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Abstract

Let H denote the tree with six vertices two of which are adjacent and of degree three.
Let G be a graph and u1, u2, a1, a2, a3, a4 be distinct vertices of G. We characterize those
G that contain a topological H in which u1, u2 are of degree three, and a1, a2, a3, a4 are
of degree one. This work was motivated by the Kelmans–Seymour conjecture that 5-
connected nonplanar graphs contain topological K5.

AMS Subject Classification: 05C38, 05C40, 05C75

1 Introduction

The work in this paper was motivated by the well known conjecture of Seymour [14] and
Kelmans [6]: Every 5-connected nonplanar graph contains a topological K5 (i.e., subdivision
of K5). Clearly, this would provide structural information that guarantees the existence of
a topological K5. Earlier, Dirac [3] conjectured an extremal function for the existence of a
topological K5: If G is a simple graph with n ≥ 3 vertices and at least 3n − 5 edges then
G contains a topological K5. This conjecture was established by Mader [12]. Kézdy and
McGuiness [7] showed that the Kelmans-Seymour conjecture if true would imply Mader’s
result. This Kelmans-Seymour conjecture is also related to a conjecture of Hajós (see [2])
that every graph containing no topological Kk+1 is k-colorable. Hajós’ conjecture is false for
k ≥ 6 [2] and true for k = 1, 2, 3, and remains open for the case k = 4 and k = 5.

An approach to the Kelmans-Seymour conjecture is to study the so called rooted K4 prob-
lem: Given a graph G and four distinct vertices of G, when does G contain a topological K4 in
which x1, x2, x3, x4 are the vertices of degree three. This problem was solved for planar graph-
s, see [16]. Recently, Aigner-Horev and Krakovski [1] used this to prove Kelmans-Seymour
conjecture for apex graphs. (A different and shorter proof was found by Ma, Thomas and
Yu [9].)

One step in [16] is to solve the following rooted H problem for planar graphs: Let H
represent the tree on six vertices two of which are adjacent and of degree 3. Let G be a graph
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and u1, u2, a1, a2, a3, a4 be distinct vertices of G. When does G contain a topological H in
which u1, u2 are of degree 3 and a1, a2, a3, a4 are of degree 1? We say such a topological H
is rooted at u1, u2, {a1, a2, a3, a4}. For convenience, we use quadruple to denote (G, u1, u2, A)
where u1, u2 are distinct vertice of a graph G, A ⊆ V (G)− u1, u2}, and |A| = 4.

The main result of this paper is a characterization of graphs quadruples (G, u1, u2, A) that
contain a topological H rooted at u1, u2, A. Since the statement of this result requires a fair
amount of terminology, we defer it to Section 2, see Theorem 2.1.

We devote the rest of this section to notation and terminology. A separation in a graph
G consists of a pair of subgraphs G1, G2, denoted as (G1, G2), such that E(G1 ∩ G2) = ∅,
E(G1) ∪ V (G1) 6⊆ G1 ∩ G2, and E(G2) ∪ V (G2) 6⊆ G1 ∩ G2. The order of this separation is
|V (G1 ∩ G2)|, and (G1, G2) is said to be a k-sepration if its order is k. Let G be a graph. A
set S ⊆ V (G) is a k-cut or a cut of size k in G, where k is a positive integer, if |S| = k and
G has a separation (G1, G2) such that V (G1 ∩ G2) = S and V (Gi − S) 6= ∅ for i ∈ {1, 2}. If
v ∈ V (G) and {v} is a cut of G, then v is said to be a cut vertex of G.

Let G be a graph. If there is no confusion, we may write S ⊆ G instead of S ⊆ V (G) or
S ⊆ E(G), and write x ∈ G instead of x ∈ V (G) or x ∈ E(G). Let H ⊆ G, S ⊆ V (G), and T
a set of 2-element subsets of V (H) ∪ S; then H + (S ∪ T ) denotes the graph with vertex set
V (H) ∪ S and edge set E(G) ∪ T . If T = {{x, y}}, we write G + xy instead of G + {{x, y}}.

Given a path P in a graph and x, y ∈ V (P ), xPy denotes the subpath of P between x and
y (inclusive). We may view paths as sequences of vertices; thus if P is a path between x and
y, Q is a path between y and z, and P ∩ Q = {y}, then PyQ denotes the path P ∪ Q. The
ends of the path P are the vertices of the minimum degree in P , and all other vertices of P are
its internal vertices. A path P with ends u and v is also said to be from u to v or between u
and v. A colloection of paths are said to be independent if no vertex of any path is an internal
vertex of any other path.

2 Obstructions

For convenience, we say that a quadruple (G, u1, u2, A) is feasible if G contains a topological H
rooted at u2, u2, A. An obstruction is a quadruple that is not feasible. We now describe basic
obstructions.

A quadruple (G, u1, u2, A) is of type I if G is the edge-disjoint union of subgraphs U1, U2, A1

such that |V (U1 ∩ A1)| = 3, |V (U2 ∩ A1)| = 4, V (U1 ∩ U2) ⊆ A ∩ V (A1), |V (U1 ∩ U2)| = 2,
A ⊆ A1, and for some ∈ {1, 2}, ui ∈ U1 − A1 and u3−i ∈ U2 − A1. Clearly, if G has a
topological H rooted at u1, u2, A, say J , then J ∩ U1 consists of three independent paths
from ui to V (U1 ∩ A1). Therefore, J ∩ U2 must have three independent paths from u3−i to
(U2 ∩A1)− U1, a contradiction. So quadruples of type I are obstructions.

A quadruple (G, u1, u2, A) is of type II if there exist edge disjoint subgraphs U1, U2, A1, A2, A3

such that G = U1 ∪ U2 ∪ A1 ∪ A2 ∪ A3, |V (U2 ∩ A3)| = |V (Ui ∩ Aj)| = 1 for i ∈ {1, 2} and
j ∈ {1, 2}, |V (U1 ∩A3)| = 2, Ai ∩Aj ⊆ U1 ∪ U2, U1 ∩ U2 ⊆ A1 ∪A2 ∪A3, |V (Ai) ∩A| = 1 for
i = 1, 2, |V (A3)∩A| = 2, if ai ∈ Uj then ai ∈ U2 then ai ∈ A1 ∩A2 ∩A3, if ai ∈ U1 ∩ (A1 ∪A2)
then ai ∈ A3,—V(Ai)| = 1 for some i ∈ {1, 2} then Ai ⊆ Aj for all j 6= i, and for some
i ∈ {1, 2}, ui ∈ U1 − (A1 ∪ A2 ∪ A3) and u3−i ∈ U2 − (A1 ∪ A2 ∪ A3). Clearly, if G has a
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topological H rooted at u1, u2, A, say J , then J ∩U2 consists of three independent paths from
u3−i to V (A1 ∪A2) ∩A) ∪ V (U2 ∩A3). Therefore, J ∩ U1 must have three independent paths
from ui to V (U1 ∩A3), a contradiction. So quadruples of type II are obstructions.

A quadruple (G, u1, u2, A) is of type III if there exist edge disjoint subgraphs U1, U2, A1, A2

of G such that G = U1 ∪ U2 ∪ A1 ∪ A2, |V (U1 ∩ A1)| = |V (U2 ∩ A1)| = 1, |V (U1 ∩ A2)| =
|V (U2∩A2)| = 2, V (U1∩U2) ⊆ A1∪A2∪A3, |V (A1)∩A| = 1, |V (A2)∩A| = 3, if ai ∈ Uj then
ai ∈ A∩A2, and ui ∈ Ui − (A1 ∪ A2) for i = 1, 2. Clearly, if G has a topological H rooted at
u1, u2, A, say J , then J ∩ (U1 ∪A1) has three independent paths from u1 to the three vertices
in (V (A1) ∩A) ∪ V (U1 ∩A2). So J ∩ U2 has three independent paths from u2 to V (U2 ∩A2),
a contradiction. So quadruples of type III are obstructions.

A quadruple (G, u1, u2, A) is of type IV if there exist edge-disjoint subgraphs U1, U2, A1, A2, A3, A4

such that G/xy = U1 ∪ U2 ∪ A1 ∪ A2 ∪ A3 ∪ A4, |V (Ui ∩ Aj)| = 1 for 1 ≤ i ≤ 4 and
j = 1, 2, V (U1 ∩ U2) ⊆ A1 ∪ A2 ∪ A3 ∪ A4, |V (Ai) ∩ A| = 1 for 1 ≤ i ≤ 4, if ai ∈ Uj then
ai ∈ A1 ∩ A2 ∩ A3 ∩ A4 ∩ U3−j , and ui ∈ Ui − (A1 ∪ A2 ∪ A3 ∪ A4) for i = 1, 2. Clearly, if
G has a topological H rooted at u1, u2, A, say J , then the path in J between u1 and u2 must
go through Ai for some 1 ≤ i ≤ 4. But then J cannot use V (Ai) ∩ A, a contradiction. So
quadruples of type IV are obstructions.

A quadruple (G, u1, u2, A) is of type V if there exist edge disjoint subgraphs U1, U2, A1, A2

of G such that G = U1 ∪ U2 ∪ A1 ∪ A2, |V (U1 ∩ A1)| = |V (U2 ∩ A2)| = 1, |V (U1 ∩ A2)| =
|V (U2∩A1)| = 2, V (U1∩U2) ⊆ A1∪A2, |V (A1)∩A| = 2 = |V (A2)∩A|, and ui ∈ Ui−(A1∪A2)
for i = 1, 2. Clearly, if G has a topological H rooted at u1, u2, A, say J , then J ∩ Ui has three
independent paths from ui to the vertices in V (Ui)∩ V (A1 ∪A2), respectively. So the path in
J between u1 and u2 must go through A1 or A2, say A1 by symmetry. Then J can only use
one of V (A1) ∩A, a contradiction. So quadruples of type V are obstructions.

A quadruple (G, u1, u2, A) is of type VI if there exist edge-disjoint subgraphs U1, U2, A1

of G such that GU1 ∪ U2 ∪ A1, |V (Ui ∩ A1)| = 3 for i = 1, 2, V (U1 ∩ U2) ⊆ A ∩ V (A1),
|V (U1 ∩ U2)| = 1, and ui ∈ Ui − A1 for i = 1, 2. Clearly, if G has a topological H rooted
at u1, u2, A, say J , then J ∩ Ui consists of three independent paths from ui to V (Ui ∩ A1).
Therefore, J contains a path from u1 to u2 and containing a vertex from A, a contradiction.
So quadruples of type VI are obstructions.

We can now state our main result which chracterizes all feasible quadruples.

Theorem 2.1. Let (G, u1, u2, A) be a quadruple and let A := {a1, a2, a3, a4}. Then one of the
following holds.

(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1 ∩ G2)| ≤ 2 and for some i ∈ {1, 2}, ui ∈
G1 −G2 and A ∪ {u3−i} ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1 ∩G2)| ≤ 4, u1, u2 ∈ G1−G2, and A ⊆ G2.

(iv) (G, u1, u2, A) is an obstruction of type I-VI.

