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Abstract

Let H denote the tree with six vertices two of which are adjacent and of degree three.
Let G be a graph and uq, us, a1, as, as, as be distinct vertices of G. We characterize those
G that contain a topological H in which uq,us are of degree three, and a1, as,as,as are
of degree one. This work was motivated by the Kelmans—Seymour conjecture that 5-
connected nonplanar graphs contain topological K.
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1 Introduction

The work in this paper was motivated by the well known conjecture of Seymour [14] and
Kelmans [6]: Every 5-connected nonplanar graph contains a topological K5 (i.e., subdivision
of K35). Clearly, this would provide structural information that guarantees the existence of
a topological K5. Earlier, Dirac [3] conjectured an extremal function for the existence of a
topological K5: If G is a simple graph with n > 3 vertices and at least 3n — 5 edges then
G contains a topological K5. This conjecture was established by Mader [12]. Kézdy and
McGuiness [7] showed that the Kelmans-Seymour conjecture if true would imply Mader’s
result. This Kelmans-Seymour conjecture is also related to a conjecture of Hajés (see [2])
that every graph containing no topological K1 is k-colorable. Hajés’ conjecture is false for
k > 6 [2] and true for k = 1,2, 3, and remains open for the case k =4 and k = 5.

An approach to the Kelmans-Seymour conjecture is to study the so called rooted K4 prob-
lem: Given a graph G and four distinct vertices of G, when does G contain a topological K, in
which x1, x9, 3, z4 are the vertices of degree three. This problem was solved for planar graph-
s, see [16]. Recently, Aigner-Horev and Krakovski [1] used this to prove Kelmans-Seymour
conjecture for apex graphs. (A different and shorter proof was found by Ma, Thomas and
Yu [9].)

One step in [16] is to solve the following rooted H problem for planar graphs: Let H
represent the tree on six vertices two of which are adjacent and of degree 3. Let G be a graph
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and w1, uo, a1, as,as,as be distinct vertices of G. When does GG contain a topological H in
which uq,us are of degree 3 and a1, as,as,aq are of degree 17 We say such a topological H
is rooted at uy,ug, {a1,a2,as,as}. For convenience, we use quadruple to denote (G, uy,ug, A)
where uq, ug are distinct vertice of a graph G, A C V(G) — u1,u2}, and |A| = 4.

The main result of this paper is a characterization of graphs quadruples (G, u1, uz, A) that
contain a topological H rooted at wuy,us, A. Since the statement of this result requires a fair
amount of terminology, we defer it to Section 2, see Theorem 2.1.

We devote the rest of this section to notation and terminology. A separation in a graph
G consists of a pair of subgraphs G1,Ge, denoted as (G1,G2), such that E(G1 N Gy) = 0,
E(G1)UV(Gy) € Gy NGe, and E(G2) UV (G2) € G1 N Ga. The order of this separation is
|[V(G1 N G2)|, and (G1,G2) is said to be a k-sepration if its order is k. Let G be a graph. A
set S C V(G) is a k-cut or a cut of size k in G, where k is a positive integer, if |S| = &k and
G has a separation (G1,G2) such that V(G1 N Gg) = S and V(G; — S) # 0 for i € {1,2}. If
v € V(G) and {v} is a cut of G, then v is said to be a cut vertex of G.

Let G be a graph. If there is no confusion, we may write S C G instead of S C V(G) or
S C E(G), and write z € G instead of z € V(G) or z € E(G). Let H C G, S CV(G), and T
a set of 2-element subsets of V(H) U S; then H + (S UT) denotes the graph with vertex set
V(H)US and edge set E(G)UT. If T = {{z,y}}, we write G + xy instead of G + {{z,y}}.

Given a path P in a graph and x,y € V(P), Py denotes the subpath of P between x and
y (inclusive). We may view paths as sequences of vertices; thus if P is a path between x and
Y, @ is a path between y and z, and PN Q = {y}, then PyQ denotes the path P U Q. The
ends of the path P are the vertices of the minimum degree in P, and all other vertices of P are
its internal vertices. A path P with ends u and v is also said to be from u to v or between u
and v. A colloection of paths are said to be independent if no vertex of any path is an internal
vertex of any other path.

2 Obstructions

For convenience, we say that a quadruple (G, u1,uz, A) is feasible if G contains a topological H
rooted at wug, us, A. An obstruction is a quadruple that is not feasible. We now describe basic
obstructions.

A quadruple (G, u1,ug, A) is of type I'if G is the edge-disjoint union of subgraphs Uy, Us, Ay
such that [V(Ui N Ay)| =3, [V(UaNAy)| =4, V(U NU;) C ANV (A), |[V(U NU2)| = 2,
A C Ay, and for some € {1,2}, u; € Uy — Ay and uz_; € Uy — Ay. Clearly, if G has a
topological H rooted at wi,uo, A, say J, then J N U; consists of three independent paths
from w; to V(U N Ay). Therefore, J N Uz must have three independent paths from us_; to
(UyN Ay) — Uy, a contradiction. So quadruples of type I are obstructions.

A quadruple (G, uy,ug, A) is of type I1if there exist edge disjoint subgraphs Uy, Us, A1, Aa, A3
such that G = Uy UUy U A; U Ay U Az, |[V(Uz N A3)| = |[V(U; N Aj)| = 1 for i € {1,2} and
j € {1,2}, |V (U N Ag)’ =2, A ﬁAj CULUUy, UiNUy C A1 UAy U Ag, ‘V(Ai) ﬂA‘ =1 for
1 =1,2, |V(A3)QA| =2,ifaq; € Uj then a; € Us then a; € AlﬂAgﬂAg, if a; € Ulﬂ(AlUAg)
then a; € A3,—V(A;)| = 1 for some i € {1,2} then A; C A; for all j # 4, and for some
i€ {1,2}, u; € Uy — (A1 U Ay U A3) and us—; € Uy — (A1 U Ay U A3). Clearly, if G has a



topological H rooted at ui,us, A, say J, then J N Us consists of three independent paths from
us—; to V(A1 UAg) N A)UV (U N Ag). Therefore, J N U; must have three independent paths
from u; to V/(Up N As), a contradiction. So quadruples of type II are obstructions.

A quadruple (G, uy,ug, A) is of type 111 if there exist edge disjoint subgraphs Uy, U, A;, Ao
of G such that G = Uy UUy U A1 U Ao, |V(U1 N A1)| = |V(U2 N A1)| =1, |V(U1 N Ag)’ =
‘V(UQQAQ)‘ = 2, V(UlﬂUQ) C AjUASU A3, ‘V(Al)ﬂA‘ =1, ‘V(AQ)QA‘ =3,ifa; € Uj then
a; € AnAg, and u; € U; — (A1 U Ag) for i = 1,2. Clearly, if G has a topological H rooted at
uy, ug, A, say J, then J N (U; U Ap) has three independent paths from wu; to the three vertices
in (V(A1)NA)UV (Ui N Asz). So JNUs has three independent paths from us to V(Uz N Az),
a contradiction. So quadruples of type III are obstructions.

A quadruple (G, uy,ug, A) is of type IV if there exist edge-disjoint subgraphs Uy, Usa, A1, A2, A3, Ay
such that G/my = U1 UUUA; UAy U A3z U Ay, |V(U1 N AJ)| =1forl < i< 4 and
j =12, V(UlﬂUQ) C A1 UAy U A3 U Ay, ’V(A,)OA| =1forl1<i<4,ifa; € Uj then
a; € AiNAyNA3sNA;NUs_j, and w; € Uy — (A1 U Ay U A3 U Ay) for i = 1,2. Clearly, if
G has a topological H rooted at uy,us, A, say J, then the path in J between u; and uo must
go through A; for some 1 < ¢ < 4. But then J cannot use V(A4;) N A, a contradiction. So
quadruples of type IV are obstructions.

A quadruple (G, u;,ug2, A) is of type V if there exist edge disjoint subgraphs Uy, U, A;, Ao
of G such that G = Uy UUy U A1 U Ao, |V(U1 N A1)| = |V(U2 N A2)| =1, |V(U1 N AQ)’ =
‘V(UgﬂAl)‘ = 2, V(UlmUQ) C AjUA,, ’V(Al)ﬁA| =2= ‘V(AQ)QA’, and u; € Ui—(Al UAQ)
for i = 1,2. Clearly, if G has a topological H rooted at w1, uo, A, say J, then J N U; has three
independent paths from w; to the vertices in V(U;) NV (A1 U Asg), respectively. So the path in
J between uq and ug must go through A; or As, say A; by symmetry. Then J can only use
one of V(A1) N A, a contradiction. So quadruples of type V are obstructions.

A quadruple (G,ui,u2, A) is of type VI if there exist edge-disjoint subgraphs Uy, Us, A1
of G such that GU; U Uy U Ay, |V(Uz N A1)| = 3 for i = 1,2, V(Ul N UQ) C AN V(Al),
V(Ui NU2)| =1, and u; € U; — A; for i = 1,2. Clearly, if G has a topological H rooted
at up,ug, A, say J, then J N U; consists of three independent paths from u; to V(U; N Ay).
Therefore, J contains a path from wu; to us and containing a vertex from A, a contradiction.
So quadruples of type VI are obstructions.

We can now state our main result which chracterizes all feasible quadruples.

Theorem 2.1. Let (G,u1,u2, A) be a quadruple and let A := {ay,a2,as3,a4}. Then one of the
following holds.

(i) (G,u1,u2,A) is feasible.

(ii) G has a separation (G1,G2) such that |V(G1 N G2)| < 2 and for some i € {1,2}, u; €
Gi1— Gy and AU {U3_i} C Gs.

(iii) G has a separation (G1,G2) such that |V (G1NG2)| <4, ui,us € G1 — Ga, and A C Gs.
(iv) (G,ui,u2, A) is an obstruction of type I-VI.

