Extremal and Probabilistic Graph Theory 2020 Spring, USTC Homework 4

• The due is on April 20, 2020.

1. Let G be an n-vertex graph and A be its adjacency matrix. Let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ be the eigenvalues of A. Prove that

- (1). $\lambda_1 = \max_{\vec{x}\neq \vec{0}} \frac{\vec{x}^T A \vec{x}}{\vec{x}^T \vec{x}}.$
- (2). $|\lambda_n| \leq \lambda_1$.
- (3). If G is bipartite, then $\lambda_n = -\lambda_1$.
- (4). If G is connected and $\lambda_n = -\lambda_1$, then G is bipartite.

2. Let G be an n-vertex graph and $u, v \in V(G)$ with $d(u) + d(v) \ge n$. Prove that G is Hamiltonian if and only if $G + \{uv\}$ is Hamiltonian.

3. Let G be a graph with degree sequence $(a_1, a_2, ..., a_n)$ where $a_1 \leq a_2 \leq ... \leq a_n$. Suppose that there is no integer $1 \leq i < n/2$ such that $a_i \leq i$ and $a_{n-i} < n-i$. Then G is Hamiltonian.

4. Let C_t be the set of all cycles of length at least t + 1. Prove that $ex(n, C_t) \leq t(n-1)/2$ and show that it is tight when (t-1)|(n-1).

5. Let G be a graph. Prove that if |N(X)| > 2|X| holds for all subsets $X \subseteq V(G)$ with $|X| \leq k$, then G contains a cycle C of length at least 3k, which contains a vertex x and all its neighbors in G.

6. Show that every 2k-regular simple graph on 4k + 1 vertices is Hamiltonian.

7. Let $k \ge 2\ell \ge 0$. If G is a graph with $\delta(G) \ge 1000 \cdot \ell \cdot k^{1/2}$, then G contains a cycle of length 2ℓ modulus k.