The idea of our proof of Theorem 2.1 is to find an edge xy in G − (A ∪ {u1, u2}) and
consider the graph G/xy obtained from G by contracting xy. Clearly, if (G/xy, u1, u2, A) is
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feasible then (G, u1, u2, A) is feasible. We will show that if (G/xy, u1, u2, A) is an obstruction
of one these six types, then (i), or (ii), or (iii), or (iv) holds. This is done in Section 4.

3 Disjoint paths

In this section we prove useful lemmas about disjoint paths. First, we state the following result
of Perfect [13]; we will need the k = 3 case.

Lemma 3.1. (Perfect) Let G be a graph, u ∈ V (G), and A ⊆ V (G−u). Suppose there exist k
independent paths from u to distinct a1, . . . , ak ∈ A, respectively, and otherwise disjoint from
A. Then for any n ≥ k, if there exist n independent paths P1, . . . , Pn in G from u to n distinct
vertices in A and otherwise disjoint from A then P1, . . . , Pn may be chosen so that ai ∈ Pi for
i = 1, . . . , k.

We need structural information about graphs containing no cycle through three given edges.
Lovász [8] proved the following.

Lemma 3.2. (Lovász) Let G be a 3-connected graph and e1, e2, e3 be distinct edges of G. Then
G contains a cycle through e1, e2, e3 iff G− {e1, e2, e3} is connected.

We also need the following easy generalization of Lemma 3.2.

Lemma 3.3. Let G be a connected graph and let e1, e2, e3 ∈ E(G) be distinct. Then one of
the following holds.

(i) {e1, e2, e3} is contained in a cycle in G.

(ii) G has a separation (G1, G2) such that |V (G1 ∩G2)| = 1 and E(Gi)∩ {e1, e2, e3} 6= ∅ for
i = 1, 2.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| = 2 and for some i ∈ {1, 2}, |E(Gi)∩
{e1, e2, e3}| ≤ 1 and |V (Gi)| ≥ 3.

(iv) G− {e1, e2, e3} is not connected.

Proof. Suppose the assertion is false, and choose a counterexample G, e1, e2, e3 such that
|V (G)| is minimum. Then G is not 3-connected, as otherwise (i) or (iv) holds by Lemma 3.2.
So let (G1, G2) be a k-separation of G such that k ∈ {1, 2}, and Gi −G3−i 6= ∅ for i = 1, 2.

If k = 2 then (iii) holds, a contradiction. So k = 1, and we may assume by symmetry
that {e1, e2, e3} ⊆ G1 (or else (ii) would hold). By the minimality of G, we see that one of
(i)–(iv) holds for G1, e1, e2, e3. Because k = 1, it is easy to check that one of (i)–(iv) holds for
G, e1, e2, e3, a contradiction.

The problem for finding a cycle through three given edges is equivalent to the problem for
finding two disjoint paths between two pairs of vertices and through a given edge. In general
one could ask the problem for finding k disjoint paths between two k-sets (of vertices) and
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through a specified edge. We solve the k = 3 case here, which will be used many times in our
proof of Theorem 2.1.

First, we introduce the concept of a bridge. For a subgraph H of a graph G, an H-bridge
of G is a subgraph of G, say B, for which there exists a component D of G− V (H) such that
B is induced by the edges which are either contained in D or from D to H.

Lemma 3.4. Let G be a graph, A = {a1, a2, a3} ⊆ V (G), B = {b1, b2, b3} ⊆ V (G), and
e ∈ E(G) such that A ∩B = ∅ and V (e) ∩ (A ∪B) = ∅. Then one of the following statements
holds.

(i) G has three disjoint paths from A to B and through e.

(ii) G has a separation (G1, G2) such that |V (G1 ∩G2)| ≤ 2, A ⊆ G1, and B ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1 ∩G2)| ≤ 1, e ∈ G1, and A ∪B ⊆ G2.

(iv) G has a separation (G1, G2) such that |V (G1 ∩G2)| = 3, A ⊆ G1, and B ⊆ G2.

(v) G = G1 ∪G2 ∪G3 such that G1 ∩G3 = ∅, e ∈ G2, |V (G1 ∩G2)| ≤ 1, |V (G2 ∩G3)| ≤ 1,
|V (G1) ∩A| = 1 = |V (G1) ∩B|, and |V (G3) ∩A| = |V (G3) ∩B| = 2.

(vi) G = G1 ∪G2 ∪G3 ∪G4 ∪G5 such that |V (Gi ∩Gj)| = 1 for i ∈ {1, 2} and j ∈ {3, 4, 5},
V (G1 ∩G2) ⊆ G3 ∪G4 ∪G5, Gi ∩Gj ⊆ G1 ∪G2 for 3 ≤ i 6= j ≤ 5, e ∈ G1, and either
A ⊆ G2 and |V (Gj) ∩ B| = 1 for j ∈ {3, 4, 5} or B ⊆ G2 and |V (Gj) ∩ A| = 1 for
j ∈ {3, 4, 5}.

Proof. We may assume that G has three disjoint paths from A to B, or else (ii) follows from
Menger’s theorem. So let P1, P2, P3 denote three disjoint paths in G from A to B, and let
P :=

⋃3
i=1 Pi. If e ∈ P then (i) holds. So we may assume that e /∈ P for any choice of P . Let

HP denote the P -bridge of G containing e. We choose P so that

(1) HP is maximal.

Without loss of generality we may assume that Pi is from ai to bi for i = 1, 2, 3. Let
xi, yi ∈ V (Pi ∩HP ) (if not empty) such that xiPiyi is maximal. We may assume ai, xi, yi, bi
occur on Pi in order. For conveneience, let H ′ := HP − P , and let Hi := G[H ′ ∪ xiPiyi] for
i = 1, 2, 3.

(2) For any i with xi, yi defined, G has no P -bridge intersecting both aiPixi − xi and
xiPibi − xi, or both aiPiyi − yi and yiPibi − yi.

For, suppose G has a P -bridge J intersecting both aiPixi− xi and xiPibi− xi. Then J 6= HP ,
and J contains a path Qi from ui ∈ V (aiPixi − xi) to vi ∈ V (xiPibi − xi) and internally
disjoint from P . Let P ′i := aiPiuiQiviPibi, and P ′ := (P − Pi) ∪ P ′i . Then the P ′-bridge of G
containing e contains HP + xi; so P ′ contradicts the choice of P .

(3) We may assume that for any i with xi, yi defined, H ′i has a separation (Hi1, Hi2) such
that |V (Hi1 ∩ Hi2)| = 1, xi, yi ∈ Hi1, and e ∈ Hi2; and we choose (Hi1, Hi2) so that Hi2 is
minimal, and let wi ∈ V (Hi1 ∩Hi2).

For, otherwise, it follows from Menger’s theorem that H ′i contains path Qi from xi to yi and
through e. Let P ′i := aiPixiQiyiPybi. Then P ′ := (P − Pi) ∪ P ′i shows that (i) holds.
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Note that if wi, wj are deinfed and wi = wj then by the minimality of Hi2, Hj2, we have
Hi2 = Hj2.

(4) We may assume that w1 and w2 are defined and w1 6= w2.

If xi, yi are defined for at most one i then, by (3), the separation (Hi2, G− (Hi2 − wi)) shows
that (iii) holds. So we may assume that wi, xi, yi are defined for i = 1, 2. If w3, x3, y3 are not
defined then we may assume w1 6= w2 (or else the separation (H12, G− (H12−w1)) shows that
(iii) holds). So we may assume that w3, x3, y3 are defined as well. Then by symmetry we may
assume w1 6= w2; for if w1 = w2 = w3 then the separation (H12, G − (H12 − w1)) shows that
(iii) holds.

By (4), HP − (P − {w1, w2}) contains a path from w1 to w2, through e, and internally
disjoint from P . So for {i, j} = {1, 2}, HP − P3 contains a path Qij from xi to yj , through
e, and internally disjoint from P . Moreover, HP − P3 has a separation (H1, H2) such that
V (H1 ∩H2) = {w1, w2}, e ∈ H2, and H11 ∪H12 ⊆ H2.

(5) G has no P -bridge that is different from HP and intersects both a1P1y1 − y1 and
x2P2b2 − b2, or both a2P2y2 − y2 and x1P1b1 − b1.

For, suppose some P -bridge J 6= HP of G intersects both a1P1y1−y1 and x2P2b2−x2. Then J
contains a path Q from u ∈ V (a1P1y1− y1) to v ∈ V (x2P2b2−x2) and internally disjoint from
P . Now a1P1uQvP2b2, a2P2x2Q21y1P1b1, P3 show that (i) holds. Similarly, by using Q12, (i)
holds if some P -bridge of G (different from HP ) intersects both a2P2y2 − y2 and x1P1b1 − b1.

Case 1. w3, x3, y3 are defined.

Then G[H ′ + {xi, yj}] has a path Qij from xi to yj for any 1 ≤ i 6= j ≤ 3. By (3), G has a
separation (K,L) such that V (K ∩ L) = {w1, w2, w3} and L = H12 ∩H22 ∩H32.

Suppose w3 /∈ {w1, w2}. Then (5) holds for any i 6= j. Therefore, if {x1, x2, x3} 6=
{a1, a2, a3} or some P -bridge of G contains two of {x1, x2, x3}, then G has separation (G1, G2)
such that V (G1 ∩G2) = {x1, x2, x3}, A ⊆ G1, and B ⊆ G2; so (iv) holds. Thus we may asume
that {x1, x2, x3} = {a1, a2, a3} and no P -bridge of G contains two of {x1, x2, x3}. Similarly, we
may assume that {y1, y2, y3} = {b1, b2, b3}, and no P -bridge of G contains two of {y1, y2, y3}.
Now, let G1 = H2, G2 = B, and G3 = G− (G1 − {w1, w2, w3}. The we see that (vi) holds.

Thus, we may assume that by symmetry that w3 = w2. By the same argument as for (5),
we may assume that no P -bridge of G intersects both a1P1y1 − y1 and x3P3b3 − x3 or both
a3P3y3 − y3 and x1P1b1 − x1.

If no P -bridge of G intersecting P1 intersects P2 ∪ P3, then (v) holds with G1 has the
union of P1 ∪H11 and all P -bridges of G (different from HP ) intersecting P1, G2 = H2, and
G3 := G − G1 − (G2 − {w1, w2}). Thus by symmetry we may assume that G has a path Q
from u2 ∈ V (a2P2x2) to u1 ∈ V (a1P1x1 − y1)∪ V (a3P3x3 − y3), and we choose Q to minimize
u2P2x2. Let u3 ∈ a3P3x3 with u3P3x3 minimal such that u3 = a3, or some P -bridge of G
containing u3 intersects (a1P1x1 − y1) ∪ (a2P2x2 − y2).

If G has a separation (G1, G2) such that V (G1 ∩ G2) = {x1, u2, u3}, Q ∪ A ⊆ G1 and
B ⊆ G2, then (iv) holds. So we may assume that such a separation does not exist in G. Then
there exists a path R in G from r ∈ V (a2P2u2 − u2) ∪ V (a3P3u3 − u3) to t ∈ V (x1P1b1 − x1)
and internally disjoint from P ∪Q. By symmetry, we may assume r ∈ a2P2u2 − u2.