The idea of our proof of Theorem 2.1 is to find an edge zy in G — (A U {u,u2}) and
consider the graph G/zy obtained from G by contracting zy. Clearly, if (G/zy,u1,uz2, A) is



feasible then (G, u1,ug, A) is feasible. We will show that if (G/xy, u1,us, A) is an obstruction
of one these six types, then (i), or (ii), or (iii), or (iv) holds. This is done in Section 4.

3 Disjoint paths

In this section we prove useful lemmas about disjoint paths. First, we state the following result
of Perfect [13]; we will need the k = 3 case.

Lemma 3.1. (Perfect) Let G be a graph, v € V(G), and A C V(G —u). Suppose there exist k
independent paths from u to distinct aq,...,ar € A, respectively, and otherwise disjoint from
A. Then for any n > k, if there exist n independent paths Py, ..., P, in G from u ton distinct
vertices in A and otherwise disjoint from A then Py, ..., P, may be chosen so that a; € P; for
i=1,... k.

We need structural information about graphs containing no cycle through three given edges.
Lovész [8] proved the following.

Lemma 3.2. (Lovdsz) Let G be a 3-connected graph and ey, es, es be distinct edges of G. Then
G contains a cycle through ey, e, es iff G — {e1,e2,e3} is connected.

We also need the following easy generalization of Lemma 3.2.

Lemma 3.3. Let G be a connected graph and let e1,es,e3 € E(G) be distinct. Then one of
the following holds.

(i) {e1,e2,e3} is contained in a cycle in G.

(i) G has a separation (G1,G2) such that |V(G1NG2)| =1 and E(G;) N{e1,ea,e3} # 0 for
i=1,2.

(i) G has a separation (G1,G2) such that |V(G1NG2)| = 2 and for some i € {1,2}, |E(G;)N
{e1,e2,e3}| <1 and |V(G;)| > 3.

(iv) G — {e1, ez, e3} is not connected.

Proof. Suppose the assertion is false, and choose a counterexample G,eq,eq,e3 such that
|V (G)] is minimum. Then G is not 3-connected, as otherwise (i) or (iv) holds by Lemma 3.2.
So let (G1,G2) be a k-separation of G such that k € {1,2}, and G; — G3_; # () for i = 1, 2.

If & = 2 then (iii) holds, a contradiction. So k = 1, and we may assume by symmetry
that {e1,e2,e3} € Gy (or else (ii) would hold). By the minimality of G, we see that one of
(i)—(iv) holds for Gy, e1, €2, e3. Because k = 1, it is easy to check that one of (i)—(iv) holds for
G, eq,es,e3, a contradiction.

The problem for finding a cycle through three given edges is equivalent to the problem for
finding two disjoint paths between two pairs of vertices and through a given edge. In general
one could ask the problem for finding % disjoint paths between two k-sets (of vertices) and



through a specified edge. We solve the k = 3 case here, which will be used many times in our
proof of Theorem 2.1.

First, we introduce the concept of a bridge. For a subgraph H of a graph G, an H-bridge
of G is a subgraph of G, say B, for which there exists a component D of G — V(H) such that
B is induced by the edges which are either contained in D or from D to H.

Lemma 3.4. Let G be a graph, A = {a1,a2,a3} C V(G), B = {b1,b2,b3} C V(G), and
e € E(G) such that ANB =0 and V(e) N (AU B) = 0. Then one of the following statements
holds.

(i) G has three disjoint paths from A to B and through e.

(i) G has a separation (G1,G2) such that |V(G1NG2)| <2, AC Gy, and B C Gs.
(ii) G has a separation (G1,G2) such that |V(G1NG2)| <1, e € Gy, and AU B C Gs.
(iv) G has a separation (G1,G2) such that |V(G1 N Ga)| =3, AC Gy, and B C Ga.

(v) G =G UGy UGs such that GiNG3 =0, e € G, [V(G1NG2)| <1, |[V(GanNGs)| <1,
V(G NA| =1 = [V(Gr) N B|, and [V(Gs) N A = [V(Gs) N B = 2.

(vi) G =G1UG2UG3UG4 UG5 such that |[V(G;NGj)| =1 forie{1,2} and j € {3,4,5},
V(GlﬁG2)§G3UG4UG5, GiﬁGjQG1UG2fOT3Si7éj§5,€€G1, and either
A C Gy and |[V(Gj) N Bl =1 for j € {3,4,5} or B C Gy and |V(G;) N Al =1 for
Jj€{3,4,5}.

Proof. We may assume that G has three disjoint paths from A to B, or else (ii) follows from
Menger’s theorem. So let Pi, P, P3 denote three disjoint paths in G from A to B, and let
P = U?:1 P;. If e € P then (i) holds. So we may assume that e ¢ P for any choice of P. Let
Hp denote the P-bridge of G containing e. We choose P so that

(1) Hp is maximal.

Without loss of generality we may assume that P; is from a; to b; for i« = 1,2,3. Let
xi,yi € V(P; N Hp) (if not empty) such that z; Py; is maximal. We may assume a;, z;, y;, b;
occur on P; in order. For conveneience, let H := Hp — P, and let H; := G[H' U x; Py;] for
i=1,23.

(2) For any i with xz;,y; defined, G has no P-bridge intersecting both a;Px; — x; and

x; P;b; — ;, or both a; Py; — y; and y; Pib; — y;.
For, suppose G has a P-bridge J intersecting both a; P;x; — x; and x; P;b; — x;. Then J # Hp,
and J contains a path @; from w; € V(a;Pix; — x;) to v; € V(z;P;b; — x;) and internally
disjoint from P. Let P/ := a,Piu;Q;v;P;b;, and P’ := (P — P;) U P!. Then the P’-bridge of G
containing e contains Hp + z;; so P’ contradicts the choice of P.

(3) We may assume that for any ¢ with x;,y; defined, H} has a separation (H;1, H2) such
that |V(H; N Hy)| = 1, zi,y; € Hi, and e € Ho; and we choose (H;1, Hiz) so that Hjo is
minimal, and let w; € V(H;; N H;2).

For, otherwise, it follows from Menger’s theorem that H/ contains path @; from z; to y; and
through e. Let P! := a;P;x;Q;y;Pyb;. Then P’ := (P — P;) U P! shows that (i) holds.



Note that if w;, w; are deinfed and w; = w; then by the minimality of H;o, Hj2, we have
H;po = ng.
(4) We may assume that wy and wo are defined and wy # ws.

If x;,y; are defined for at most one i then, by (3), the separation (H;o, G — (H;2 — w;)) shows
that (iii) holds. So we may assume that w;, x;,y; are defined for i = 1,2. If w3, x3,y3 are not
defined then we may assume w; # wo (or else the separation (Hi2, G — (H12 — w1)) shows that
(iii) holds). So we may assume that ws, x3,y3 are defined as well. Then by symmetry we may
assume w; # wo; for if w; = we = w3 then the separation (Hi2, G — (H12 — w)) shows that
(iii) holds.

By (4), Hp — (P — {w1,w2}) contains a path from w; to wsy, through e, and internally
disjoint from P. So for {i,j} = {1,2}, Hp — P3 contains a path Q;; from z; to y;, through
e, and internally disjoint from P. Moreover, Hp — P3 has a separation (H;, Hy) such that
V(Hl N Hg) = {’wl,ZUQ}, e € Hy, and Hi1 U His C Hs.

(5) G has no P-bridge that is different from Hp and intersects both a;Piy; — y1 and
L9 Poby — bo, or both asPoys — yo and x1P1by — by.

For, suppose some P-bridge J # Hp of G intersects both a1 Pyy1 —y1 and x9 Pobo —xo. Then J
contains a path @ from u € V(a1 Piy1 —y1) to v € V(zoPaby — x2) and internally disjoint from
P. Now aj PiuQuPsby, as PoxaQ21y1 P1b1, P3 show that (i) holds. Similarly, by using Qi2, (i)
holds if some P-bridge of G (different from Hp) intersects both agPays — y2 and z1P1by — b;.

Case 1. ws, x3,y3 are defined.

Then G[H' + {z;,y;}] has a path Q;; from z; to y; for any 1 <i # j < 3. By (3), G has a
separation (K, L) such that V(K N L) = {wy,ws, w3} and L = His N Hay N Hao.

Suppose w3 ¢ {wi,ws}. Then (5) holds for any ¢ # j. Therefore, if {x1,z9, 23} #
{a1,a2,a3} or some P-bridge of G contains two of {x1, x2,x3}, then G has separation (G1, G2)
such that V(G1NG2) = {z1, 22,23}, A C G1, and B C Ga; so (iv) holds. Thus we may asume
that {x1,x9,x3} = {a1, as, a3} and no P-bridge of G contains two of {x1,x2, x3}. Similarly, we
may assume that {y1,y2,y3} = {b1,b2,b3}, and no P-bridge of G contains two of {y1,y2,ys3}.
Now, let G; = Hy, Go = B, and G3 = G — (G1 — {w1, w2, w3}. The we see that (vi) holds.

Thus, we may assume that by symmetry that ws = wy. By the same argument as for (5),
we may assume that no P-bridge of G intersects both a1 Piy; — y1 and x3P3b3 — x3 or both
az3P3ys3 — y3 and x1P1by — x7.

If no P-bridge of G intersecting P; intersects P» U P3, then (v) holds with G; has the
union of P; U Hy; and all P-bridges of G (different from Hp) intersecting Py, Go = Ho, and
G3 := G — Gy — (Gy — {wy,w2}). Thus by symmetry we may assume that G has a path Q
from ug € V(agPaxa) to u; € V(a1 Pix1 —y1) UV (agPszs — y3), and we choose () to minimize
ug Poxy. Let uz € agPsxs with ugPsrs minimal such that us = ag, or some P-bridge of GG
containing ug intersects (a1 Piz1 — y1) U (a2 Paxa — y2).

If G has a separation (G1,G2) such that V(G N Ga) = {x1,uz,uz}, QU A C G; and
B C G, then (iv) holds. So we may assume that such a separation does not exist in G. Then
there exists a path R in G from r € V(agPaus — uz) UV (asPsus — ug) to t € V(x1 Piby — x1)
and internally disjoint from P U Q. By symmetry, we may assume 7 € agPous — us.

