# Extremal and Probabilistic Graph Theory 2020 Spring, USTC <br> Homework 3 

- The due is on April 6, 2020.

1. Prove the following version of Graph Counting Lemma, using induction on $|V(H)|$ : Let $H$ be a graph with $V(H)=[h]$. Given $\epsilon>0$, let $G$ be a graph with disjoint vertex subsets $V_{1}, \ldots, V_{h} \subseteq V(G)$ such that $\left(V_{i}, V_{j}\right)$ is $\epsilon$-regular whenever $i j \in E(H)$. Then the number of tuples $\left(v_{1}, v_{2}, \ldots, v_{h}\right) \in V_{1} \times V_{2} \times \ldots \times V_{h}$ such that $v_{i} v_{j} \in E(G)$ whenever $i j \in E(H)$ is

$$
\left(\prod_{i j \in E(H)} d\left(V_{i}, V_{j}\right) \pm c_{H} \epsilon\right) \prod_{i \in[h]}\left|V_{i}\right|,
$$

where $c_{H}$ is a constant only depending on $H$.
2. Give a full proof of Graph Removal Lemma: For any graph $H$ and any $\epsilon>0$, there exists some $\delta=\delta(H, \epsilon)>0$ such that any $n$-vertex graph with less $\delta n^{|V(H)|}$ copies of $H$ can be made $H$-free by deleting at most $\epsilon n^{2}$ edges.
3. Give a full proof of Erdős-Simonovits Stability Theorem: For any $\epsilon>0$ and any graph $F$ with $\chi(F)=r+1$, there exist some $\delta>0$ and $n_{0}$ such that if $G$ is an $n$-vertex $F$-free graph with $e(G) \geq\left(1-\frac{1}{r}\right)\binom{n}{2}-\delta n^{2}$ where $n \geq n_{0}$, then the edit distance $d\left(G, T_{r}(n)\right) \leq \epsilon n^{2}$.
4. Let $K_{4}^{-}$be obtained from $K_{4}$ by deleting one edge. Prove that for sufficiently large $n$, the unique extremal graph achieving $e x\left(n, K_{4}^{-}\right)$is $T_{2}(n)$.

Hint: use the above stability. (Ask Yang Tianchi for more hints if needed.)
5. Prove Induced Embedding Lemma: For any $c \in(0,1 / 2]$ and $h$, there exists some $\epsilon=\epsilon(c, h)$ such that the following holds for any $h$-vertex graph $H$. If $V_{1}, V_{2}, \ldots, V_{h}$ are disjoint sets of size at least $1 / \epsilon$ and each $\left(V_{i}, V_{j}\right)$ is $\epsilon$-regular with density in $[c, 1-c]$ for all $1 \leq i<j \leq h$, then one can find an induced copy of $H$ in $\left(V_{1}, V_{2}, \ldots, V_{h}\right)$.

Hint: If some $\left(V_{i}, V_{j}\right)$ is $\epsilon$-regular with density in $[c, 1-c]$, so is the complement of $\left(V_{i}, V_{j}\right)$.
6. Let $t(n)$ be the maximum number of edges in an $n$-vertex graph where every edge lies in a unique triangle. Use triangle removal lemma to show that $t(n)=o\left(n^{2}\right)$.
7. Let $f(n)$ be the maximum number of edges in an $n$-vertex 3 -uniform hypergraph which does not contain 6 vertices that span at least 3 edges. Prove that $f(n) \leq t(n)+n$.

Hint: This is the famous (6,3)-problem. Let $H$ be a 3 -graph achieving $f(n)$. Let us assume that every vertex in $H$ has degree at least two. Construct a graph $G$ from the 3 -graph $H$ such that $G$ satisfies the condition in Problem 6.
8. Let $g(n)$ be the maximum number of edges in an $n$-vertex bipartite graph whose edge set can be partitioned into at most $n$ induced matchings. Prove that $g(n) \leq f(2 n)$.

Hint: Let $G$ be a bipartite graph achieving $g(n)$. Construct a 3 -graph $H$ obtained from $G$ by adding $n$ new vertices, and show that $H$ satisfies the condition in Problem 7 .

Remark 1. Combining Problems 6, 7 and 8, these functions $t(n), f(n), g(n)$ are all $o\left(n^{2}\right)$.
Remark 2. It is also true that $\frac{t(n)}{2} \leq g(n)$. Can you see it? Putting all together, it holds

$$
\frac{1}{2} t(n) \leq g(n) \leq f(2 n) \leq t(2 n)+2 n
$$

Therefore, all these functions $t(n), f(n), g(n)$ are equivalent (up to constant factors)!!