When u1 ∈ a3P3x3 − y3, the paths a1P1x1Q13y3P3b3, a2P2rRtP1b1, a3P3u1Qu2P2b2 show
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that (i) holds. So we may assume u1 ∈ a1P1x1 − y1. Then a1P1u1Qu2P2b2, a2P2rRtP1b1, P3

contradict the choice of P (that HP is maximal).

Case 2. w3, x3, y3 are not defined.

Let u ∈ V (P3) with a3P3u maximal such that u = a3 or u belongs to some P -bridge of G
intersecting (a1P1x1 − x1) ∪ (a2P2x2 − x2). Similarly, let v ∈ V (P3) with b3P3v maximal such
that v = b3 or v belongs to some P -bridge of G intersecting (y1P1b1 − y1) ∪ (y2P2b2 − y2).

we may assume {x1, x2, u} = {a1, a2, a3} and {y1, y2, v} = {b1, b2, b3}. For, otherwise, we
may suppose {x1, x2, u} 6= {a1, a2, a3}. If G has no path from a3P3u − u to (x1P1b1 − x1) ∪
(x2P2b2−x2) and internally disjoint from P then, by (5), G has a separation (G1, G2) such that
V (G1∩G2) = {x1, x2, x3}, A ⊆ G1, and B ⊆ G2, and (iv) holds. So we may assume that G has
a path Q from x ∈ V (a3P3u−u) to y ∈ V (x1P1b1−x1)∪V (x2P2b2−x2) and internally disjoint
from P . Let R be a path in G from u to z ∈ V (a1P1x1 − x1) ∪ V (a2P2x2 − x2) and internally
disjoint from P , and by symmetry we may assume that z ∈ a2P2x2 − x2. If y ∈ x2P2b2 − x2
then P1, a2P2zRuP3b3, a3P3xQyP2b2 are three disjoint paths that contradict the choice of P
(with HP maximal). So y ∈ x1P1b1−x1. Then a1P1x1Q12y2P2b2, a1P2zRuP3b3, a3P3xQyP1b1
show that (i) holds.

We may assume that some P -bridge of G intersects both P2 and P3 and some P -bridge of
G intersects both P1 and P3. For, otherwise, we may assume by symmetry that no P -bridge of
G intersecting P3 also intersects P1. Let G1 denote the union of P2∪P3, H21, and all P -bridges
of G different from HP and intersecting 4 P2 ∪ P3. Let G2 = H2, and let G3 be the union of
P1, H11, and all P -bridges of G different from HP and intersecting P1. Then by (5) we see
that G1, G2, G3 satisfies (v).

Suppose G has a P -bridge J such that J ∩Pi 6= ∅ for i = 1, 2, 3. Then J 6= HP as w3, x3, y3
are not defined. So by (5) and by symmetry, we may assume that V (J ∩ P1) = {a1} and
V (J ∩P2) = {a2}. Let u ∈ V (J ∩P3) with a3P3u maximal. We may assume that G has a path
Q from x ∈ V (a3P3u − u) to y ∈ V (P1 − a1) ∪ V (P2 − a2); for otherwise G has a separation
(G1, G2) such that V (G1 ∩ G2) = {a1, a2, u}, A ⊆ G1, and B ⊆ G2, which implies (iv). Let
Qi denote paths in J from u to ai, i = 1, 2, that are internally disjoint from P . If y ∈ P2 then
P1, Q2uP3b3, a3P3xQyP2b2 show that (i) holds; and if y ∈ P1 then Q1uP3b3, Q2, a3P3xQyP1b1
show that (i) holds.

So we may assume that no P -bridge of G intersects Pi for all i = 1, 2, 3. If all P -bridges of
G intersect P3 in exactly one common vertex, say z, then we may assume z 6= a3 (as a3 6= b3);
now G has a separation (G1, G2) such that V (G1 ∩ G2) = {a1, a2, z}, A ⊆ G1, and B ⊆ G2,
which implies (iv). So we may assume that G has P -bridges J1 and J2 such that J1 ∩ P1 6= ∅,
J2 ∩ P2 6= ∅, and there exists u1 ∈ J1 ∩ P3 and u2 ∈ J2 ∩ P3 with u1 6= u2. By symmetry let
a3, u1, u2, b3 occur on P3 in order. Note that J1 6= J2.

Let v1 ∈ V (J1 ∩ P1) with a1P1v1 maximal, and let v2 ∈ V (J2 ∩ P2) with v2P2b2 maximal.
For i = 1, 2, let Qi be a path in Ji from ui to vi and internally disjoint from P . If v1 6= a1 and
v2 6= b2, then Q12, a2P2v2Q2u2P3b3, a3P3u1Q1v1P1b1 show that (i) holds. So we may assume
by symmetry that v2 = b2. We may modify P3 if necessary to make J2 maximal. Then no
P -bridge of G other than J2 intersects both a3P3u2 − u2 and u2P3b3 − u2.

If there is no P -bridge of G different from J2 intersecting u2P3b3 − u2, then G has a
separation (G1, G2) with V (G1∩G2) = {b1, b2, u2}, A ⊆ V (G1), and B ⊆ V (G2); so (iv) holds.
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Hence, we may assume that some P -bridge of G different from J2 intersects u2P3b3−u2; hence,
there is a path R2 in G from s2 ∈ V (u2P3b3−u2) to t2 ∈ V (P1−b1)∪V (P2−b2) and internally
disjoint from P .

If t2 ∈ P1 − b1 then a1P1t2R2s2P3b3, Q21, a3P3u2Q2b2 show that (i) holds. So we may
asume t2 ∈ P2 − b2. Then P1, a1P2t2R2s2P3b3, a3P3u2Q2b2 show that (i) holds.

As an application of Lemma 3.4 we prove the following lemma which will be used many
times to deal with (G/xy, u1, u2, A).

Lemma 3.5. Let (G, u1, u2, A) be a quadruple and let A := {a1, a2, a3, a4}. Suppose G has a
separation (U1, U2) such that |V (U1∩U2)| ≤ 3, |V (U1∩U2)∩A| 6= 0, u1 ∈ U1−U2, u2 ∈ U2−U1,
and A ⊆ U1. Then one of the following holds.

(i) (G, u1, u2, A) is feasible;

(ii) G has a separation (G1, G2) such that |V (G1 ∩ G2)| ≤ 2 and for some i ∈ {1, 2}, ui ∈
G1 −G2 and A ∪ {u3−i} ⊆ G2;

(iii) G has a separation (G1, G2) such that |V (G1 ∩G2)| ≤ 4, u1, u2 ∈ G1−G2, and A ⊆ G2;

(iv) (G, u1, u2, A) is an obstruction of type I or IV.

Proof. We may assume |V (U1 ∩ U2)| = 3; as otherwise (ii) holds. So let V (U1 ∩ U2) =
{v1, v2, v3}. If V (U1 ∩ U2) ⊆ A then u1 and u2 belong to different components of G − A; so
(iii) holds. Thus we may assume that v3 /∈ A. Since V (U1 ∩U2)∩A 6= ∅, we may assume that
v1 = a1.

We may assume that U2 has three independent paths from u2 to a1, v2, v3, respectively.
Otherwise U2 has a separation (U21, U22) such that |V (U21 ∩ U22)| ≤ 2, u2 ∈ U21 − U22 and
{a1, v2, v3} ⊆ U22. Now (U21, U22 ∪ U1) is a separation in G showing that (ii) holds.

Suppose v2 ∈ A. Without loss of generality, we may assume v2 = a2. Then G has a
topological H rooted at u1, u2, A iff U1 − {a1, a2} has three independent paths from u1 to
a3, a4, v3, respectively. Thus (i) holds, or U1 has a separation (U11, U12) such that |V (U11 ∩
U12)| ≤ 4, a1, a2 ∈ U11 ∩ U12, u1 ∈ U11 − U12 and {a3, a4, v3} ⊆ U12. Now U11, U2, U12 show
that (G, u1, u2, A) is an obstruction of type I, and (iv) holds.

So we may assume that v2 /∈ A. Then G has a topological H rooted at u1, u2, A iff
(U1 − a1) + v2v3 has three independent paths from u1 to a2, a3, a4 and containging the edge
v2v3. Let U ′1 be obtained from (U1− a1) + v2v3 by duplicating u1 twice, as u′1, u

′′
1. We wish to

see if U ′1 has three disjoint paths from {u1, u′1, u′′1} to {a2, a3, a4} and containing v2v3. So we
apply Lemma 3.4.

If Lemma 3.4(i) holds then U ′1 has three disjoint paths from {u1, u′1, u′′1} to {a2, a3, a4} and
containing v2v3. So (U1 − a1) + v2v3 has three independent paths from u1 to a2, a3, a4 and
containging the edge v2v3. Hence, G has a topological H rooted at u1, u2, A, and (i) holds.

Suppose Lemma 3.4(ii) holds. Then U ′1 has a separation (U11, U12) such that |V (U11 ∩
U12)| ≤ 2, {u1, u′1, u′′1} ⊆ U11, and {a2, a3, a4} ⊆ U12. If v2v3 ∈ U12 then the separation
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(G[U11 − {u′1, u′′1}], U12) shows that (ii) holds. If v2v3 ∈ U11 then the separation (G[U11 −
{u′1, u′′1}], U12) shows that (iii) holds.

If Lemma 3.4(iii) holds then U ′1 has a separation (U11, U12) such that |V (U11 ∩ U12)| ≤ 1,
{u1, u′1, u′′1} ⊆ U11 and v2, v3 ∈ U12. Now the separation (G[U11 − {u′1, u′′1}], G[V (U12)] ∪ U2)
shows that then (ii) holds.

Suppose Lemma 3.4(iv) holds. Then U ′1 has a separation (U11, U12) such that |V (U11 ∩
U12)| = 3, {u1, u′1, u′′1} ⊆ U11 and {a2, a3, a4} ⊆ U12. If v2v3 ∈ U11, then G[V (U11)−{u′1, u′′1}+
{a1}], U2, G[U12 + a1] show that (G, u1, u2, A) is an obstruction of type I, and (iv) holds. If
v2v3 ∈ U12 then the separation (G[V (U12 + a1)], G[U11 + a1] ∪ U2) shows that (iii) holds.

Since u′1 and u′′1 are duplicates of u1, Lemma 3.4(v) cannot occur. So we may assume
Lemma 3.4(vi) holds. Again, since u′1 and u′′1 are duplicates of u1, U ′1 is the edge disjoint
union of graphs Gi, 1 ≤ i ≤ 5, such that |V (Gi ∩ Gj)| = 1 for i ∈ {1, 2} and j ∈ {3, 4, 5},
G1 ∩G2 ⊆ G3 ∪G4 ∪G5, Gi ∩Gj ⊆ G1 ∪G2 for 3 ≤ i 6= j ≤ 5, v2v3 ⊆ G1, {u1, u′1, u′′1} ⊆ G2,
and |V (Gj) ∩ {a2, a3, a4}| = 1 for j ∈ {3, 4, 5}. Then G[G2 − {u′1, u′′1} + a1], U2 ∪ G[V (G1 +
a1)], {a1}, G3, G4, G5 show that (G, u1, u2, A) is an obstruction of type IV, so (iv) holds.