When up € a3P3x3 — Y3, the paths a1P1£L'1Q13y3P3b3, GQPQTRtplbl, agpgulQUQPQbQ show



that (i) holds. So we may assume u; € a1 Piz; — y1. Then aj PiuiQuaPaba, aaPor RtPiby, Ps
contradict the choice of P (that Hp is maximal).

Case 2. ws, r3,ys are not defined.

Let u € V(P3) with agP3u maximal such that u = a3 or u belongs to some P-bridge of G
intersecting (a1 Pix1 — 1) U (agPare — x2). Similarly, let v € V(P3) with b3 Psv maximal such
that v = bs or v belongs to some P-bridge of G intersecting (y1 P1b1 — y1) U (y2Paba — y2).

we may assume {x1, zo,u} = {a1,as,as3} and {y1,ya2,v} = {b1,be,bs}. For, otherwise, we
may suppose {x1,z2,u} # {a1,az2,a3}. If G has no path from agPsu — u to (z1P1by — x1) U
(22 Poba —x2) and internally disjoint from P then, by (5), G has a separation (G, G2) such that
V(G1NG3y) = {z1, 22,23}, A C Gy, and B C G, and (iv) holds. So we may assume that G has
a path @ from z € V(azPsu—u) toy € V(z1P1by — 1)UV (x9Pabs — x2) and internally disjoint
from P. Let R be a path in G from u to z € V(a1 Piz1 — 1) UV (agPaze — x2) and internally
disjoint from P, and by symmetry we may assume that z € asPoxo — x9. If y € o Pobs — 2o
then Pp,asPozRuPsbs, a3 P3xQyPsbs are three disjoint paths that contradict the choice of P
(With Hp maximal). So Yy € 1’1P1b1 — 1. Then a1P1:L‘1Q12y2P2b2, alpzzRngbg, a3P3nyP1b1
show that (i) holds.

We may assume that some P-bridge of G intersects both P» and P3 and some P-bridge of
G intersects both P; and Ps. For, otherwise, we may assume by symmetry that no P-bridge of
G intersecting Pj5 also intersects P;. Let G1 denote the union of PoU P3, Ho1, and all P-bridges
of G different from Hp and intersecting 4 P, U P3. Let Go = Hs, and let G5 be the union of
Py, Hyp, and all P-bridges of G different from Hp and intersecting P;. Then by (5) we see
that G, Ge, G5 satisfies (v).

Suppose G has a P-bridge J such that JNP; # 0 for i = 1,2,3. Then J # Hp as w3, x3,Y3
are not defined. So by (5) and by symmetry, we may assume that V(J N P;) = {a;} and
V(JNPy) = {az}. Let u € V(JNP3) with a3 P3u maximal. We may assume that G has a path
Q from z € V(azPsu —u) toy € V(P; —a1) UV (P, — ag); for otherwise G has a separation
(G1,G2) such that V(G N Ge) = {a1,a2,u}, A C G1, and B C Go, which implies (iv). Let
@); denote paths in J from u to a;, ¢ = 1,2, that are internally disjoint from P. If y € P» then
Pl, qupgbg, angnyPng show that (1) hOldS; and if (IS P1 then Qlupgbg, QQ, a3P3nyP1b1
show that (i) holds.

So we may assume that no P-bridge of GG intersects P; for all ¢ = 1,2, 3. If all P-bridges of
G intersect P3 in exactly one common vertex, say z, then we may assume z # ag (as ag # bs);
now G has a separation (G1,G2) such that V(G N Gsa) = {a1,a9,z}, A C Gy, and B C Gy,
which implies (iv). So we may assume that G has P-bridges J; and Jy such that J; N Py # 0,
Jo N Py # (), and there exists uy € J; NP3 and us € Jo N Py with u; # us. By symmetry let
as, u1,uo,bs occur on Ps in order. Note that J; # Js.

Let v1 € V(J1 N Pp) with a1 Piv; maximal, and let vo € V(Jy N Py) with vy Pbe maximal.
For i = 1,2, let @; be a path in J; from u; to v; and internally disjoint from P. If v; # a1 and
vg # by, then Q12, a2 PyvaQousP3bs, asPsui Qv Piby show that (i) holds. So we may assume
by symmetry that vo = ba. We may modify Ps if necessary to make Js maximal. Then no
P-bridge of G other than J, intersects both agPsuo — ue and uo P3bs — us.

If there is no P-bridge of G different from Jo intersecting usPsbs — uo, then G has a
separation (G, G2) with V(G1NG2) = {b1,b2,u2}, A C V(G1), and B C V(G2); so (iv) holds.



Hence, we may assume that some P-bridge of G different from J intersects ug P3bs —uso; hence,
there is a path Ry in G from sg € V (ugP3bs —us) to to € V(Py —b1) UV (P, —by) and internally
disjoint from P.
If ¢ € P; — by then aPitoRssoPsbs, 21, agPsus(@@2bs show that (1) holds. So we may
asume t2 S P2 — b2. Then Pl, a1P2t2R252P3b3, a3P3uQQ2b2 show that (1) holds.
|

As an application of Lemma 3.4 we prove the following lemma which will be used many
times to deal with (G/zy,u1,u9, A).

Lemma 3.5. Let (G,u1,us, A) be a quadruple and let A := {a1,a2,a3,a4}. Suppose G has a
separation (U1, Us) such that |V (UNUs)| < 3, |V(U1NU2)NA| # 0, uy € Uy—Us, ug € Uy—Uj,
and A C Uy. Then one of the following holds.

(i) (G,u1,u2,A) is feasible;

(it) G has a separation (G1,G2) such that |V(G1 N G2)| < 2 and for some i € {1,2}, u; €
Gi1— Gy and AU {U37i} C Gsy;

(i5i) G has a separation (G1,G2) such that |V(G1NG2)| <4, ur,us € Gy — G, and A C Go;

(iv) (G,u1,u2,A) is an obstruction of type I or IV.

Proof. We may assume |V (U; N Usz)| = 3; as otherwise (ii) holds. So let V(U3 N Usy) =
{v1,v9,v3}. If V(U3 NUsz) C A then u; and uy belong to different components of G — A; so
(iii) holds. Thus we may assume that vs ¢ A. Since V(U1 NUz) N A # (), we may assume that
v = aj.

We may assume that Us has three independent paths from wy to aq,ve,v3, respectively.
Otherwise Uy has a separation (Usai, Usg) such that |V (U N Us2)| < 2, ug € Usy — Uso and
{a1,v2,v3} C Use. Now (Ua1, U2 U Uy) is a separation in G showing that (ii) holds.

Suppose vo € A. Without loss of generality, we may assume vy = ao. Then G has a
topological H rooted at uj,u2, A iff U; — {a1, a2} has three independent paths from u; to
as, aq,vs, respectively. Thus (i) holds, or U; has a separation (Uy1,Ui2) such that [V(Uj; N
U12)’ < 4, ai,ag € U11 N U12, uy € U11 — U12 and {ag,a4,?)3} C U12. Now U11,U2,U12 show
that (G, u1,uz, A) is an obstruction of type I, and (iv) holds.

So we may assume that vo ¢ A. Then G has a topological H rooted at wuj,us, A iff
(Up — a1) + vovs has three independent paths from u; to ag,as,as and containging the edge
vovs. Let U] be obtained from (U; — a1) 4+ vovs by duplicating uy twice, as u}, u]. We wish to
see if U] has three disjoint paths from {u,u},u]} to {a2,as,as} and containing vevs. So we
apply Lemma 3.4.

If Lemma 3.4(i) holds then U7 has three disjoint paths from {uy, v}, u}} to {a2,as,as} and
containing vevs. So (U; — a1) + veus has three independent paths from u; to ag,as,as and
containging the edge vovs. Hence, G has a topological H rooted at wuj,us, A, and (i) holds.

Suppose Lemma 3.4(ii) holds. Then Uj has a separation (U1, Ujs) such that |V (Ui N
U2)] < 2, {ug,uy,uf} C Un, and {ag,a3,a4} C Uje. If vouz € Ui then the separation



(G[Uy1 — {u},u}],Us2) shows that (ii) holds. If veus € Uj; then the separation (G[Uy; —
{ufy,uf}],Ur2) shows that (iii) holds.

If Lemma 3.4(iii) holds then U] has a separation (Uy1,Ui2) such that |[V(Upp NU2)| < 1,
{ug, vy, v} C Uy and va,v3 € Upa. Now the separation (G[U11 — {u}, uf}], GV (Ui2)] U Us)
shows that then (ii) holds.

Suppose Lemma 3.4(iv) holds. Then Uj has a separation (Ui1,Ui2) such that |V (Ui N
Ur2)| = 3, {uy, v}, v} C Uy and {ag,as,as} C Uyg. If vovg € Uyy, then G[V (Uyr) — {u), uf} +
{a1}], U2, G[U12 + a1] show that (G, u1,uz2,A) is an obstruction of type I, and (iv) holds. If
vovg € Ujg then the separation (G[V (Ui2 + a1)], G[U11 + a1] U Us) shows that (iii) holds.

Since v} and uf are duplicates of u;, Lemma 3.4(v) cannot occur. So we may assume
Lemma 3.4(vi) holds. Again, since u} and ] are duplicates of uy, U] is the edge disjoint
union of graphs G, 1 < i < 5, such that |V(G; N G;)| =1 for i € {1,2} and j € {3,4,5},
G1NGy C G3UG4 UGS, GiﬂGj CG1UGy for 3<i+# 5 <5, voug C Gy, {ul,ui,uf{} C Go,
and |V(G;) N{az,a3,as}] =1 for j € {3,4,5}. Then G[G2 — {u},u]} + a1], U2 U G[V(G1 +
a1)],{a1}, G3, G4, G5 show that (G, u1,us, A) is an obstruction of type IV, so (iv) holds. |

As an easy corollary of Lemma 3.5, we can deal with obstructions of type VI.
Corollary 3.6. Let (G, uy,uz, A) be a quadruple, and let A := {a1,a2,as,a4}. Suppose there
exist vy € E(G) such that x,y € V(G) — A—{u1,u2} and (G/xy,u1,us, A) is of type VI. Then
one of the following holds.

