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Upper bounds on the extremal number of the 4-cycle

Jie Ma Tianchi Yang

Abstract

We obtain some new upper bounds on the maximum number f(n) of edges in n-vertex graphs
without containing cycles of length four. This leads to an asymptotically optimal bound on f(n)
for a broad range of integers n as well as a disproof of a conjecture of Erdős from 1970s which
asserts that f(n) = 1

2
n3/2 + 1

4
n+ o(n).

1 Introduction

Let ex(n,C4) denote the maximum number of edges in an n-vertex C4-free graph.
1 The study of this

extremal number can be dated back to Erdős [2] eighty years ago and has a rich, lasting influence
on the development of extremal graph theory (see [8]).

It is well-known (see Kővári-Sós-Turán [12] and Reiman [13]) that for any positive integer n,

ex(n,C4) ≤
n

4
(1 +

√
4n− 3) =

1

2
n3/2 +

n

4
−O(n1/2). (1)

Notably, the well-known friendship theorem of Erdős-Rényi-Sós [5] shows that an equation can never
hold in (1). On the other hand, using polarity graphs defined by finite projective planes, Brown [1]
and Erdős-Rényi-Sós [5] independently proved the following famous lower bound that

ex(q2 + q + 1, C4) ≥
1

2
q(q + 1)2 for all prime powers q. (2)

These two results together with some basic property on the distribution of prime numbers imply the
asymptotic formula that ex(n,C4) = (12 + o(1))n3/2.

Motivated by above results, Erdős raised several conjectures in 1970s to enrich the understanding
on the extremal number ex(n,C4). In [3] Erdős conjectured that the lower bound (2) is sharp for
prime powers q. This was fully resolved by Füredi in [6, 7], where he proved that

ex(q2 + q + 1, C4) ≤
1

2
q(q + 1)2 for all integers q ≥ 14. (3)

Results related to (3) can be found in [9, 11]; it is also worth noting that the bipartite version of
the extremal number of C4 has been well studied in [10] (see Section 3.1 of [8]). If one substitutes
n = q2 + q + 1 for prime powers q in (2), then it yields that ex(n,C4) ≥ 1

2n
3/2 + n

4 − O(n1/2) for

such integers n. Note that this meets the upper bound (1) up to the error term O(n1/2). Erdős [3, 4]
made the following tempting conjecture.
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1Throughout this paper, a graph is called C4-free if it does not contain a cycle of length four as a subgraph.
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Conjecture 1.1 (Erdős [3, 4]). It holds that

ex(n,C4) =
1

2
n3/2 +

1

4
n+ o(n).

He also commented in [4] that “it is not impossible that the error term is O(n1/2).”
The present paper aims to establish new upper bounds on ex(n,C4) (see Theorems 1.3 and 1.5

below). Contrary to the supportive evidences, these bounds imply the following result, which shows
that the above conjecture of Erdős does not hold in a strong sense.

Theorem 1.2. There exist some real ǫ > 0 and a positive density of integers n such that

ex(n,C4) ≤
1

2
n3/2 +

(

1

4
− ǫ

)

n.

This will follow by our upper bounds on ex(n,C4). Our computation shows that ǫ can be taken as
any positive real less than 0.075. This number is unlikely to be tight, so we did not try to optimize our
calculation as well as the constants appearing in the forthcoming results; see the concluding remarks
for more discussion on the real ǫ. To proceed, we introduce some notation. For integers q ≥ 0, let
Iq denote the set of 2q + 1 consecutive integers {q2 + 1, ..., (q + 1)2}; let I−q = {q2 + 1, ..., q2 + q}
and I+q = {q2 + q + 2, ..., (q + 1)2} so that Iq = I−q ∪ {q2 + q + 1} ∪ I+q . Note that these Iq’s form a
partition of the set of positive integers.

Our first result on the upper bound of ex(n,C4) focuses on integers n from the sets I−q .

Theorem 1.3. Let n = q2 + q + 1 − r be an integer in I−q such that r ≤ 0.01q is sufficiently large.