As an easy corollary of Lemma 3.5, we can deal with obstructions of type VI.

Corollary 3.6. Let (G, u1, u2, A) be a quadruple, and let A := {a1, a2, a3, a4}. Suppose there
exist xy ∈ E(G) such that x, y ∈ V (G)−A−{u1, u2} and (G/xy, u1, u2, A) is of type VI. Then
one of the following holds.

(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1 ∩ G2)| ≤ 2, and for some i ∈ {1, 2},
ui ∈ G1 −G2, and A ∪ {u3−i} ⊆ L.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 4, A ⊆ G1 and {u1, u2} ⊆ G2−G1.

(iv) (G, u1, u2, A) is an obstruction of types I, IV,or VI.

Proof. Let G/xy be the edge-disjoint union of subgraphs U1, U2, A1 such that |V (U1∩A1)| = 3,
|V (U2 ∩A1)| = 3, V (U1 ∩ U2) ⊆ A ∩ V (A1), |V (U1 ∩ U2)| = 1, A ⊆ A1, and u1 ∈ U1 −A1 and
u2 ∈ U2 −A1. Let v denote the vertex of G/xy resulting from the contraction of xy.

If v /∈ V (Ui ∩ A1) for i = 1, 2 then we see that (G, u1, u2, A) is an obstruction of type VI.
Otherwise, we may assume by symmetry that v ∈ U2 ∩A1. Now (U1, A1 ∪ U2) is a separation
which alllows us use Lemma 3.5. So the assertion of the lemma holds.

4 Contraction critical quadruples

In this section we prove lemmas to be used to deal with contraction critical quadruples
(G, u1, u2, A): those such that for any xy ∈ E(G − (A ∪ {u1, u2}), (G/xy, u1, u2, A) is an
obstruction.

Lemma 4.1. Let (G, u1, u2, A) be a quadruple, and let A := {a1, a2, a3, a4}. Suppose there
exist xy ∈ E(G−A−{u1, u2}) such that (G/xy, u1, u2, A) is of type I. Then one of the following
holds.
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(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 2, u1 ∈ G1−G2, and A∪{u2} ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 4, {u1, u2} ⊆ G1−G2, and A ⊆ G2.

(iv) (G, u1, u2, A) is an obstruction of types I, II or IV.

Proof. Let G/xy be the edge disjoint union of U1 ∪ U2 ∪A1 such that V (U1 ∩ U2) = {a1, a2},
V (U1 ∩A1) = {a1, a2, v1}, V (U2 ∩A1) = {a1, a2, v2, v3}, V (U1 ∩U2) = {a1, a2}, u1 ∈ U1 −A1,
and u2 ∈ U2 −A1. Let v denote the vertex resulting from the contraction of x, y.

We may assume v = v1. For, suppose v 6= v1. Then (U1, G − (U1 − {a1, a2, v1})) is a
separation in G which allows us to apply Lemma 3.5; so (i) or (ii) or (iii) or (iv) holds.

Let U ′1, A
′
1 be obtained from U1, A1, respectively, by uncontracting v to xy. Note the

symmetry between U ′1 and U2. We choose U ′1, U2, A1 so that, subject to a1, a2 ∈ U ′1 ∩ U2,
U ′1 ∪ U2 is maximal. Then xy, v2v3 /∈ A′1. Moreover we may assume a3a4 /∈ A′1; otherwise,
(G− a3a4, G[{a3, a4}]) shows that (iii) holds.

We may assume that for some permutation ij of {1, 2}, U ′1 − aj has three independent
paths from u1 to ai, x, y, respectively, and U2 − ai has three independent paths from u2 to
aj , v2, v3, respectively. To see this, let H be obtained from U ′1∪U2 by duplicating each ui twice
with u′i, u

′′
i . If H contains six disjoint paths from {ui, u′i, u′′i : i = 1, 2} to {a1, a2, v2, v3, x, y}

then the desired permutation and six paths exist. So we may assume by Menger’s theorem
that H has a spearation (H1, H2) such that |V (H1 ∩ H2)| ≤ 5, {ui, u′i, u′′i : i = 1, 2} ⊆
V (H1) and {a1, a2, v2, v3, x, y} ⊆ V (H2). It is easy to see that |V (H1 ∩H2) ∩ V (U ′1)| ≤ 2, or
|V (H1∩H2)∩V (U2)| ≤ 2, or |V (H1∩H2)∩V (U ′1)| = 3 and V (H1∩H2)∩V (U ′1)∩{a1, a2} 6= ∅,
or |V (H1 ∩H2) ∩ V (U2)| = 3 and V (H1 ∩H2) ∩ V (U2) ∩ {a1, a2} 6= ∅. If the first two cases
occur, V (H1 ∩H2) ∩ V (U ′1) ≤ 2 or |V (H1 ∩H2) ∩ V (U2)| ≤ 2 then (ii) holds. If the next two
cases occur, then by Lemma 3.5 the assertion of the lemma holds.

Let J denote the union of the six paths in U ′1 − aj and U2 − ai. If A∗1 := (A′1 − {a1, a2}) +
{a3a4, v2v3, xy} contains a cycle C through {a3a4, v2v3, xy} then C − {a3a4, v2v3, xy} and J
form a topological H rooted at u1, u2, A, and (i) holds. So we may assume that such a cycle
C does not exist in A∗1. Then by Lemma 3.3, we have three cases to consider.

In the first case, A∗1 has a separation (A11, A12) such that |V (A11∩A12)| ≤ 1 and |E(A11)∩
{a3a4, v2v3, xy}| = 1. If xy ∈ A11, then U ′1∪G[V (A11)+{a1, a2}], U2 and G[V (A12)+{a1, a2}]
show that (G, u1, u2, A) is an obstruction of type I. If v2v3 ∈ A11 then U ′1, U2 ∪ G[V (A11) +
{a1, a2}], G[V (A12)+{a1, a2}] show that (G, u1, u2, A) is an obstruction of type I. If a3a4 ∈ A11

then (G[V (A11) + {a1, a2}], U ′1 ∪ U2 ∪G[V (A12) + {a1, a2}]) show that (iii) holds.

In the second case, A∗1 has a separation (A11, A12) such that |V (A11 ∩ A12)| = 2 and
|E(A11) ∩ {a3a4, v2v3, xy}| = 1. If xy ∈ A11 or v2v3 ∈ A11, then U ′1 ∪ G[V (A11) + {a1, a2}] ∪
U2 contradicts the maximality of U ′1 ∪ U2. So a3a4 ∈ A11. Then (U ′1 ∪ U2 ∪ G[V (A12) +
{a1, a2}], G[V (A11) + {a1, a2}]) shows that (iii) holds.

Therefore, we may assume that A∗1−{a3a4, v2v3, xy} is not connected. Since a3a4, v2v3, xy /∈
A′1, A′1 consists of disjoint subgraphs A11, A12 such that each of a3a4, v2v3, xy has one end
in A11 and the other in A12. Now U ′1, U2, A11, A12, {a1}, {a2} show that (G, u1, u2, A) is an
obstruction oy type II.

10



Lemma 4.2. Let (G, u1, u2, A) be a quatruple with A = {a1, a2, a3, a4}. Suppose there exist
xy ∈ E(G− A− {u1, u2}) such that (G/xy, u1, u2, A) is of type II. Then one of the following
holds.

(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 2, u1 ∈ G1−G2, and A∪{u2} ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 4, {u1, u2} ⊆ G1−G2, and A ⊆ G2.

(iv) (G, u1, u2, A) is an obstruction of types I, II, III, IV.

Proof. Let G/xy be the edge-disjoint union of U1, U2, A1, A2, A3 such that V (U1 ∩Ai) = {vi}
for i = 1, 2 and V (U1 ∩ A3) = {v3, v4}, V (U2 ∩ Ai) = {wi} for 1 ≤ i ≤ 3, V (U1 ∩ U2) ⊆
{v1, v2, v3, v4}∩{w1, w2, w3}, V (Ai ∩Aj) ⊆ V (U1 ∩U2) for 1 ≤ i 6= j ≤ 3, ui ∈ Ui− (A1 ∪A2 ∪
A3 ∪ A4) for i = 1, 2, ai ∈ Ai for i = 1, 2 and a3, a4 ∈ A3, if |V (Ai)| = 1 then Ai ⊆ Aj for all
j 6= i, and if w3 ∈ A then w3 ∈ U2 ∩Ai for i = 1, 2, 3.

Let v denote the vertex resulting from the contraction of xy. If v /∈ {vi : 1 ≤ i ≤ 4}∪ {wi :
1 ≤ i ≤ 3}, then (G, u1, u2, A) is also an obstruction of type II. So we may assume that
v ∈ {vi : 1 ≤ i ≤ 4}∪ {wi : 1 ≤ i ≤ 3}. By symmetry, it suffices to consider four cases: v = v1,
v = v4, v = w1, and v = w3.

Case 1. v = v1.

Then by Lemma 3.5 we may assume that {w1, w2, w3, v2} ∩A = ∅. Let U ′1, A
′
1 be obtained

from U1, A1, respectively, by uncontracting v to xy.

We may assume that U2 has three independent paths from u2 to w1, w2, w3, respectively.
Otherwise, U2 has a separation (U21, U22) such that |V (U21 ∩ U22)| ≤ 2, u2 ∈ U21 − U22, and
{w1, w2, w3} ⊆ U22. Now the separation (U21, U22 ∪ U ′1 ∪ A′1 ∪ A2 ∪ A3) in G shows that (ii)
holds.

We may also assume that A′1 has disjoint paths from {x, y} to {a1, w1}. For, otherwise, A′1
has a separation (A11, A12) such that |V (A11 ∩ A12)| ≤ 1, {x, y} ⊆ A11 and {a1, w1} ⊆ A12.
Now U1 ∪ A11, U2, A12, A2, A3 show that (ii) holds, or (G, u1, u2, A) is also an obstruction of
type II.

We may assume that for each i ∈ {3, 4}, A3 has disjoint paths from {w3, vi} to {a3, a4},
which avoids v7−i if v7−i /∈ A. For, suppose no such disjoint paths exist. Then A3 has a
separation (A31, A32) such that |V (A31 ∩ A32)| ≤ 1 (if v7−i ∈ A), |V (A31 ∩ A32)| ≤ 2 and
v7−i ∈ A31 ∩ A32 (when v7−i /∈ A), {w3, vi} ⊆ A31, and {a3, a4} ⊆ A32. Now the separation
(G[V (A32 + {a1, a2}], U1 ∪ U ′2 ∪A′1 ∪A2 ∪G[V (A31 + {a1, a2}]) shows that (iii) holds.