(i) (G,u1,uz,A) is feasible.

(i) G has a separation (G1,G2) such that |V(G1 N Ga)| < 2, and for some i € {1,2},
u; € G1 — Ga, and AU {U3_i} C L.

(i1i) G has a separation (G1,G2) such that |V(G1NG2)| <4, A C Gy and {u1,us} C Ga—Gj.
(iv) (G,ui,u2, A) is an obstruction of types I, IV,or VI.

Proof. Let G/xy be the edge-disjoint union of subgraphs Uy, Us, A1 such that |V (U1NA;)| = 3,
‘V(UQ N Al)‘ = 3, V(U1 N UQ) C AN V(Al), ‘V(Ul N UQ)’ =1, AC Ay, and u; € Uy — A7 and
ug € Uy — A;. Let v denote the vertex of G/xy resulting from the contraction of zy.

If v ¢ V(U; N Ay) for i = 1,2 then we see that (G, uy,us, A) is an obstruction of type VI.
Otherwise, we may assume by symmetry that v € Us N A;. Now (Uy, A1 U Us) is a separation
which alllows us use Lemma 3.5. So the assertion of the lemma holds. |

4 Contraction critical quadruples

In this section we prove lemmas to be used to deal with contraction critical quadruples
(G,u1,u2,A): those such that for any zy € E(G — (AU {u1,us}), (G/xy,u1,us, A) is an
obstruction.

Lemma 4.1. Let (G,u1,uz, A) be a quadruple, and let A := {a1,a2,as,a4}. Suppose there
exist vy € E(G—A—{uy,us}) such that (G/zy,u1,us, A) is of type I. Then one of the following
holds.



(i) (G,u1,uz,A) is feasible.
(ii) G has a separation (G1,G2) such that |V(G1NG2)| < 2, u; € G1—G2, and AU{uz} C Gs.
(i1i) G has a separation (G1,G2) such that |V (G1NG2)| < 4, {u1,us} C G1—G2, and A C Gs.

(iv) (G,uyi,u2, A) is an obstruction of types I, II or IV.

Proof. Let G/xy be the edge disjoint union of Uy U Us U A; such that V(U NUs) = {a1, a2},
V(UiNAy) ={a1,a2,v1}, V(U2 N Ar) = {a1, a2, v2,v3}, V(U1 NU2) = {a1,a2}, u1 € Uy — A,
and us € Uy — Ay. Let v denote the vertex resulting from the contraction of x,y.

We may assume v = v;. For, suppose v # v1. Then (U1,G — (U1 — {a1,a2,v1})) is a
separation in G which allows us to apply Lemma 3.5; so (i) or (ii) or (iii) or (iv) holds.

Let Uj, A} be obtained from U, A1, respectively, by uncontracting v to xy. Note the
symmetry between U{ and Us. We choose U{,UQ,Al so that, subject to aj,as € U{ N Us,
U{ U Us is maximal. Then zy,vovs ¢ A}. Moreover we may assume asaq ¢ Al; otherwise,
(G — asaq, G[{as, as}]) shows that (iii) holds.

We may assume that for some permutation ij of {1,2}, U] — a; has three independent
paths from wq to a;,z,y, respectively, and Us — a; has three independent paths from wuo to
aj, v, vs, respectively. To see this, let H be obtained from U] UU; by duplicating each u; twice
with u,u]. If H contains six disjoint paths from {u;,u,,u] : i = 1,2} to {a1, a2, v2,v3,z,y}
then the desired permutation and six paths exist. So we may assume by Menger’s theorem
that H has a spearation (Hp,Hz) such that |V(H; N Ha)| < 5, {w,uj,u : i = 1,2} C
V(Hy) and {a1, a2, ve,vs,z,y} C V(Hy). It is easy to see that |V (H; N Hy) NV (U7)| < 2, or
‘V(HlﬂHg)ﬂV(UQN <2, or |V(H1 QHQ)QV(U{) = 3 and V(Hl ﬂHQ)ﬂV(U{)ﬂ{CLl, CLQ} 75 @,
or [V(HiNHy) NV (Uz)| =3 and V(Hy N Hy) NV (Usz) N{ar,az} # 0. If the first two cases
occur, V(Hy N Hy) NV(U{) <2 or |V(Hy N H2) NV (Us2)| <2 then (ii) holds. If the next two
cases occur, then by Lemma 3.5 the assertion of the lemma holds.

Let J denote the union of the six paths in U] — a; and Uz — a;. If A} := (A} — {a1,a2}) +
{aszaq, vovs, Ty} contains a cycle C' through {asa4,vovs, zy} then C' — {agaq, vovs, xy} and J
form a topological H rooted at uy,ug, A, and (i) holds. So we may assume that such a cycle
C' does not exist in A]. Then by Lemma 3.3, we have three cases to consider.

In the first case, A} has a separation (Aj1, A12) such that |[V(A;1NAe)| <1and |E(A11)N
{asaq, vovs, zy}| = 1. If zy € Ajq, then U] UG[V (A11) +{a1, a2}], Uz and G[V (A12) 4 {a1, az}]
show that (G, u1,us, A) is an obstruction of type I. If vqvg € Ay; then Uj,Us U G[V(A11) +
{a1,a2}], G[V(A12)+{a1,az}] show that (G, uy, ua, A) is an obstruction of type I. If agas € A1y
then (G[V(A11) + {a1,a2}], U UU2 U G[V(A12) + {a1,a2}]) show that (iii) holds.

In the second case, A} has a separation (Aj, A1) such that |V(A1; N Aj2)] = 2 and
‘E(AH) N {a3a4,vgv3,xy}] =1. If xy € Ay or vous € Ay, then U{ U G[V(AH) + {(Il,az}] U
U, contradicts the maximality of Uj U Us. So asas € A11. Then (Uj U Us U G[V(A12) +
{a1,a2}], G[V(A11) + {a1,a2}]) shows that (iii) holds.

Therefore, we may assume that A7 —{asa4, v2v3, zy} is not connected. Since azas, vovs, Ty ¢
A, A} consists of disjoint subgraphs A1y, A1 such that each of asay,vovs, xy has one end
in Aj; and the other in Aj9. Now Uj, U, A11, A12, {a1}, {az} show that (G,u;,us, A) is an
obstruction oy type II. ]
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Lemma 4.2. Let (G,u1,us, A) be a quatruple with A = {a1,a2,a3,a4}. Suppose there exist
xy € E(G — A — {u1,u2}) such that (G/xy,ui,u2, A) is of type II. Then one of the following
holds.

(i) (G,u1,uz2,A) is feasible.
(i1) G has a separation (G1,G2) such that |V (G1NG2)| < 2, u; € G1—Ga, and AU{u2} C Gs.
(#ii) G has a separation (G1,Ge) such that |V (G1NG2)| < 4, {ui,us} C G1—Ge, and A C Gs.

(iv) (G,u1,ug,A) is an obstruction of types I, II, III, IV.

Proof. Let G/xy be the edge-disjoint union of Uy, Us, A1, Ag, A3 such that V(U3 N 4;) = {v;}
for i = 1,2 and V(Ul ﬂAg) = {1)3,1)4}, V(UQ ﬂAz) = {wz} for 1 < i < 3, V(U1 N UQ) -
{vi,v2,v3,v4} N{wr, wo, w3}, V(A;NA;) CV(UINUs) for1 <i# 35 <3, u;€U;—(AUAU
A3 U Ay) for i =1,2, a; € A; for i = 1,2 and a3, as € Az, if [V(4;)| =1 then A; C A; for all
j # i, and if wg € A then wg € Us N A; for i =1,2,3.

Let v denote the vertex resulting from the contraction of zy. If v ¢ {v; : 1 <@ <4} U{w; :
1 < i < 3}, then (G,uy,ug,A) is also an obstruction of type II. So we may assume that
ve{v 1 <i<4}U{w;:1<i<3}. By symmetry, it suffices to consider four cases: v = vy,
v =14, v = w1, and v = w;s.

Case 1. v = 1.

Then by Lemma 3.5 we may assume that {w, wa, w3, va} N A = (. Let Uy, A} be obtained
from Uy, Ay, respectively, by uncontracting v to xy.

We may assume that Us has three independent paths from ug to wi, we, w3, respectively.
Otherwise, Us has a separation (Usap,Usg) such that |V (Usy NUs)| < 2, ug € Usy — Usg, and
{w1,we, w3} C Usa. Now the separation (U, Uz UU; U A} U Ag U A3) in G shows that (ii)
holds.

We may also assume that A} has disjoint paths from {z,y} to {a1, w1 }. For, otherwise, A}
has a separation (Ajj, A12) such that [V (A1 N Ap)| < 1, {z,y} € Aj; and {a1,w;} C Ajo.
Now Uy U Ay1,Us, Aja, Ag, Ag show that (ii) holds, or (G, uq,usz, A) is also an obstruction of
type II.

We may assume that for each ¢ € {3,4}, A3 has disjoint paths from {ws,v;} to {as, a4},
which avoids v7_; if v7—; ¢ A. For, suppose no such disjoint paths exist. Then As has a
separation (Agl,A32) such that |V(A31 N A32)| <1 (lf Ur—; € A), ‘V(Agl N A32)| < 2 and
v7—; € A3y N Asa (when vr_; ¢ A), {ws,v;} C As1, and {a3,as} C Asy. Now the separation
(G[V (As2 + {a1,a2}], U1 WU, U A] U Ay U GV (As1 + {a1, a2}]) shows that (iii) holds.

We may assume that A, has a path from we to as which avoids vy when vo # as. Otherwise,
Ay has a separation (Aa1, Agg) such that Aoy N Agg = () (when vy = ag) or Ay N A = {va}
(when vg # as2), az € Ag1, and wy € Agy. Now the separation (Us U Agg, Ui U A} U Az U Aj)
shows that (iii) holds.