Then

ex(n,C4) = ex(q2 + q + 1− r, C4) ≤
1

2
q(q + 1)2 − 0.92rq.

We point out that this bound can be further improved to the form (13) (see the remark after the
proof of Theorem 1.3 in Section 3). As a corollary, this yields the following asymptotic bound.

Corollary 1.4. Let q be a prime power and r = o(q) be sufficiently large. Then

ex(q2 + q + 1− r, C4) =
1

2
q(q + 1)2 − (r + o(1))q.

Our second result on the upper bound of ex(n,C4) considers integers n belonging to the sets I+q .

Theorem 1.5. Let n = q2 + q + 1+ r be a sufficiently large integer in I+q such that r ≤ 0.6q. Then

ex(n,C4) = ex(q2 + q + 1 + r, C4) ≤
1

2

(

q2 + q + 1 +max{r, 2r − 0.3q}
)

(q + 1).

See Figure 1 for an illustration of the improvements on ex(n,C4) in Theorems 1.3 and 1.5.2

The rest of the paper is structured as follows. In Section 2, we use Theorems 1.3 and 1.5 to prove
Theorem 1.2. In Section 3, we introduce the key terminology, establish two useful lemmas and give
a sketch for the proofs of the upper bounds on ex(n,C4). In Section 4, we show Theorem 1.3 and
Corollary 1.4. In Section 5, we finish the proof of Theorem 1.5. Finally, in Section 6, we make some
concluding remarks.

2The curve F (n) = n

4
(1 +

√
4n− 3) in the interval [q2 − q+ 1, q2 + q + 1] is quite close to a straight line with slope

0.75q (i.e., the line 1). The upper bound of Theorem 1.3 is indicated by the line 2 with some slope close to q, while
the upper bounds of Theorem 1.5 are indicated by the line 3 and line 4 with slopes 0.5q and q, respectively.
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0

F (n) = n(1 +
√
4n− 3)/4

≈ n3/2/2 + n/4 + o(n)

n

B

A

q2 − q + 1 q2 + q + 1
n

line 1

A

B

q2 − q + 1

line 2

q2 + 0.99q

line 3

q2 − 0.7q

line 4

q2 − 0.4q

I+q−1
I−q

Figure 1: The old and new upper bounds on ex(n,C4).

2 Proof of Theorem 1.2

Assuming Theorems 1.3 and 1.5, we now present a short proof of Theorem 1.2. (In fact, either
Theorem 1.3 or Theorem 1.5 suffices to derive the statement of Theorem 1.2.)

Proof of Theorem 1.2. Let ǫ > 0 be some small absolute constant (i.e., ǫ = 0.001 suffices). Let
n = q2 + q +1+ r ∈ Iq. So we have −q ≤ r ≤ q. By some straightforward calculations, it holds that

1

2
n3/2 +

1

4
n =

1

2
q(q + 1)2 +

3

4
rq +O(q). (4)

Let N1 = {q2 + q + 1 − r : 6ǫ ≤ r/q ≤ 0.01}. Consider any sufficiently large integer n =
q2+ q+1− r ∈ N1. So q and (thus) r are sufficiently large as well. We claim that every such n ∈ N1

satisfies that ex(n,C4) ≤ 1
2n

3/2 +
(

1
4 − ǫ

)

n. To see this, using Theorem 1.3, we can derive that

ex(n,C4) ≤
1

2
q(q + 1)2 − 0.92rq =

(

1

2
n3/2 +

1

4
n

)

− 0.17rq +O(q) ≤ 1

2
n3/2 +

(

1

4
− ǫ

)

n,

where the equation holds by (4) and the last inequality holds since r ≥ 6ǫq and q is sufficiently large.