We may assume that A2 has a path from w2 to a2 which avoids v2 when v2 6= a2. Otherwise,
A2 has a separation (A21, A22) such that A21 ∩ A22 = ∅ (when v2 = a2) or A21 ∩ A22 = {v2}
(when v2 6= a2), a2 ∈ A21, and w2 ∈ A22. Now the separation (U2 ∪ A22, U

′
1 ∪ A′1 ∪ A22 ∪ A3)

shows that (iii) holds.

We may assume that if {v3, v4} 6= {a3, a4} then v4 /∈ {a3, a4}.
Now if U ′1 − (A − {v3}) contains disjoint paths from u1 to x, y, v3, respectively, then (i)

holds. Thus we may assume that U ′1 − (A − {v3}) has a separation (U11, U12) such that

11



|V (U11 ∩ U12)| ≤ 2, u1 ∈ U11 − U12, and {x, y, v3} ⊆ U12. Choose this separation to minimize
U12.

We may assume |V (U11 ∩U12)| = 2. For, otherwise, we may assume v2, v4 ∈ N(U11 −U12)
(or else (ii) holds). Recall that v2 /∈ A. By Lemma 3.5 we may a;so assume v4 /∈ A; so
v2, v4 ∈ U11 − U12. Then G[U11 + v4], U2, A2, G[U12 + v4] ∪A′1 ∪A3 show that (G, u1, u2, A) is
an obstruction of type III. So let V (U11 ∩ U12) = {s1, s2}.

By the minmality of U12, U12 − A contains disjoint paths from {s1, s2} to {x, y}. For,
otherwise, U12 − A has a separation (K,L) such that |V (K ∩ L)| ≤ 1, {s1, s2} ⊆ K, and
{x, y} ⊆ L. Then (U11∪G[K +v3], G[L+v3]) is a separation in U1− (A−{v3}), contradicting
the minimality of U12.

Suppose v4 /∈ N(U11 − U12). If v2 /∈ U11 − U12, then (ii) holds. So we may assume that
v2 /∈ U11−U12. Then U11, U2, A2, G[U12+v3]∪A′1∪A3 show that (G, u1, u2, A) is an obstruction
of type III. So we may assume v4 ∈ N(U11 − U12).

We may assume that G[U11 + v4] has three independent paths from u1 to s1, s2, v4, respec-
tively. Otherwise, G[U11 + v4] has a separation (K,L) such that |V (K ∩ L)| ≤ 2, u1 ∈ K − L
and {s1, s2, v4} ⊆ L. If v2 /∈ K − L or |V (K ∩ L)| ≤ 1 then (ii) holds. So assume v2 ∈ K − L
and |V (K ∩L)| = 2. Then K,U2, L∪G[U12 + v4]∪A′1 ∪A2 ∪A3 show that (G, u1, u2, A) is an
obstruction of type III.

We may assume v4 /∈ A. For, otherwise, we have v3, v4 ∈ A. If v2 /∈ U11 − U12 then
(G[U11 + v4], G[U12 + v4] ∪U2 ∪A′1 ∪A2 ∪A3) allows us to apply Lemma 3.5; so the assertion
of the lemma holds. So we may assume v2 ∈ U11−U12. Then U1 has three independent paths
from u1 to x, y, v4, respectively; and (i) holds.

Thus we may assume that v4 /∈ A, and hence v4 ∈ U11−U12. So U11 has three independent
paths from u1 to s1, s2, v4, respectively; thus U1 − A has three independent paths from u1 to
x, y, v4, respectively.

If A′3 := A3− ({v3}−A) has disjoint paths from {v4, w3} to {a3, a4}, then (i) holds. So we
may assume that A′3 has a separation (A31, A32) such that |V (A31 ∩A32)| ≤ 1, {v4, w3} ⊆ A31

and {a3, a4} ⊆ A32. Now V (A32) = {v3} ⊆ {a3, a4}; otherwise (iii) holds. If v2 /∈ U11 − U12

then U11, U2, G[U12 + v3], A
′
1 ∪ A2 show that (G, u1, u2, A) is an obstruction of type III. So

assume v2 ∈ U11 −U12. Then U11, U2, A
′
1 ∪G[U12 + v3], A2, A3 − v3 show that (G, u1, u2, A) is

an obstruction of type II.

Case 2. v = v4.

Let U ′1, A
′
3 be obtained from U1, A3, respectively, by uncontracting v to xy. By Lemma 3.5,

we may assume {v1, v2, w1, w2, w3} ∩A = ∅.
We may assume that A′3 has three disjoint paths from {v3, x, y} to {a3, a4, w3}. For, if

such paths do not exist, then A′3 has a separation (A31, A32) such that |V (A31 ∩ A32)| ≤ 2,
{v3, x, y} ⊆ A31, and {a3, a4, w3} ⊆ A32. Now U ′1∪A31, U2, A1, A2, A32 show that (G, u1, u2, A)
is an obstruction of type II.

We may assume that U2 has three independent paths from u2 to w1, w2, w3, respectively;
or else (ii) holds. Also we may assume that, for i = 1, 2, Ai has a path from wi to ai; otherwise
(ii) holds.

Thus if U ′1 has three independent paths from u1 to v3, x, y, respectively, then (i) holds. So
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we may assume that U ′1 has a separation (U11, U12) such that |V (U11∩U12)| ≤ 2, u1 ∈ U11−U12,
and {v3, x, y} ⊆ U12.

If v1, v2 /∈ U11−U12 then (ii) holds. So we may assume that v1 ∈ U11−U12. If v2 /∈ U11−U12

then U11, U2, A1, U12 ∪ A2 ∪ A′3 show that (G, u1, u2, A) is an obstrcution of type III. So we
assume that v2 ∈ U11 − U12. Then U11, U2, A1, A2, A

′
3 ∪ U12 show that (G, u1, u2, A) is an

obstruction of type II.

Case 3. v = w3.

Let U ′2, A
′
3 be obtained from U2, A3, respectively, by uncontracting v to xy. Note the

symmetry between U1 and U ′2. We choose U1, U
′
2, A1, A2, A3 to maximize U1 ∪ U ′2.

We may assume that A′3 contains three disjoint paths: one from {x, y} to {v3, v4} and the
other two from {a3, a4} to {v3, v4, x, y}. For, suppose not. Then A′′3 := A′3 + {a3a4, v3v4, xy}
contains no cycle through S := {a3a4, v3v4, xy}. So we may apply Lemma 3.3. First, suppose
A′′3 has a separation (A31, A32) such that |V (A31 ∩ A32)| ≤ 1 and and |E(A32) ∩ S| = 1. If
xy ∈ A32 or v3v4 ∈ A32 then we see that (G, u1, u2, A) is an obstruction of type II; and if
a3a4 ∈ A32 then we see that (iii) holds. Now, suppose A′′3 has a separation (A31, A32) such
that |V (A31 ∩ A32)| = 2, |E(A32) ∩ S| = 1, and |V (A32)| ≥ 3. Then by the maximality of
U1 ∪U ′2, we see that a3a4 ∈ S, which shows (iii) holds. We may thus assume that S is an edge
cut of A′′3. In this case, (G, u1, u2, A) is an obstruction of type IV.

We may assume that for any i ∈ {1, 2}, U ′2 − (A−{wi}) contains three independent paths
from u2 to wi, x, y, respectively. For, suppose not. Then U ′2 − (A − {wi}) has separation
(U21, U22) such that |V (U21 ∩ U22)| ≤ 2, u2 ∈ U21 − U22, and {wi, x, y} ⊆ U22. Choose this
separation to minimze U22. We may assume w3−i ∈ N(U21 − U22) and |V (U21 ∩ U22)| = 2; or
else (ii) holds. Then by Lemma 3.5, we may assume w3−i /∈ A (and hence, we may also assume
that v3−i /∈ A). So w3−i ∈ U21 − U22. By the minimality of U22 there are disjoint paths in
U22 −A from V (U21 ∩U22) to {x, y}. We may further assume that U21 has three independent
paths from u1 to V (U21 ∩ U22) ∪ {w3−i}; for otherwise U21 has a separation (K,L) such that
|V (K ∩ L)| ≤ 2, U11 ∩U12 ⊆ L, and u2 ∈ K − L, which gives the separation (L,G− (L−K))
in G showing that (ii) holds. Thus U ′2 − (A − {w3−i}) has three independet paths from
u2 to w3−i, x, y, respectively. If U1 contains three independent paths from u1 to vi, v3, v4,
respectively, then (i) holds. So we may asume that U1 has a separation (U11, U12) such that
|V (U11 ∩U12)| ≤ 2, u1 ∈ U11 −U12, and {vi, v3, v4} ⊆ U12. we may assume |V (U11 ∩U12)| = 2
and vi ∈ U11 − U12; or else (ii) holds. Then U11, U21, A2, U12 ∪ U22 ∪ A1 ∪ A′3 show that
(G, u1, u2, A) is an obstruction of type III.

Similarly, we may assume that for any i ∈ {1, 2}, U1−(A−{vi}) contains three independent
paths from u1 to vi, v3, v4, respectively. Now it is easy to see that (i) holds.

Case 4. v = w1.

Let U ′2, A
′
1 be obtained from U2, A1, respectively, by uncontracting v to xy.

We may assume that A′1 has disjoint paths from {v1, a1} to {x, y}. For otherwise, A′1 has
a separation (A11, A12) such that |V (A11 ∩ A12)| ≤ 1, {v1, a1} ⊆ A11 and {x, y} ⊆ A12. Now
U1, U2 ∪A12, A11, A2, A3 show that (G, u1, u2, A) is an obstruction of type II.

Subcase 4.1. U1 − {v2} ∩A has three independent paths from u1 to v1, v3, v4, respectively.

We may assume that A′3 := A3 − ({w3} − A) has disjoint paths from {v3, v4} to {a3, a4}.
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For, otherwise, A3 has a separation (A31, A32) such that |V (A31 ∩ A32)| ≤ 2, w3 ∈ A31 ∩ A32

if w3 /∈ A, {v3, v4} ⊆ A31, and {a3, a4} ⊆ A32. Then the separation (G[A32 + {a1, a2}], A31 ∪
U1 ∪ U2 ∪A′1 ∪A2) show that (iii) holds.

If U2 − (A − {w2}) has three independent paths from u2 to w2, x, y, respectively, then
(i) holds. So we may assume that U2 − (A − {w2}) has a separation (U21, U22) such that
|V (U21 ∩ U22)| ≤ 2, u2 ∈ U21 − U22, and {w2, x, y} ⊆ U22. We choose this separation to
minimize U22.

We may assume w3 ∈ N(U21 − U22), or else (ii) holds. Thus we may assume by Lemma
3.5 that w3 /∈ A and V (U21 ∩ U22) ∩ A = ∅; so w3 ∈ U21 − U22. By the minimality of U22,
U22 − {w2} ∩A contains disjoint paths from V (U21 ∩U22) to {x, y}. Thus, U2 − {w2} ∩A has
three independent paths from u2 to w3, x, y, respectively.