We may assume that if {vs,vs4} # {as, as} then vy ¢ {asz, a4}

Now if Uj — (A — {v3}) contains disjoint paths from wu; to z,y,vs, respectively, then (i)
holds. Thus we may assume that U] — (A — {v3}) has a separation (Uj1,U;2) such that
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|V (Ui1 NUw2)| <2, uy € Uyy — Uye, and {x,y,v3} C Upa. Choose this separation to minimize
Uio.

We may assume |V (Uyp NUje)| = 2. For, otherwise, we may assume vq,vq4 € N (U1 — Up2)
(or else (ii) holds). Recall that v ¢ A. By Lemma 3.5 we may a;so assume vy ¢ A; so
vo,v4 € Uy — Ura. Then G[U1 + v4), Uz, Ag, G[U12 4+ v4] U A} U Az show that (G, uq,ug, A) is
an obstruction of type III. So let V(U NUsya) = {s1, s2}-

By the minmality of Uja, Uja — A contains disjoint paths from {si,s2} to {z,y}. For,
otherwise, Uja — A has a separation (K, L) such that [V(K NL)| <1, {s1,s2} C K, and
{z,y} C L. Then (U1 UG[K + 3], G[L +v3]) is a separation in U; — (A —{vs}), contradicting
the minimality of Ujs.

Suppose vg ¢ N (U1 — Ura). If vy ¢ Upr — Uje, then (ii) holds. So we may assume that
vo & Uy —Uje. Then Uyq, Us, Ag, G|Ur2+v3)UA]UA;3 show that (G, u,ug, A) is an obstruction
of type III. So we may assume vy € N (U1 — Ui2).

We may assume that G[U;; + v4] has three independent paths from u; to s1, s2, vy, respec-
tively. Otherwise, G[U11 + v4] has a separation (K, L) such that [V(KNL)| <2, u; € K—L
and {s1,s2,v4} C L. If vg ¢ K — L or [V(K NL)| <1 then (ii) holds. So assume vy € K — L
and |[V(KNL)| =2. Then K, Us, LUG[Ui2 +v4) U A] U Ay U A3 show that (G, ug, ug, A) is an
obstruction of type III.

We may assume vy ¢ A. For, otherwise, we have vz, vy € A. If vo ¢ Uy — Upo then
(G|U11 + v4], G[Ur2 + v4) UU2 U A} U Ao U A3) allows us to apply Lemma 3.5; so the assertion
of the lemma holds. So we may assume vo € U1y — Uyo. Then U; has three independent paths
from wuy to z,y, v4, respectively; and (i) holds.

Thus we may assume that vy ¢ A, and hence vq € U1 —Uja. So Upp has three independent
paths from uy to s1, $2,v4, respectively; thus U; — A has three independent paths from wuy to
T, Y, V4, respectively.

If A, := A3 — ({vs} — A) has disjoint paths from {vs, w3} to {as,as}, then (i) holds. So we
may assume that A4 has a separation (Agy, As2) such that [V (As; N Asz)| <1, {vg, w3} C Az
and {as,as} C Asy. Now V(Asz) = {vs} C {as,as}; otherwise (iii) holds. If vg ¢ Uyy — Ui
then Uy, Uz, G[Ui2 + vs], A} U Ag show that (G,ui,us, A) is an obstruction of type III. So
assume vy € Uy; — Upe. Then Uyy, Uy, A} U G[Uiz + vs], A2, A3 — vs show that (G, uy,ug, A) is
an obstruction of type II.

Case 2. v =vy4.

Let U7, A§ be obtained from Uy, As, respectively, by uncontracting v to zy. By Lemma 3.5,
we may assume {vy, v, w, we, w3} N A =0.

We may assume that A% has three disjoint paths from {vs,z,y} to {a3,as,ws}. For, if
such paths do not exist, then Aj has a separation (As;, As2) such that [V (As; N Asg)| < 2,
{1)3, xT, y} - A31, and {ag, a4, w3} - A32. Now U{UAgl, UQ, Al, AQ, A32 show that (G, ui, ug, A)
is an obstruction of type II.

We may assume that Us has three independent paths from wus to wy, we, w3, respectively;
or else (ii) holds. Also we may assume that, for i = 1,2, A; has a path from w; to a;; otherwise
(ii) holds.

Thus if U] has three independent paths from u; to v, z,y, respectively, then (i) holds. So
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we may assume that U] has a separation (U11, U12) such that |V (UnNUi2)| < 2, uy € U —Usa,
and {vs, x,y} C Ujo.

If v1,va ¢ Ur1 — Uy then (ii) holds. So we may assume that vy € U1 —Uje. If vy ¢ Uyp —Uja
then Uiy, Us, A1, Uiz U Ag U A% show that (G, ui,us, A) is an obstrcution of type III. So we
assume that vy € Uy — Uje. Then Uy, Us, Ay, Ag, A5 U Usg show that (G, uqi,uz, A) is an
obstruction of type II.

Case 8. v = ws.

Let Uj, A5 be obtained from Uy, A3, respectively, by uncontracting v to xy. Note the
symmetry between U; and Uj}. We choose Uy, U}, A1, Aa, A3 to maximize Uy U U,

We may assume that A% contains three disjoint paths: one from {x,y} to {vs,vs} and the
other two from {ag,as} to {vs,vs,z,y}. For, suppose not. Then Af := A} + {agaq, v3vs, zy}
contains no cycle through S := {asa4, v3vy, zy}. So we may apply Lemma 3.3. First, suppose
A% has a separation (Asj, Ase) such that [V(Az1 N Asz2)] < 1 and and |E(As) N S| =1. If
xy € Ase or vzvy € Asy then we see that (G,u;,u9, A) is an obstruction of type II; and if
azay € Asp then we see that (iii) holds. Now, suppose A5 has a separation (Asj, Asp) such
that |V (As; N As2)| = 2, |[E(As2) 0S| = 1, and |V (As2)| > 3. Then by the maximality of
Uy U U, we see that asas € S, which shows (iii) holds. We may thus assume that S is an edge
cut of A%. In this case, (G,u1,ug, A) is an obstruction of type IV.

We may assume that for any ¢ € {1,2}, U) — (A — {w;}) contains three independent paths
from uy to wj,x,y, respectively. For, suppose not. Then Uj) — (A — {w;}) has separation
(Ua1,Usz2) such that |V (Uz; NUs2)| < 2, ug € Uy — Uz, and {w;, z,y} C Usa. Choose this
separation to minimze Uss. We may assume ws_; € N(Us; — Use) and |V (Uz; N Uszs)| = 2; or
else (ii) holds. Then by Lemma 3.5, we may assume ws_; ¢ A (and hence, we may also assume
that vs_; ¢ A). So ws_; € Uyy — Usy. By the minimality of Usy there are disjoint paths in
Uso — A from V(Us; NUse) to {z,y}. We may further assume that Usz; has three independent
paths from u; to V(U1 N Uzz) U {w3_;y; for otherwise Usy has a separation (K, L) such that
[V(IKNL)| <2, UnNU2 C L, and ug € K — L, which gives the separation (L,G — (L — K))
in G showing that (i) holds. Thus Uj — (A — {ws_;}) has three independet paths from
uo to ws_;, T, y, respectively. If U; contains three independent paths from wu; to v;, vs, vy,
respectively, then (i) holds. So we may asume that U; has a separation (Uy1,Ujz) such that
‘V(UH N Ulz)‘ <2, u; € Uy; —Ujg, and {vi,v3,v4} C Uj2. we may assume |V(U11 N U12)| =2
and v; € Uy — Ujag; or else (ii) holds. Then Uq1,Us1, Ag, Uio U Uy U A1 U Aé show that
(G,u1,u2, A) is an obstruction of type III.

Similarly, we may assume that for any i € {1,2}, U; —(A—{v;}) contains three independent
paths from u; to v;, vs, vy, respectively. Now it is easy to see that (i) holds.

Case 4. v = w1.

Let U}, A} be obtained from Us, A;, respectively, by uncontracting v to xy.

We may assume that A} has disjoint paths from {v1, a1} to {z,y}. For otherwise, A} has
a separation (Ai1, A12) such that [V(A11 N A1) <1, {vi,a1} € A1 and {z,y} C Aj2. Now
Ui,Us U Ayg, Aj1, Ag, Az show that (G, u1,u2, A) is an obstruction of type II.

Subcase 4.1. Uy — {va} N A has three independent paths from uy to vy, vs, v4, respectively.
We may assume that A5 := A3 — ({ws} — A) has disjoint paths from {vs,vs4} to {as,as}.
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For, otherwise, A3 has a separation (As1, Ag2) such that |V (As; N Asz)| < 2, wg € Agp N Ase
if w3 ¢ A, {’03,’04} C Az, and {ag, CL4} C Ajzs. Then the separation (G[Agz + {al, CLQ}], Az U
Uy, uU;y U All U Ag) show that (iii) holds.

If Uy — (A — {wz}) has three independent paths from uy to ws,x,y, respectively, then
(i) holds. So we may assume that Uy — (A — {ws}) has a separation (Usj,Us2) such that
|V (Ug1 N Us2)| < 2, ug € Ugy — Use, and {wy,z,y} C Use. We choose this separation to
minimize Uss.

We may assume wsg € N (Us; — Usz), or else (ii) holds. Thus we may assume by Lemma
3.5 that ws ¢ A and V(Uz NUs) N A = 0; so ws € Uy — Use. By the minimality of Uss,
Usa — {wa} N A contains disjoint paths from V(U2 N Us2) to {z,y}. Thus, Us — {wa} N A has
three independent paths from us to ws, x, y, respectively.

