Extremal and Probabilistic Graph Theory 2020 Spring, USTC
 Homework 5

- The due is on May 4, 2020.

1. Prove that there exists an absolute constant $c>0$ such that any graph with average degree at least $c k$ contains k cycles of consecutive even lengths.
2. Let $k \geq 2 \ell \geq 0$. If G is a graph with $\delta(G) \geq 1000 \cdot \ell \cdot k^{1 / 2}$, then G contains a cycle of length 2ℓ modulus k.
3. Let d, g be positive integers and let $n_{0}(d, g)$ be a function as following:

$$
n_{0}(d, g)=1+d \sum_{i=0}^{r-1}(d-1)^{i} \text { if } g=2 r+1 \quad \text { and } \quad n_{0}(d, g)=2 \sum_{i=0}^{r-1}(d-1)^{i} \text { if } g=2 r .
$$

Prove that if G is a graph with min-degree d and girth at least g, then $|V(G)| \geq n_{0}(d, g)$.
4. Let H be a connected graph where each edge is colored by color 1 or color 2 . Suppose that there is at least one edge of each color. Prove that if the number of edges of color 1 is at least $(p+1)|V(H)|$, then there exists a path of length p in H whose first edge is colored by color 2 and all other edges are colored by color 1 .
5. Prove that the Erdős-Renyi polarity graph $E R_{q}$ has exactly $q+1$ vertices of degree q.
6. Let Zarankiewicz number $z(n, m, s, t)$ be the maximum number of 1 entries in an $n \times m$ matrix M (whose entries are either 0 or 1) such that M does not contain an $s \times t$ submatrix consisting entirely of 1 entries. Prove that $z(n, m, s, t) \leq(s-1)^{1 / t} m n^{1-1 / t}+(t-1) n$.
7. Let $t \geq 2$ and $s>t$! be fixed. Prove that if $n^{1 / t} \leq m \leq n^{1+1 / t}$, then

$$
z(n, m, s, t)=\Theta\left(m n^{1-1 / t}\right) .
$$

8. The k-color Ramsey number $R_{k}(F)$ is the maximum integer m such that one can color the edges of the complete graph K_{m} using k colors with no monochromatic copy of F.

Prove that $R_{k}\left(K_{3,3}\right) \geq(1+o(1)) k^{3}$. (Remark: in fact we have $R_{k}\left(K_{3,3}\right)=(1+o(1)) k^{3}$.)