Suppose for some i ∈ {3, 4}, U1−(A−{vi}) has three independent paths from u1 to v1, v2, vi,
respectively. If A′′3 := A3 − ({v3−i} − A) has disjoint paths from {vi, w3} to {a3, a4}, then (i)
holds. So we may assume that A3 has a separation (A31, A32) such that |V (A31 ∩ A32)| ≤ 1
(or |V (A31 ∩ A32)| ≤ 2 and v7−i ∈ A31 ∩ A32), {vi, w3} ⊆ A31, and {a3, a4} ⊆ A32. Now the
separation (G[A32 + {a1, a2}], U1 ∪ U ′2 ∪A′1 ∪A2 ∪G[A31 + {a1, a2}]) show that (iii) holds.

Thus may assume that for any i ∈ {3, 4}, U1 − (A− {vi}) has no three independent paths
from u1 to v1, v2.vi, respectively. Then for any i ∈ {3, 4}, U1 − (A − {vi}) has separation
(U11, U12) such that |V (U11 ∩ U12)| ≤ 2, u1 ∈ U11 − U12, and {v1, v2, vi} ⊆ U12. If v7−i ∈ A
then the separation (G[U11 + v7−i], G[U12 + v7−i] ∪ U2 ∪A′1 ∪A2 ∪A3) and Lemma 3.5 imply
the assertion. So we may assume v3, v44 /∈ A.

Clearly, U1 +{v, vv3, vv4} has no three independent paths from u1 to v1, v2, v, respectively.
So U1 + {v, vv3, vv4} has a separation (U11, U12) such that |V (U11 ∩U12)| ≤ 2, u1 ∈ U11−U12,
and {v1, v2, v} ⊆ U12. If v /∈ U11 ∩ U12 then (U11, G − (U11 − U12)) shows that (ii) holds. If
v ∈ U11∩U12 then U11−v, U21, A3, (U12−v)∪A′1∪A2 show that (G, u1, u2, A) is an obstruction
of type IV.

Subcase 4.2. U1−{v2}∩A has no three independent paths from u1 to v1, v3, v4, respectively.

Then U1−{v2}∩A has a separation (U11, U12) such that |V (U11∩U12)| ≤ 2, u1 ∈ U11−U12,
and {v1, v3, v4} ⊆ U12. Choose this separation so that U12 is minimal.

We may assume |V (U11 ∩ U12)| = 2 and v2 ∈ N(U11 − U12); otherwsie (ii) holds. Let
V (U11 ∩ U12) = {s1, s2}. By Lemma 3.5, we may assume {s1, s2, v2, w2} ∩ A = ∅. Thus
v2 ∈ U11 − U12.

We may further assume that U11 has three independent paths from u1 to s1, s2, v2, respec-
tively; otherwise we have (ii). By the minimality of U12, for any i ∈ {3, 4}, U12 − (A − vi)
has disjoint paths from {s1, s2} to {v1, vi}. So for any i ∈ {3, 4}, U1 − (A − vi) has three
independent paths from u1 to v1, v2, vi, respectively.

We may also assume that U2 has three independent paths from u2 to x, y, w3, respectively.
For, suppose not. Then U2 has a separation (U21, U22) such that |V (U21 ∩ U22)| ≤ 2, u2 ∈
U21 − U22 and {x, y, w3} ⊆ U22. If w2 /∈ U21 − U22 then (ii) holds. So assume w2 ∈ U21 − U22.
Then U11, U21, A2, U12 ∪ U22 ∪A′1 ∪A3 show that (G, u1, u2, A) is an obstruction of type III.

Suppose {v3, v4} = {a3, a4}. If A3 − v3 has a path from w3 to v4 then (i) holds. So we
may assume that A3 has a separation (A31, A32) such that A31 ∩ A32 = {v3}, w3 ∈ A32, and
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v4 ∈ A31. Now U1 ∪A31, U2, A1, A2, A32 show that (G, u1, u2, A) is an obstruction of type II.

So we may assume that v4 /∈ A. If A3−v4 has disjoint paths from {v3, w3} to {a3, a4} then
(i) holds. So we may assume that A3 has a separation (A31, A32) such that |V (A31∩A32)| ≤ 2,
v4 ∈ A31∩A32, {v3, w3} ⊆ A31, and a3, a4} ⊆ A32. Now the separation (G[A32+{a1, a2}], U1∪
U2 ∪A′1 ∪A2 ∪A31) shows that (iii) holds.

Lemma 4.3. Let (G, u1, u2, A) be a quadruple, and let A := {a1, a2, a3, a4}. Suppose there
exists xy ∈ E(G − A − {u1, u2}) such that (G/xy, u1, u2, A) is of type III. Then one of the
following holds.

(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 2, u1 ∈ G1−G2, and A∪{u2} ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 4, {u1, u2} ⊆ G1−G2, and A ⊆ G2.

(iv) (G, u1, u2, A) is an obstruction of types I,II, III, IV, V.

Proof. Let G/xy be the edge disjoint union of U1, U2, A1, A2 such that V (U1 ∩ A1) = {v1}
and V (U2 ∩ A1) = {w1}, V (U1 ∩ A2) = {v2, v3} and V (U2 ∩ A2) = {w2, w3}, V (U1 ∩ U2) ⊆
({v1} ∩ {w1}) ∪ ({v2, v3} ∩ {w2, w3}), a1 ∈ A1, a2, a3, a4 ∈ A2, and ui ∈ Ui − (A1 ∪ A2) for
i = 1, 2.

Let v denote the vertex resulting from the contraction of xy. If v /∈ {v1, v2, v3, w1, w2, w3}
then (G, u1, u2, A) is an obstruction of type III. So we may assume by symmetry that v = v1
or v = v2. By Lemma 3.5 we may assume that {w1, w2, w3} ∩A = ∅.

We may assume that U2 has three independent paths from u2 to w1, w2, w3, respectively;
for otherwsie (ii) holds.

Case 1. v = v1.

Let U ′1, A
′
1 be obtained from U1, A1, respectively, by uncontracting v to xy. We may assume

that A′1 has disjoint paths from {x, y} to {a1, w1}. Otherwise, A′1 has a separation (A11, A12)
such that |V (A11 ∩ A12)| ≤ 1, {x, y} ⊆ A11, and {a1, w1} ⊆ A12. Now U ′1 ∪ A11, U2, A12, A2

show that (G, u1, u2, A) is an obstruction of type III.

We may assume that for some i ∈ {2, 3}, U ′1 − (A− vi) has three independent paths from
u1 to x, y, vi, respectively. For, suppose not. Then U ′1− (A−{v2}) has a separation (U11, U12)
such that |V (U11 ∩ U12)| ≤ 2, u1 ∈ U11 − U12, and {x, y, v2} ⊆ U12. Choose this separation
to minimize U12. Then v3 ∈ N(U11 − U12); otherwsie (ii) holds. So we may assume v3 /∈ A
by Lemma 3.5; hence v3 ∈ U11 − U12. Moreover, we may assume U11 has three independent
paths form u1 to V (U11∩U12)∪{v3}; otherwise (ii) holds. Also by Lemma 3.5 we may assume
v2 /∈ A if v2 ∈ U11 ∩ U12. So by the minimality of U12, U12 − A contains disjoint paths from
V (U11 ∩ U12) to {x, y}. So U ′1 − (A − {v3}) has three independent paths from u1 to x, y, v3,
respectively.

Thus we may assume that U ′1 − (A − v2) has three independent paths from u1 to x, y, v2,
respectively. If A2 − ({v3} −A) has three disjoint paths from {a2, a3, a4} to {v2, w2, w3} then
(i) holds. So we may assume that A2 has a separation (A21, A22) such that |V (A21∩A22)| ≤ 2,
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{a2, a3, a4} ⊆ A21, and {v2, w2, w3} ⊆ A22, or |V (A21 ∩ A22)| ≤ 3, v3 ∈ A21 ∩ A22 − A,
{a2, a3, a4} ⊆ A22, and {v2, w2, w3} ⊆ A21. Then the separation (G[A22+a1], A21∪U ′1∪A′1∪U2)
shows that (iii) holds.

Case 2. v = v3.

Let U ′1, A
′
2 be obtained from U1, A2, respectively, by uncontracting v to xy. We choose

such U ′1, U2, A1, A
′
2 to maximize U ′1 ∪ U2. We may assume v1 /∈ A by Lemma 3.5.

We may assume that U ′1 has three independent paths from u1 to v2, x, y, respectively. For,
otherwise, U ′1 has a separation (U11, U12) such that |V (U11 ∩ U12)| ≤ 2, u1 ∈ U11 − U12, and
{x, y, v3} ⊆ U12. Then v1 ∈ U11−U12; otherwise (ii) holds. So U11, U2, A1, U12 ∪A′2 show that
(G, u1, u2, A) is of type III.

If A′′2 := A′2 + w2w3 has three disjoint paths from {v2, x, y} to {a2, a3, a4} and through
w2w3, then (i) holds. So we may assume that such paths do not exist, and apply Lemma 3.4.

First, suppose Lemma 3.4(ii) holds. Then A′′2 has a separation (A21, A22) such that |V (A21∩
A22)| ≤ 2, {v2, x, y} ⊆ A21, {a2, a3, a4} ⊆ A22. If w2w3 ∈ A21 then U ′1, U2 ∪ A22, A1, G[A21 −
w2w3] contradict the choice of U ′1, U2, A1, A

′
2 (maximality of U ′1 ∪ U2). So w2w3 ∈ A22. Then

U ′1 ∪A21, U2, A1, G[A22 − w2w3] show that (G,u1, u2, A) is an obstruction of type III.

Now suppose Lemma 3.4(iii) holds. Then A′′2 has a separation (A21, A22) such that |V (A21∩
A22)| ≤ 1, {x, y, v3} ∪ {a2, a3, a4} ⊆ A21, and {w2, w3} ⊆ A22. So the separation (U ′1 ∪ A21 ∪
A1, U2 ∪G[A22 − w2w3]) shows that (ii) holds.

Suppose Lemma 3.4(iv) holds. Then A′′2 has a separation (A21, A22) such that |V (A21 ∩
A22)| = 3, {x, y, v3} ⊆ A21, and {a2, a3, a4} ⊆ A22. If w2w3 ∈ A22 then U ′1∪A21, U2, A1, G[A22−
w2w3] contradict the choice of U ′1, U2, A1, A

′
2 (the maximality of U ′1 ∪ U2). So w2w3 ∈ A21.

Now the separation (G[A22 + a1], U
′
1 ∪ U2 ∪A1 ∪G[A21 − w2w3]) shows that (iii) holds.

Suppose Lemma 3.4(v) holds. Then A′′2 = G1∪G2∪G3 such that G1∩G3 = ∅, w2w3 ∈ G2,
|V (G1 ∩ G2)| ≤ 1, |V (G2 ∩ G3)| ≤ 1, |V (G1) ∩ {a2, a3, a4}| = 1 = |V (G1) ∩ {v2, x, y}|, and
|V (G3)∩{a2, a3, a4}| = |V (G3)∩{v2, x, y}| = 2. Then U ′1, U2∪G[G2−w2w3], A1, G1, G3 show
that (G, u1, u2, A) is an obstruction of type IV.