Suppose for some ¢ € {3,4}, U —(A—{v;}) has three independent paths from u; to vy, ve, vj,
respectively. If A} := A3 — ({vs—;} — A) has disjoint paths from {v;, w3} to {as,as}, then (i)
holds. So we may assume that As has a separation (Asj, Asz) such that |V (As; N Asg)| <1
(01" ‘V(Agl N Agg)‘ S 2 and Vr—; € A31 N A32), {Uz‘,wg} g A31, and {ag,a4} g A32. Now the
separation (G[Asz2 + {a1,a2}], Uy UUS U A U A2 U G[A31 + {a1, az}]) show that (iii) holds.

Thus may assume that for any i € {3,4}, U; — (A — {v;}) has no three independent paths
from wu; to vy, vq.v;, respectively. Then for any ¢ € {3,4}, Uy — (A — {v;}) has separation
(Ull,Ulg) such that ‘V(UH N U12)| < 2, uy € Uy — Uyqa, and {1)1,1)2,111'} CUp Ifov_; €A
then the separation (G[U11 + v7—;], G|[U12 4+ v7—;] U Uz U A} U A3 U A3) and Lemma 3.5 imply
the assertion. So we may assume vz, v44 ¢ A.

Clearly, Uy 4 {v, vv3, vvs} has no three independent paths from uy to v1, ve, v, respectively.
So Uy + {v, vus, vus } has a separation (Uy1, Ui2) such that [V (U NU2)| < 2, uy € Uyy — Uso,
and {v1,v9,v} C Uyg. If v ¢ Uyp NUyg then (Uyy, G — (Uy; — Uj2)) shows that (ii) holds. If
v € Uy NUyg then Uyy —v, Uay, Az, (U2 —v) UA] U Ag show that (G, ug, ug, A) is an obstruction
of type IV.

Subcase 4.2. Uy —{v3}NA has no three independent paths from uy to v, vs, v4, respectively.

Then U; —{v2} N A has a separation (Uj1, U12) such that |V (U1 NUi2)| < 2, uy € Uy —Usa,
and {v1,v3,v4} C Ue. Choose this separation so that Ujg is minimal.

We may assume |V (Uyp N Ui2)| = 2 and vy € N (U — Uje); otherwsie (ii) holds. Let
V(U NUy2) = {s1,s2}. By Lemma 3.5, we may assume {s1,S2,v2, w3} N A = (. Thus
v € Uy1 — Uqo.

We may further assume that U;; has three independent paths from uy to s1, s9, v2, respec-
tively; otherwise we have (ii). By the minimality of Ujq, for any i € {3,4}, U2 — (A — v;)
has disjoint paths from {si,s2} to {vi,v;}. So for any i € {3,4}, Uy — (A — v;) has three
independent paths from u; to vy, ve, v;, respectively.

We may also assume that Us has three independent paths from us to x,y, w3, respectively.
For, suppose not. Then Us has a separation (Ui, Usg) such that |V (U N Us2)| < 2, ug €
U21 - U22 and {x,y,wg} - U22. If w9 ¢ U21 - U22 then (ii) holds. So assume wy € U21 - Ugg.
Then Uiy, Us1, A2, Ura U Uza U A} U Ag show that (G, uq,ug, A) is an obstruction of type IIL.

Suppose {vs,v4} = {as,as}. If A3 —v3 has a path from ws to vy then (i) holds. So we
may assume that Az has a separation (Asj, Asz) such that As; N Agy = {vs}, wg € Ase, and
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vy € Az1. Now Uy U Agy, Ua, A1, Ag, Ase show that (G, u1,us, A) is an obstruction of type II.

So we may assume that vy ¢ A. If A3 —wvy has disjoint paths from {vs, w3} to {as,as} then
(i) holds. So we may assume that As has a separation (Asj, Ase) such that |V (A3 N Asg)| < 2,
vy € A31NAszs, {113, wg} C Az, and ag, a4} C Aso. Now the separation (G[A32+{a1, CLQ}], U, U
Us U All U Ay U A31) shows that (iii) holds.

Lemma 4.3. Let (G,u1,uz, A) be a quadruple, and let A := {a1,a2,as,a4}. Suppose there
exists vy € E(G — A — {u1,ua}) such that (G/xy,u1,uz, A) is of type III. Then one of the
following holds.

(i) (G,u1,uz,A) is feasible.

(ii) G has a separation (G1,G2) such that |V (G1NG2)| < 2, u1 € G1—G2, and AU{uz} C Gs.
(iii) G has a separation (G1,G2) such that |V (G1NG2)| <4, {ui,us} C G1—Ga, and A C Ga.
(iv) (G,ui,u2, A) is an obstruction of types LII, III, IV, V.

Proof. Let G /xy be the edge disjoint union of Uy, Us, A, Ay such that V(U; N A1) = {v1}
and V(U2 N Al) = {wl}, V(U1 N Ag) = {UQ,Ug} and V(UQ N Az) = {wg,wg}, V(U1 N Uz) -
({7)1} N {wl}) U ({02,1)3} N {wg,w3}), a1 € Ay, ag,a3,a4 € Ag, and u; € U; — (Al U AQ) for
i=1,2.

Let v denote the vertex resulting from the contraction of xzy. If v ¢ {v1,va, v3, w1, wa, w3}
then (G, u1,us, A) is an obstruction of type III. So we may assume by symmetry that v = vy
or v = vy. By Lemma 3.5 we may assume that {wi,ws, w3} N A ={.

We may assume that Us has three independent paths from wus to wy, we, w3, respectively;
for otherwsie (ii) holds.

Case 1. v = ;.

Let U7, A} be obtained from Uy, A1, respectively, by uncontracting v to zy. We may assume
that A} has disjoint paths from {z,y} to {a1,w1}. Otherwise, A} has a separation (A11, A12)
such that |V(A11 N A12)| <1, {a:,y} C Aqq, and {a1,w1} C Ay3. Now U{ U Aq1,Us, A1, As
show that (G, uq,us, A) is an obstruction of type III.

We may assume that for some i € {2,3}, U{ — (A — v;) has three independent paths from
uy to x,y,v;, respectively. For, suppose not. Then U{ — (A — {v2}) has a separation (U1, Ui2)
such that |[V(Ur NUi2)| < 2, ug € Uy — U, and {z,y,v2} C Uja. Choose this separation
to minimize Ujs. Then vy € N(Uy; — Uj2); otherwsie (ii) holds. So we may assume vg ¢ A
by Lemma 3.5; hence vy € Uy; — Uia. Moreover, we may assume U;; has three independent
paths form u; to V(Uy; NU12) U{vs}; otherwise (ii) holds. Also by Lemma 3.5 we may assume
vo ¢ A if vy € Uyp NU2. So by the minimality of Uje, U2 — A contains disjoint paths from
V(U1 NUi2) to {z,y}. So Uj — (A — {vs}) has three independent paths from u; to z,y, vs,
respectively.

Thus we may assume that U] — (A — v9) has three independent paths from wu; to z,y, v,
respectively. If Ay — ({vs} — A) has three disjoint paths from {ag, a3, a4} to {va, we, w3} then
(i) holds. So we may assume that As has a separation (As1, Age) such that |V (A N Ag)| < 2,
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{az,a3,a4} € Azr, and {va, w2, w3} C Ago, or |V(Ag N Ag)| < 3, v3 € Agr N Ay — A,
{CLQ, as, a4} - AQQ, and {UQ, U)Q,’wg} - Agl. Then the separation (G[AQQ#LCL”, A21UU{UA/1UU2)
shows that (iii) holds.

Case 2. v = v3.

Let U{, A} be obtained from Ui, A, respectively, by uncontracting v to zy. We choose
such U7, Us, A1, AL to maximize U] U Us. We may assume v; ¢ A by Lemma 3.5.

We may assume that U has three independent paths from wu; to v, z,y, respectively. For,
otherwise, U{ has a separation (Ui, Uy2) such that |[V(U; NUw2)| < 2, ug € Uy — Uje, and
{x,y,v3} C Uja. Then vy € Uy — Uyg; otherwise (ii) holds. So Uiy, Ua, A1, Uiz U AL show that
(G,u1,u2, A) is of type IIL.

If AY := Al + wows has three disjoint paths from {vs,z,y} to {ag,as,as} and through
wows, then (i) holds. So we may assume that such paths do not exist, and apply Lemma 3.4.

First, suppose Lemma 3.4(ii) holds. Then A} has a separation (Az;, A22) such that |[V(Aa1N
AQQ)’ < 2, {vg,x,y} C Ao, {ag,ag,a4} C Ags. If wows € Asq then U{,UQ @] AQQ,Al,G[Agl —
waws] contradict the choice of Uy, Us, A1, A} (maximality of U] U Us). So waws € Ags. Then
Ui U Agy,Us, A1, G[Aga — wows] show that (G,uy,uz, A) is an obstruction of type IIIL.

Now suppose Lemma 3.4(iii) holds. Then AJ has a separation (Aa1, A22) such that [V (Aa1N
Ax)| <1, {x,y,vs} U{az,a3,as} C A9, and {we, w3} C Ags. So the separation (U] U Ay U
A1, Uy U G[Aga — wows)]) shows that (ii) holds.

Suppose Lemma 3.4(iv) holds. Then AY has a separation (Asgi, Ag) such that [V (A2 N
Ag)| =3, {x,y,v3} C As1, and {ag,as,as} C Ags. If wows € Agg then U{UAgy, Us, A1, G[Aga—
wows] contradict the choice of Uj,Us, A1, A, (the maximality of U] U Usz). So wows € Aoj.
Now the separation (G[Aaz + a1],U; UUz U A1 U G[Ag1 — wows]) shows that (iii) holds.

Suppose Lemma 3.4(v) holds. Then A = G; UG2UG3 such that G1NG3 = 0, waws € Ga,
[V(GiNGy)| <1, |[V(GanGs)| <1, |V(Gy) N{ag,a3,a4}| =1 = |V(G1) N {ve, z,y}|, and
‘V(Gg) N {CLQ, as, CL4}| =|V(G3)Nn {1}2, x, y}| = 2. Then U{, Us U G[Gg — wQ’LUg], A1, G, G5 show
that (G, u1,u2, A) is an obstruction of type IV.

