }^{(t)}$ and $S \in A^{(t)}$. So S is blue implies $\left|N_{G}(S)\right| \leq(t-1)\binom{k}{t} \triangleq u$. There are at most $\binom{u}{t-1}$ sets $C \in V^{(t-1)}$ such that $S \subseteq N_{G^{\prime}}(C)$. For each such C, at most one element of Z_{C} can contain S. In total at most $\binom{u}{t-1}$ elements of Z can contain S. Since A has degree at most $\binom{k}{t}\binom{u}{t-1}$.

Therefore, D contains an independent set Z^{\prime} of size at least $\frac{|Z|}{\Delta(D)+1} \geq \frac{n^{t-1}}{\Delta(D)+1} \geq \beta|w|^{t}$.
Claim 4. Let M denote the number of copies of $K_{k}{ }^{(t)}$ in H. Then there is a $\gamma=\gamma(k, t, \varepsilon)$ such that $|M| \geq \gamma n^{\frac{(t-1) k}{t}}$.

Proof. By claim 3, we see there are at least $\left|Z^{\prime}\right| \geq \gamma \beta|w|^{t}$ edge-disjoint $K_{k}{ }^{(t)}$. To destroy all copies of $K_{k}{ }^{(t)}$ in H, one needs to delete one edge in each of these edge-disjoint $K_{k}{ }^{(t)}$, which results in the removal of at least $\beta|w|^{t}$ edges. By lemma 3 (HRL), then $|M| \geq \delta|w|^{k} \geq \gamma n^{\frac{(t-1) k}{t}}$, where $|w|=\Theta\left(n^{1-1 / t}\right)$.

Definition 1.6. A copy R of $K_{k}{ }^{(t)}$ in H is bad, if there are two distinct $S, S^{\prime} \in E(R)$ with $N(S) \bigcap N\left(S^{\prime}\right) \neq \emptyset$. Otherwise, R is good.
Claim 5. A good copy R of $K_{k}{ }^{(t)}$ in H can give a copy of H_{k} in $W \bigcup V$. Then all copies of $K_{k}{ }^{(t)}$ are blue and bad.
Claim 6. There exists a $\gamma^{\prime}=\gamma^{\prime}(k, t, \varepsilon)$ such that the number of bad copies of $K_{k}{ }^{(t)}$ is at most $\gamma^{\prime} n \frac{(t-1) k-1}{t}$.

Proof. If R is bad, we have $S, S^{\prime} \in E(R)$ with $N(S) \bigcap N\left(S^{\prime}\right) \neq \emptyset$. Let $x \in N(S) \bigcap N\left(S^{\prime}\right)$. Then $\left|N_{G^{\prime}}(x) \bigcap V(R)\right| \geq\left|S \bigcup S^{\prime}\right| \geq t+1$. Summing over all vertices $X \in V$, we see that the number of bad $K_{k}{ }^{(t)}$ is at most

$$
\sum_{x \in V}\binom{N(x) \bigcap W}{t+1}|w|^{k-t-1} \leq n\left(2 \alpha n^{1-2 / t}\right)^{t+1}\left(2 \alpha n^{1-1 / t}\right)^{k-t-1}=(2 \alpha)^{k} n^{\frac{(t-1) k-1}{t}}
$$

Claim 4 and Claim 6 contradict to each other. This proves the theorem 1.3.