Finally, assume that Lemma 3.4(vi) holds. Then A′′2 = G1 ∪G2 ∪G3 ∪G4 ∪G5 such that
|V (Gi∩Gj)| = 1 for i ∈ {1, 2} and j ∈ {3, 4, 5}, V (G1∩G2) ⊆ G3∪G4∪G5, Gi∩Gj ⊆ G1∪G2

for 3 ≤ i 6= j ≤ 5, w2w3 ∈ G1, and either {a2, a3, a4} ⊆ G2 and |V (Gj) ∩ {v2, x, y}| = 1 for
j ∈ {3, 4, 5} or {v2, x, y} ⊆ G2 and |V (Gj) ∩ {a2, a3, a4}| = 1 for j ∈ {3, 4, 5}. In the former
case, (G[G2 + a1], G[G1 −w2w3] ∪ U ′1 ∪ U2 ∪A′1 ∪G3 ∪G4 ∪G5) shows that (iii) holds. Thus,
we may assume the latter case. Then U ′1 ∪ G2, U2 ∪ G[G1 − w2w3], A1, G3, G4, G5 show that
(G, u1, u2, A) is an obstruction of type IV.

Lemma 4.4. Let (G, u1, u2, A) be a quadruple, and let A := {a1, a2, a3, a4}. Suppose there
exists xy ∈ E(G − A − {u1, u2}) such that (G/xy, u1, u2, A) is of type IV. Then one of the
following holds.

(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 2, u1 ∈ G1−G2, and A∪{u2} ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 4, {u1, u2} ⊆ G1−G2, and A ⊆ G2.
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(iv) (G, u1, u2, A) is an obstruction of types I, II, IV.

Proof. Let G/xy be the edge disjoint union of U1, U2, A1, A2, A3, A4 such that V (U1∩Ai) = {vi}
and V (U2∩Ai) = {wi} for 1 ≤ i ≤ 4, V (U1∩U2) ⊆

⋃4
i=1({vi}∩{wi}), ai ∈ Ai for i = 1, 2, 3, 4,

and ui ∈ Ui − (A1 ∪A2 ∪A3 ∪A4) for i = 1, 2.

Let v denote the vertex resulting from the contraction of xy. If v /∈ {vi, wi : 1 ≤ i ≤ 4} then
(G, u1, u2, A) is an obstruction of type IV, and (iv) holds. So by symmetry we may assume
that v = v1. Let U ′1, A

′
1 be obtained from U1, A1, respectively, by uncontracting v to xy.

We may assume that A′1 contains disjoint paths from {x, y} to {a1, w1}. For, if such paths
do not exist, then A′1 has a separation (A11, A12) such that |V (A11 ∩A12)| ≤ 1, {x, y} ⊆ A11,
and {a1, w1} ⊆ A12. Now U ′1∪A11, U2, A12, A2, A3, A4 show that (G, u1, u2, A) is an obstruction
of type IV, and (iv) holds.

Moreover, for each i ∈ {2, 3, 4}, if Ai 6= {ai} then we may assume ai /∈ {vi, wi}, and Ai− vi
(respectively, Ai − wi) has a path between wi (respectively, vi) and ai. (Otherwise, we can
enlarge U ′1 or U2.

Case 1. There exist two i ∈ {2, 3, 4} such that Ji := U ′1−(A−{vi}) has no three independent
paths from u1 to x, y, vi, respectively.

First, suppose J2 contains no three independent paths from u1 to x, y, v2, respectively. Then
J2 has a separation (J21, J22) such that |V (J21 ∩ J22)| ≤ 2, u1 ∈ J21− J22, and {x, yv2} ⊆ J22.
We choose (J21, J22) so that |V (J21 ∩ J22)| is minimum and then J21 is minimal.

If {v3, v4}∩N(J21−J22) = ∅ then the separation (J21, G−(J21−J22)) shows that (ii) holds.
So we may assume by symmetry that v3 ∈ N(J21−J22). We may also assume |V (J21∩J22)| 6= 0;
otherwise, the separation (G[J21 + {v3, v4}], G− (J21 − J22 − {v3, v4})) shows that (ii) holds.

Suppose |V (J21 ∩ J22)| = 1. Then we may assume that v4 ∈ N(J21 − J22); otherwise, the
separation (G[J21 + v3], G− (J21 − J22 − v3)) shows that (ii) holds. Moreover, the separation
(G[J21 + {v3, v4}], G− (J21−J22−{v3, v4})) allows us to use Lemma 3.5 to assume v3, v4 /∈ A.
Hence, v3, v4 ∈ J21. Then J21, U2, A3, A4, J22∪A′1∪A2 show that (G, u1, u2, A) is an obstruction
of type II.

So we may assume that |V (J21 ∩ J22)| = 2. Let V (J21 ∩ J22) = {s1, s2}. So by the
minimality of |V (J21 ∩ J22)|, J22 − (A− {v2} contains disjoint paths from {s1, s2} to {x, y}.

By the minimality of J21, we see that G[J21 + v3] has three independent paths from u1
to s1, s2, v3, respectively. So J3 has three independent paths from u1 to x, y, v3, respectively.
Similarly, if v4 ∈ N(J21 − J22) then J4 has three independent paths from u1 to x, y, v4, re-
spectively. Thus we may assume that v4 /∈ N(J21− J22). Then by Lemma‘3.5 we may assume
v3 /∈ A; and hence we may assume w3 /∈ A.

If U2 has three independent paths from u2 to w1, w2, w4, respectively, then we see that (i)
holds. So we may assume that U2 has a separation (U21, U22)suchthat—V(U21 ∩ U22)| ≤ 2,
u2 ∈ U21 − U22, and {w1, w2, w4} ⊆ U22. Then we may assume that |V (U21 ∩ U22)| = 2 and
w3 ∈ U21 − U22 as otherwise (ii) holds. Now J21, U21, A3, J22 ∪ U22 ∪ A′1 ∪ A2 ∪ A4 show that
(G, u1, U2, A) is an obstruction of type II.

Case 2. There exist two i ∈ {2, 3, 4} such that Ji := U ′1 − (A− {vi}) has three inpendent
paths from u1 to x, y, vi, respectively.
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Without loss of generality, we may assume that for i = 2, 3, Ji has three independent paths
from u1 to x, y, vi, respectively.

If U ′2 := U2−{w2}∩A has three independent paths from u2 to w1, w3, w4, respectively, then
(i) holds. So we may assume that U ′2 has a separation (U21, U22) such that |V (U21 ∩U22)| ≤ 2,
u2 ∈ U21−U22, and {w1, w3, w4} ⊆ U22. Choose (U21, U22) so that |V (U21 ∩U22)| is minimum
and then U22 is minimal. Thus, U22 − (A ∩ {w3}) has disjoint paths from V (U21 ∩ U22) to
{w1, w4}.

We may assume w2 ∈ N(U21−U22) and |V (U21∩U22)| = 2, as otherwise (ii) holds. Thus by
Lemma 3.5 we may assume that w2 /∈ A and V (U21∩U22)∩A = ∅. So w2 ∈ U21−U22. Hence,
U21 has three independent paths from u2 to V (U21∩U22)∪{w2}. Therefore, U2−(A∩{w3}) has
three independent paths from u2 to w1, w2, w4, respectively. Again, (G, u1, u2, A) is feasible,
and (i) holds.

Lemma 4.5. Let G be a graph, let u1, u2, a1, a2, a3, a4 be distintc vertices of G, and let A :=
{a1, a2, a3, a4}. Suppose there exist xy ∈ E(G−A−{u1, u2}) such that (G/xy, u1, u2, A) is of
type V. Then one of the following holds.

(i) (G, u1, u2, A) is feasible.

(ii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 2, u1 ∈ G1−G2, and A∪{u2} ⊆ G2.

(iii) G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 4, {u1, u2} ⊆ G1−G2, and A ⊆ G2.

(iv) (G, u1, u2, A) is an obstruction of types I, II, III, IV or V.

Proof. Let G/xy be the edge-disjoint union of U1, U2, A1, A2 such that V (U1 ∩ A1) = {v1},
V (U1 ∩ A2) = {v2, v3}, V (U2 ∩ A1) = {w1, w2}, V (U2 ∩ A2) = {w3}, V (U1 ∩ U2) ⊆ ({v1} ∩
{w1, w2}) ∪ ({v2, v3} ∩ {w3}), a1, a2 ∈ A1, a3, a4 ∈ A2, and ui ∈ Ui − (A1 ∪A2) for i = 1, 2.

Let v denote the vertex resulting from the contraction of xy. If v /∈ {vi, wi : 1 ≤ i ≤ 3}
then it is easy to see that (G, u1, u2, A) is also an obstruction of type V, and (iv) holds. Thus,
we may assume v ∈ {vi, wi : 1 ≤ i ≤ 3}. By symmetry, we need to consider only two cases:
v = v1 or v = v2. By Lemma 3.5 we may assume that {w1, w2, w3} ∩A = ∅.

We may assume that U2 contains three independent paths from u2 to w1, w2, w3, respec-
tively; for otherwise Menger’s theorem shows that (ii) holds.

Case 1. v = v2.

Let U ′1, A
′
2 be obtained from U1, A2 by uncontracting v to xy. We may assume that A′2

contains three disjoint paths from {v3, x, y} to {a3, a4, w3}. For if such three paths do not
exist then A′2 has a separation (A21, A22) such that |V (A21∩A22)| ≤ 2, {a3, a4, w3} ⊆ A22 and
{v3, x, y} ⊆ A21. Then U ′1 ∪A21, U2, A1, A22 show that (G, u1, u2, A) is an obstruction of type
V.

We may assume v1 /∈ A. For, suppose v1 ∈ A, say v1 = a1. Then (A1 ∪ U2, A
′
2 ∪ U ′1 + a2)

is a separation in G, and hence by Lemma 3.5, the assertion of the lemma holds.

We may assume that A1 − v1 contains disjoint paths from {w1, w2} to {a1, a2}. For,
otherwise, A1 has a separation (A11, A12) such that |V (A11 ∩ A12)| ≤ 2, v1 ∈ A11 ∩ A12,
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{w1, w2} ⊆ A12 and {a1, a2} ⊆ A12. Then the separation (G[A12+{a3, a4}], A11∪A′2∪U ′1∪U2)
shows that (iii) holds.

If U ′1 contains three independent paths from u1 to v3, x, y, then (i) holds. So we may
assume that U ′1 has a separation (U11, U12) such that |V (U11 ∩ U12)| ≤ 3, u1 ∈ U11 − U12,
and {v3, x, y} ⊆ U12. If v1 /∈ U11 − U12 then (ii) holds. So assume v1 ∈ U11 − U12. Then
U11, U2, A1, A

′
2 ∪ U12 show that (G, u1, u2, A) is an obstruction of type V.

Case 2. v = v1.

Let U ′1, A
′
1 be obtained from U1, A1, respectively, by uncontracting v to xy. We choose

U ′1, U2, A
′
1, A2 to maximize U ′1 ∪ U2.