Finally, assume that Lemma 3.4(vi) holds. Then A5 = G UGy U G3 U G4 U G5 such that
‘V(GZQGJN =1forie {1,2} and j € {3,4,5}, V(GlﬂGg) C G3UG4 UGS, GiﬁGj C G1UGy
for 3 <1 # j <5, wows € Gy, and either {as,a3,a4} C G2 and |V (G;) N{ve,z,y}| =1 for
J €1{3,4,5} or {vg,z,y} C G2 and |V (G;) N{az,as3,as}| =1 for j € {3,4,5}. In the former
case, (G[G2 + a1], G|G1 — waws| U U] UUz U A} U Gs U G4 U G5) shows that (iii) holds. Thus,
we may assume the latter case. Then Ui U Go,Us U G[G1 — wows], A1, Gs, G4, G5 show that
(G,u1,u2, A) is an obstruction of type IV. |

Lemma 4.4. Let (G,u1,uz, A) be a quadruple, and let A := {a1,a2,as,a4}. Suppose there
exists xy € E(G — A — {uy,uz}) such that (G/xy,ui,u2, A) is of type IV. Then one of the
following holds.

(i) (G,u1,uz,A) is feasible.
(i) G has a separation (G1,G2) such that |V (G1NG2)| < 2, u; € G1—G2, and AU{us} C Gs.
(#ii) G has a separation (G1,G2) such that |V (G1NG2)| < 4, {ui,us} C G1—Ga, and A C Gs.
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(iv) (G,u1,ug,A) is an obstruction of types I, II, IV.

Proof. Let G/zy be the edge disjoint union of Uy, Us, A1, Ag, A3, A4 such that V(U1NA4;) =
and V(UaNA;) = {w;} for 1 <i <4, V(UNUa) € Ui, ({vi} 0 {wi}), a; € A; fori = 1,2,
and u; € U; — (A1 UAQUAgUA4) fori=1,2.

Let v denote the vertex resulting from the contraction of xy. If v ¢ {v;, w; : 1 < i < 4} then
(G,u1,u2,A) is an obstruction of type IV, and (iv) holds. So by symmetry we may assume
that v = v;. Let Uj, A} be obtained from Uy, Ay, respectively, by uncontracting v to xy.

{vi}
3,4,

We may assume that A} contains disjoint paths from {z,y} to {a1,w:}. For, if such paths
do not exist, then A} has a separation (A11, A12) such that |V(A;1 N Ag)| <1, {z,y} C A1,
and {a1, w1} C Aja. Now UjUA11, Us, Aja, Ag, A3, Ay show that (G, uy, ug, A) is an obstruction
of type IV, and (iv) holds.

Moreover, for each i € {2, 3,4}, if A; # {a;} then we may assume a; ¢ {v;, w;}, and A; —v;
(respectively, A; — w;) has a path between w; (respectively, v;) and a;. (Otherwise, we can
enlarge U] or Us.

Case 1. There exist two i € {2,3,4} such that J; := U] —(A—{v;}) has no three independent
paths from wy to x,y, v;, respectively.

First, suppose Js contains no three independent paths from u; to x, y, ve, respectively. Then
Ja has a separation (Ja1, Jag) such that |V (Jag N J22)| < 2, ug € Jog — Joo, and {z,yva} C Joo.
We choose (Ja1, J22) so that |V (Jo1 N Ja2)| is minimum and then Jo; is minimal.

If {vs, v4} NN (Jo1 — J22) = 0 then the separation (Ja1, G —(J21 — J22)) shows that (ii) holds.
So we may assume by symmetry that v3 € N(Jo;—J22). We may also assume |V (Ja1NJa2)| # 0;
otherwise, the separation (G[Ja1 + {v3,va}], G — (Ja1 — Joga — {v3,v4})) shows that (ii) holds.

Suppose |V (J21 N Jaz)| = 1. Then we may assume that vy € N(J21 — Jag); otherwise, the
separation (G[J21 + v3], G — (Jo1 — Jag — v3)) shows that (ii) holds. Moreover, the separation
(G[J21 +{vs3,v4}], G — (Jo1 — Jag — {v3,v4})) allows us to use Lemma 3.5 to assume vs, vy ¢ A.
Hence, vz, vq € Jo1. Then Joy, Ua, A3, Ay, JooUA]UAy show that (G, ug, ug, A) is an obstruction
of type II.

So we may assume that |V (Jo1 N Ja2)| = 2. Let V(Ja1 N Jaz) = {s1,52}. So by the
minimality of |V (J21 N Ja2)|, J22 — (A — {va2} contains disjoint paths from {si, s2} to {z,y}.

By the minimality of Jo1, we see that G[J21 + v3] has three independent paths from uq
to s1, 89, v3, respectively. So J3 has three independent paths from u; to z,y, vs, respectively.
Similarly, if v4 € N(J21 — Jo2) then Jy has three independent paths from u; to x,y,v4, re-
spectively. Thus we may assume that vy ¢ N(J2; — Ja2). Then by Lemma‘3.5 we may assume
vz ¢ A; and hence we may assume w3z ¢ A.

If U, has three independent paths from uy to wy, we, wy, respectively, then we see that (i)
holds. So we may assume that U has a separation (Usj, Usg)suchthat—V (Ug; N Usg)| < 2,
ug € Uy — Uz, and {wy, we, ws} C Uze. Then we may assume that |V (U N Usze)| = 2 and
wg € Uyp — Usg as otherwise (ii) holds. Now Js1,Us1, Ag, Joo U Uz U All U Ay U Ay show that
(G,u1,Us, A) is an obstruction of type II.

Case 2. There exist two i € {2,3,4} such that J; := Uj — (A — {v;}) has three inpendent
paths from wy to x,y, v;, respectively.
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Without loss of generality, we may assume that for ¢ = 2,3, J; has three independent paths
from u; to x,y, v;, respectively.

If U) := Uy —{w2} N A has three independent paths from us to wy, w3, wy, respectively, then
(i) holds. So we may assume that U has a separation (Ua1, Us2) such that |V (U NUa2)| < 2,
U € U21 - U22, and {wl, ZU3,1U4} Q U22. Choose (Ugl, U22) so that |V(U21 N U22)| 1S minimum
and then Uy is minimal. Thus, Uy — (A N {ws}) has disjoint paths from V(Ua; N Usg) to
{wl, UI4}.

We may assume wy € N (Ua; —Us2) and |V (U1 NUa2)| = 2, as otherwise (ii) holds. Thus by
Lemma 3.5 we may assume that we ¢ A and V(Uy NUz2) N A = 0. So wy € Usy — Usy. Hence,
Us1 has three independent paths from wug to V(U1 NUaz) U{w2}. Therefore, Us—(AN{ws}) has
three independent paths from wug to wi, we, wy, respectively. Again, (G, ui,uz, A) is feasible,
and (i) holds. ]

Lemma 4.5. Let G be a graph, let ui,us,a1,as2,as,as be distintc vertices of G, and let A :=
{a1,a9,a3,a4}. Suppose there exist xy € E(G — A — {u1,u2}) such that (G/xy,ui,ue, A) is of
type V. Then one of the following holds.

(i) (G,u1,uz,A) is feasible.
(ii) G has a separation (G1,G2) such that |V(G1NG2)| < 2, u; € G1—G2, and AU{uz} C Gs.
(i) G has a separation (G1,G3) such that |V (G1NG2)| < 4, {uy,us} C G1—G2, and A C Gs.

(iv) (G,ui,u2, A) is an obstruction of types I, II, III, IV or V.

Proof. Let G/xy be the edge-disjoint union of Uy, Us, A1, Ay such that V(U; N A1) = {1},
V(Ul N Ag) = {Uz,vg}, V(UQ N Al) = {wl,wg}, V(U2 N Az) = {wg}, V(U1 N UQ) - ({Ul} N
{wl,wg}) U ({’1)2,’[)3} N {wg}), ay,az € Ay, az,aq € Az, and u; € U; — (A1 U AQ) fori=1,2.

Let v denote the vertex resulting from the contraction of zy. If v ¢ {v;,w; : 1 < i < 3}
then it is easy to see that (G, u1,uz, A) is also an obstruction of type V, and (iv) holds. Thus,
we may assume v € {v;,w; : 1 < i < 3}. By symmetry, we need to consider only two cases:
v =1 or v = vy. By Lemma 3.5 we may assume that {wy,ws, w3} N A = .

We may assume that Us contains three independent paths from wug to wi,ws, w3, respec-
tively; for otherwise Menger’s theorem shows that (ii) holds.

Case 1. v = vg.

Let U7, A} be obtained from Uj, Ay by uncontracting v to zy. We may assume that A}
contains three disjoint paths from {vs,z,y} to {as,as,ws}. For if such three paths do not
exist then A} has a separation (Ag;, Ag2) such that |V(A2; N Ag)| < 2, {as,aq, w3} C Ao and
{vs,z,y} C Ag1. Then Uj U Agy, Us, Ay, Aga show that (G, uq,ug, A) is an obstruction of type
V.

We may assume v; ¢ A. For, suppose v; € A, say v; = aj. Then (4; U Uy, AL U U] + a2)
is a separation in GG, and hence by Lemma 3.5, the assertion of the lemma holds.

We may assume that A; — v; contains disjoint paths from {w;, w2} to {a1,a2}. For,
otherwise, A; has a separation (A1, A1) such that [V(A11 N A2)| < 2, v1 € A1 N Ajg,

18



{w1,we} C Ajg and {a1,a2} C Ajg. Then the separation (G[A12+{as, as}], A11UA,UUUU)
shows that (iii) holds.

If U] contains three independent paths from u; to vs,x,y, then (i) holds. So we may
assume that U] has a separation (Ui, Ujz) such that |V(Up NUL2)| < 3, up € Uy — Una,
and {vs,x,y} C Uje. If v1 ¢ Uyp — Uiz then (ii) holds. So assume vy € Uy — Uje. Then
U1, Us, A1, A5 U Uyg show that (G, uq,ug, A) is an obstruction of type V.

Case 2. v = ;.

Let U{, A} be obtained from Ui, A;, respectively, by uncontracting v to zy. We choose
Uy, Usa, A}, Ay to maximize Uj U Us.

We may assume that A} := A} + {a1a2, wiws, zy} contains a cycle through ajag, wiws, zy.
For, suppose not. Then by Lemma 3.3 there are three possibilities. First, suppose A} has a
separation (K, L) such that V(K NL)| <1 and |E(K)N{aiaz, wiws, zy}| = 1. If wiwy € K,
then the separation (U ULUAs, KUUs) shows that (ii) holds. If zy € K then UJUK,Us, L, Ay
show that (G, u1,uz, A) is an obstruction of type V. If ajaz € K then (G[K + {as3,as}], L U
Uj U Uy U Ay) shows that (iii) holds. Now, suppose A} has a separation (K, L) such that
V(KN L) =2, |E(K)N{aaz2, wiwe,zy}| = 1, and |V(K)| > 3. If wqwy € K or zy € K
then U{ UK, U, L, Ag or U{,Us UL, K, Ay contradicts the choice of U7, Us, A}, A2 (maximality
of Uj UUsy). If ajas € K then the separation (G[K + {as,as}],U; U Uy U L U Ay) shows
that (iii) holds. Finally, {aja2, wjwe, zy} is an edge cut in Aj. Then it is easy to check that
(G,u1,u2,A) is an obstruction of type II, and (iv) holds.

We may assume that for any i € {2,3}, A2 — {{vs—;} — A) contains disjoint paths from
{ws,v;} to {as,as}. For suppose the contrary. Then by symmetry we may assume that
Ag — ({vs} — A) contains no disjoint paths from {ws,ve} to {as,as}. So Menger’s theorem
implies that Ay has a separation (Asgj, Agg) such that |V (A N Agg)| < 1 (when vg ¢ A),
‘V(Agl mA22>‘ < 2 and vg € Ay N Ay (When U3 §é A), {ag,a4} C Ao and {’11}3,1)2} -
Ago. We may assume that V(Ag;) = V(A9 N Ag) U {vs} = {as, a4}, or else the separation
(G[A21 + {a1,a2}], Asa U U] U Uz U A) shows that (iii) holds. As {wq,wa,v2} separates uso
from AU {u1} in G, we may assume by Lemma 3.5 that vo ¢ A. If U] has three independent
paths from wuy to z,y,vs, respectively, then we see that (i) holds. So we may assume that U
has a separation (Uj1, U2) such that [V (U NU2)| < 2, ug € Uyg — Use and {x,y,v3} C Ujo.
If V2 ¢ U11 — U12 then (ii) holds. So assume Vg € U11 - U12. Then U11, U2, U12 U A/I,AQ — U3
show that (G, u1,us, A) is an obstruction of type III, and (iv) holds.

We may assume that U] — (A — {vs}) has no three independent paths from u; to z,y,vs,
respectively. For, such paths together with disjoint paths in A from {vs, w3} to {as, a4}, three
paths in Uy from ug to wi, we,ws, and C — {ajae, wiws, xy}, give a topological H in G rooted
at uq,ug, A; so (i) holds.

Thus, U; — (A — {vs}) has a separation (Ui1,Us2) such that [V (U NU2)| < 2, ug €
U11 — U12, and {:U,y, Ug} - U12. We choose Ulla U12 so that |V(U11 N U12)| is minimum and
then Ujo is minimum.

We may assume that ve € N(Uy; — Ui2) and |V (Urp N Us2)| = 2; or else (ii) holds. So by
Lemma 3.5 we may assume vy ¢ A. So ve € Uy — Uje. By the minimality of |V (U N Us2)|,
U11 has three independent paths from u; to z,y, ve, respectively. By the minimality of Uss,
Uiz — ({v3} N A) has disjoint paths from V(U NUs2) to {x,y}, respectively. Thus, U — (A —
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{v2}) has three independent paths from u; to x,y,ve, respectively. So these paths, disjoint
paths in Ay — ({vs} — A) from {vy, w3} to {as,as}, three paths in Uy from wug to wi, ws, ws,
and C' — {ajaz, wiwe, zy}, give a topological H in G rooted at uy,uz, A; so (i) holds. |

5 Proof of main theorem

Proof. Suppose this is not true. Let (G, u1,u2, A) be a counterexample with |V (G)| minimum.

We claim that no cut of size at most 4 in G is disjoint from {u1, us}, and separates {u1, ua}
from A. For, suppose G has a cut S such that [S| < 4, SN {uy,us} = 0, and S separates
{u1,u2} from A. Then |S| = 4 for any such choice of S; otherwise, (iii) holds. But this shows
that G admits a good 4-separation, a contradiction.

We also claim that uy is not adjacent to us. For, suppose ujuy € E(G). Then let G’ be
obtained from G by duplicating u; and ug, and let u}, i = 1,2, denote the dupplicate of w;.
Now by (2), G’ contains four disjoint paths from {uy, ), us,u5} to A. These paths and ujus
form a topological H in G rooted at wuy,us, A, a contradiction.

We further claim that N(uj) N N(uz) € A. Now let u € N(uz) N N(uz) — A. Let G’ be
obtained from G —u by duplicating u; (with duplicate «}) for i = 1,2. By (2), G’ contains four
disjoint paths from {uq,u}, us,u} to A. These paths together with ujuus form a topological
H in G rooted at uy,us, A, a contradiction.

We now show that there exists an edge zy € E(G) such that z,y ¢ AU {u1,us}, and if
d(u;) = 3 then {x,y} Z N(u;). If V(G) = AU{u1,us} then, since ujug ¢ E(G), u; and ugy are
the components of G — A, so (G, u1,u2, A) may be viewed as an obstruction of type IV. Thus,
we may assume V := V(GQ) — (AU{u1,u2}) # ). We may assume that G[V] contains no edge,
as any edge in G[V] gives the desired edge. Therefore, since N(u1) NN (ug2) C A, V(G)— A can
be partitioned into two sets V1, Va, such that u; € V; fori = 1,2. Now G[V1], G[V2], a1, a2, as, as
show that (G, u1,us, A) is an obstruction of type IV.

By the choice of G, (G/zy,u1,us, A) satisfies (i) or (ii) or (iii) or (iv). If (G/xy,u1, ua, A)
satisfies (i) then (G, uq1,usz, A) also satisfies (i).

Suppose (G/zy, u1, ug, A) satisfies (ii). Let (G1, G2) be a separation in G such that V/(G1N
Ga)| <2, u; € Gy — Gy, and AU{us_;} C Go2. By the minimality of G, G1 — G2 = {u;}. Thus
x,y € N(u;), a contradiction. So (G/xy,u1,us, A) cannot satisfy (ii).

Suppose (G/zy, u1,us, A) satisfies (iv). Then (G, u;, ug, A) satisfies (i)—(iv) by Lemmas 3.6,
41,42, 4.3, 4.4, and 4.5.

So we may assume that (G/zy,uy,uz2, A) satisfies (iii). Let (G1,G2) be a separation in
G such that |V(G1 N Ga)| = 4, {u,uz} € G1 — Go2, and A C Go. Let v denote the vertex
resulting from the contraction of zy. If v ¢ G N G2 for one such separation, then (iii) also
holds for (G, u1,uz, A). Thus we may assume that v € G; N Go for all such separations. So
G+ has four disjoint paths from A’ := V(G N G3) to A. We choose (G1,G2) to minimize Gj.

Let A = {d},d},a},v}. By the minimality of (G,uy,us2, A), (G1,u1,u2,A’) is not a
counterexample. Thus, (G1,u1,ug, A') satisfies (i) — (iv). If (G1,u1,us, A") satisfies (i) then
(G, u1,uz, A) also satisfies (i).

If (G1,u1,ug2, A) satisfies (ii) then G has a separaion (K, L) such that |V(K N L)| < 2,
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ui € K—Land A'U{us_;} C L. Ifv ¢ KNLor |V(KNL)| <1 then (ii) holds for (G, uy, uz, A).
Ifve KNLand |V(K NL)| =2 then by the minimality of G, V(K — L) = {u;}. This shows
that x,y € N(u;), a contradiction.

Now suppose (G1,u1,us, A') satisfies (iii) then G has a separaion (K, L) such that [V (KN
L) =4, {uj,us} C K — L and A’ C L. Sov € KN L. But this contradics the minimality of
Gi.

Therefore, (G, u1,us, A") satisfies (iv).

(4) G contains no 5-cut S such that uj, ug belong to different components of G — S, and the
components of G — S containing u; or ug are disjoint from A.

Otherwise, let S be a 5-cut in G and U; and Uy be components of G — S such that for i = 1,2,
u; € U; and U; N A = 0).

We now apply Lemma ??. Lemma ?7(i) cannot occur; otherwise G would satisfy (ii). By
(2), Lemma ?7(ii) cannot occur. So Lemma ??(iii) occurs. Thus for any v € N(U;) N N(Uz)
with v ¢ A and for i = 1,2, G[U;UN(U;)] contains three paths P{, P4, P4 from u; to N(U;) NS
such that P} N P{ = {u;} whenever j # k, v € P N P}, and each vertex in S — {v} belongs to
precisely one of these paths.

If G — (U UUy U{v}) has four disjoint paths from S — {v} to A, then these paths and P;,
i=1,2and j = 1,2, 3, form a topological H in G rooted at w1, us, a1, as, as, a4, a contradiction.
Thus such paths do not exist. So G — (U; U Uz U {v}) has a cut T with |T'| < 3 separating
S —{v} from A. Hence T'U {v} is a cut in G separating A from {u1,us2}, contradicting (2).

Thus for any v € N(U;) N N(Uz) — A, G — (U UUz U {v}) has a cut T with |T'| < 3 and
separating S — {v} from A. If |T'| <2 then T'U {v} shows that (iii) holds, a contradiction. So
|T'| = 3, which shows that (v) holds, a contradiction.
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