We may assume that A∗1 := A′1 +{a1a2, w1w2, xy} contains a cycle through a1a2, w1w2, xy.
For, suppose not. Then by Lemma 3.3 there are three possibilities. First, suppose A∗1 has a
separation (K,L) such that |V (K ∩L)| ≤ 1 and |E(K)∩ {a1a2, w1w2, xy}| = 1. If w1w2 ∈ K,
then the separation (U ′1∪L∪A2,K∪U2) shows that (ii) holds. If xy ∈ K then U ′1∪K,U2, L,A2

show that (G, u1, u2, A) is an obstruction of type V. If a1a2 ∈ K then (G[K + {a3, a4}], L ∪
U ′1 ∪ U2 ∪ A2) shows that (iii) holds. Now, suppose A∗1 has a separation (K,L) such that
|V (K ∩ L)| = 2, |E(K) ∩ {a1a2, w1w2, xy}| = 1, and |V (K)| ≥ 3. If w1w2 ∈ K or xy ∈ K
then U ′1∪K,U2, L,A2 or U ′1, U2∪L,K,A2 contradicts the choice of U ′1, U2, A

′
1, A2 (maximality

of U ′1 ∪ U2). If a1a2 ∈ K then the separation (G[K + {a3, a4}], U ′1 ∪ U2 ∪ L ∪ A2) shows
that (iii) holds. Finally, {a1a2, w1w2, xy} is an edge cut in A∗1. Then it is easy to check that
(G, u1, u2, A) is an obstruction of type II, and (iv) holds.

We may assume that for any i ∈ {2, 3}, A2 − {{v5−i} − A) contains disjoint paths from
{w3, vi} to {a3, a4}. For suppose the contrary. Then by symmetry we may assume that
A2 − ({v3} − A) contains no disjoint paths from {w3, v2} to {a3, a4}. So Menger’s theorem
implies that A2 has a separation (A21, A22) such that |V (A21 ∩ A22)| ≤ 1 (when v3 /∈ A),
|V (A21 ∩ A22)| ≤ 2 and v3 ∈ A21 ∩ A22 (when v3 /∈ A), {a3, a4} ⊆ A21 and {w3, v2} ⊆
A22. We may assume that V (A21) = V (A21 ∩ A22) ∪ {v3} = {a3, a4}, or else the separation
(G[A21 + {a1, a2}], A22 ∪ U ′1 ∪ U2 ∪ A′1) shows that (iii) holds. As {w1, w2, v2} separates u2
from A ∪ {u1} in G, we may assume by Lemma 3.5 that v2 /∈ A. If U ′1 has three independent
paths from u1 to x, y, v3, respectively, then we see that (i) holds. So we may assume that U ′1
has a separation (U11, U12) such that |V (U11 ∩ U12)| ≤ 2, u1 ∈ U11 − U12 and {x, y, v3} ⊆ U12.
If v2 /∈ U11 − U12 then (ii) holds. So assume v2 ∈ U11 − U12. Then U11, U2, U12 ∪ A′1, A2 − v3
show that (G, u1, u2, A) is an obstruction of type III, and (iv) holds.

We may assume that U ′1 − (A− {v3}) has no three independent paths from u1 to x, y, v3,
respectively. For, such paths together with disjoint paths in A2 from {v3, w3} to {a3, a4}, three
paths in U2 from u2 to w1, w2, w3, and C −{a1a2, w1w2, xy}, give a topological H in G rooted
at u1, u2, A; so (i) holds.

Thus, U ′1 − (A − {v3}) has a separation (U11, U12) such that |V (U11 ∩ U12)| ≤ 2, u1 ∈
U11 − U12, and {x, y, v3} ⊆ U12. We choose U11, U12 so that |V (U11 ∩ U12)| is minimum and
then U12 is minimum.

We may assume that v2 ∈ N(U11 − U12) and |V (U11 ∩ U12)| = 2; or else (ii) holds. So by
Lemma 3.5 we may assume v2 /∈ A. So v2 ∈ U11 − U12. By the minimality of |V (U11 ∩ U12)|,
U11 has three independent paths from u1 to x, y, v2, respectively. By the minimality of U12,
U12− ({v3}∩A) has disjoint paths from V (U11 ∩U12) to {x, y}, respectively. Thus, U ′1− (A−
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{v2}) has three independent paths from u1 to x, y, v2, respectively. So these paths, disjoint
paths in A2 − ({v3} − A) from {v2, w3} to {a3, a4}, three paths in U2 from u2 to w1, w2, w3,
and C − {a1a2, w1w2, xy}, give a topological H in G rooted at u1, u2, A; so (i) holds.

5 Proof of main theorem

Proof. Suppose this is not true. Let (G, u1, u2, A) be a counterexample with |V (G)| minimum.

We claim that no cut of size at most 4 in G is disjoint from {u1, u2}, and separates {u1, u2}
from A. For, suppose G has a cut S such that |S| ≤ 4, S ∩ {u1, u2} = ∅, and S separates
{u1, u2} from A. Then |S| = 4 for any such choice of S; otherwise, (iii) holds. But this shows
that G admits a good 4-separation, a contradiction.

We also claim that u1 is not adjacent to u2. For, suppose u1u2 ∈ E(G). Then let G′ be
obtained from G by duplicating u1 and u2, and let u′i, i = 1, 2, denote the dupplicate of ui.
Now by (2), G′ contains four disjoint paths from {u1, u′1, u2, u′2} to A. These paths and u1u2
form a topological H in G rooted at u1, u2, A, a contradiction.

We further claim that N(u1) ∩ N(u2) ⊆ A. Now let u ∈ N(u1) ∩ N(u2) − A. Let G′ be
obtained from G−u by duplicating ui (with duplicate u′i) for i = 1, 2. By (2), G′ contains four
disjoint paths from {u1, u′1, u2, u′2} to A. These paths together with u1uu2 form a topological
H in G rooted at u1, u2, A, a contradiction.

We now show that there exists an edge xy ∈ E(G) such that x, y /∈ A ∪ {u1, u2}, and if
d(ui) = 3 then {x, y} 6⊆ N(ui). If V (G) = A∪{u1, u2} then, since u1u2 /∈ E(G), u1 and u2 are
the components of G−A, so (G, u1, u2, A) may be viewed as an obstruction of type IV. Thus,
we may assume V := V (G)− (A∪{u1, u2}) 6= ∅. We may assume that G[V ] contains no edge,
as any edge in G[V ] gives the desired edge. Therefore, since N(u1)∩N(u2) ⊆ A, V (G)−A can
be partitioned into two sets V1, V2, such that ui ∈ Vi for i = 1, 2. Now G[V1], G[V2], a1, a2, a3, a4
show that (G, u1, u2, A) is an obstruction of type IV.

By the choice of G, (G/xy, u1, u2, A) satisfies (i) or (ii) or (iii) or (iv). If (G/xy, u1, u2, A)
satisfies (i) then (G, u1, u2, A) also satisfies (i).

Suppose (G/xy, u1, u2, A) satisfies (ii). Let (G1, G2) be a separation in G such that V (G1∩
G2)| ≤ 2, ui ∈ G1−G2, and A∪{u3−i} ⊆ G2. By the minimality of G, G1−G2 = {ui}. Thus
x, y ∈ N(ui), a contradiction. So (G/xy, u1, u2, A) cannot satisfy (ii).

Suppose (G/xy, u1, u2, A) satisfies (iv). Then (G, u1, u2, A) satisfies (i)–(iv) by Lemmas 3.6,
4.1, 4.2, 4.3, 4.4, and 4.5.

So we may assume that (G/xy, u1, u2, A) satisfies (iii). Let (G1, G2) be a separation in
G such that |V (G1 ∩ G2)| = 4, {u1, u2} ⊆ G1 − G2, and A ⊆ G2. Let v denote the vertex
resulting from the contraction of xy. If v /∈ G1 ∩ G2 for one such separation, then (iii) also
holds for (G, u1, u2, A). Thus we may assume that v ∈ G1 ∩ G2 for all such separations. So
G2 has four disjoint paths from A′ := V (G1 ∩G2) to A. We choose (G1, G2) to minimize G1.

Let A′ = {a′1, a′2, a′3, v}. By the minimality of (G, u1, u2, A), (G1, u1, u2, A
′) is not a

counterexample. Thus, (G1, u1, u2, A
′) satisfies (i) – (iv). If (G1, u1, u2, A

′) satisfies (i) then
(G, u1, u2, A) also satisfies (i).

If (G1, u1, u2, A
′) satisfies (ii) then G1 has a separaion (K,L) such that |V (K ∩ L)| ≤ 2,
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ui ∈ K−L and A′∪{u3−i} ⊆ L. If v /∈ K∩L or |V (K∩L)| ≤ 1 then (ii) holds for (G, u1, u2, A).
If v ∈ K ∩ L and |V (K ∩ L)| = 2 then by the minimality of G, V (K − L) = {ui}. This shows
that x, y ∈ N(ui), a contradiction.

Now suppose (G1, u1, u2, A
′) satisfies (iii) then G1 has a separaion (K,L) such that |V (K∩

L)| = 4, {u1, u2} ⊆ K − L and A′ ⊆ L. So v ∈ K ∩ L. But this contradics the minimality of
G1.

Therefore, (G1, u1, u2, A
′) satisfies (iv).

(4) G contains no 5-cut S such that u1, u2 belong to different components of G−S, and the
components of G− S containing u1 or u2 are disjoint from A.

Otherwise, let S be a 5-cut in G and U1 and U2 be components of G−S such that for i = 1, 2,
ui ∈ Ui and Ui ∩A = ∅.

We now apply Lemma ??. Lemma ??(i) cannot occur; otherwise G would satisfy (ii). By
(2), Lemma ??(ii) cannot occur. So Lemma ??(iii) occurs. Thus for any v ∈ N(U1) ∩N(U2)
with v /∈ A and for i = 1, 2, G[Ui∪N(Ui)] contains three paths P i

1, P
i
2, P

i
3 from ui to N(Ui)∩S

such that P i
j ∩P i

k = {ui} whenever j 6= k, v ∈ P 1
3 ∩P 2

3 , and each vertex in S − {v} belongs to
precisely one of these paths.

If G− (U1 ∪U2 ∪ {v}) has four disjoint paths from S −{v} to A, then these paths and P i
j ,

i = 1, 2 and j = 1, 2, 3, form a topological H in G rooted at u1, u2, a1, a2, a3, a4, a contradiction.
Thus such paths do not exist. So G − (U1 ∪ U2 ∪ {v}) has a cut T with |T | ≤ 3 separating
S − {v} from A. Hence T ∪ {v} is a cut in G separating A from {u1, u2}, contradicting (2).

Thus for any v ∈ N(U1) ∩N(U2) − A, G − (U1 ∪ U2 ∪ {v}) has a cut T with |T | ≤ 3 and
separating S − {v} from A. If |T | ≤ 2 then T ∪ {v} shows that (iii) holds, a contradiction. So
|T | = 3, which shows that (v) holds, a contradiction.
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