We note that the set N1 has a positive density limn→∞
|N1∩[n]|

n = (0.01 − 6ǫ)/2 > 0.
Consider another set of integers N2 = {q2+q+1+r : 5ǫ ≤ r/q ≤ 0.3}, which has a positive density

(0.3− 5ǫ)/2 > 0. We claim that any sufficiently large n ∈ N2 also has ex(n,C4) ≤ 1
2n

3/2 +
(

1
4 − ǫ

)

n.
Indeed, by Theorem 1.5 and the above inequality (4), we have

ex(n,C4) ≤
1

2
(q2 + q + 1 + r)(q + 1) =

(

1

2
n3/2 +

1

4
n

)

− 1

4
rq +O(q) ≤ 1

2
n3/2 +

(

1

4
− ǫ

)

n,

where the last inequality holds because r ≥ 5ǫq. This completes the proof of Theorem 1.2.

3 Preliminaries

First we introduce the key notation on C4-free graphs G for the coming proofs.
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Definition 3.1. Let n ∈ Iq and G be an n-vertex C4-free graph. As usual, we write d(v) for the

degree of a vertex v in G. The deficiency of a vertex v in G is defined by

f(v) = q + 1− d(v).

The deficiency of a subset A ⊆ V (G) is given by f(A) =
∑

v∈A f(v). For each integer i ≥ 0, we

denote Si by the set of vertices of degree i in G. Finally, we let S = ∪i≤qSi and S+ = ∪j≥q+2Sj.

Note that V (G) = S ∪ Sq+1 ∪ S+, and a vertex v is in S (or in S+) if and only if it has positive
(or negative) deficiency. Next we prove some estimations on vertex degrees in C4-free graphs.

Lemma 3.2. Let n ∈ Iq and G be an n-vertex C4-free graph. If we write N(v) for the neighborhood

of a vertex v in G, then we have f(N(v)) ≥ qd(v)− n+ 1.

Proof. As G is C4-free, all subsets N(vi)\{v} for vi ∈ N(v) are disjoint. So we have
∑

vi∈N(v)(d(vi)−
1) =

∑

vi∈N(v) |N(vi)\{v}| ≤ n− 1. This implies that

f(N(v)) =
∑

vi∈N(v)

(q + 1− d(vi)) = qd(v)−
∑

vi∈N(v)

(d(vi)− 1) ≥ qd(v) − n+ 1,

as desired.

The coming lemma provides a crucial technical tool for later sections. Its proof idea is rooted in
a lemma of [6].

Lemma 3.3. Let G be an n-vertex C4-free graph with m edges. Let vi’s for i ∈ [n] be vertices of G
of degree di. If there exists some vertex v such that {vi}i∈I ⊆ N(v) for I ⊆ [n] with |I| = k, then

(

n−∑

i∈I di + k − 1

2

)

≥ (n− k)

( 2m−
∑

i∈I di+(k−1)d(v)−nk+k

n−k

2

)

.

Proof. We say vivjvℓ is a 2-path if vivj, vjvℓ ∈ E(G). Let X =
⋃

i∈I N(vi) and we count the number
M of 2-paths with both end-points in V (G)\X. Since G is C4-free, all N(vi)\{v} are disjoint,
implying that |X| = ∑

i∈I(|N(vi)| − 1) + 1 =
∑

i∈I di − k + 1. So it is evident that

M ≤
(

n− |X|
2

)

=

(

n−∑

i∈I di + k − 1

2

)

.

On the other hand, for any j ∈ [n] there are
(|N(vj)\X|

2

)

many counted 2-paths with the middle-point
vj . For any j /∈ I we have |N(vj)\X| ≥ dj − k and moreover, for vj ∈ N(v)\{vi}i∈I , we have
|N(vj)\X| = |N(vj)\{v}| = dj − 1. So it follows by Jensen’s inequality that

M =
∑

j /∈I

(|N(vj)\X|
2

)

≥
∑

vj∈N(v)\{vi}i∈I

(

dj − 1

2

)

+
∑

vj /∈N(v)

(

dj − k

2

)

≥ (n− k)

( L
n−k

2

)

,

where L =
∑

vj∈N(v)\{vi}i∈I
(dj − 1) +

∑

vj /∈N(v)(dj − k) =
∑

j /∈I dj − (d(v) − k) − k(n − d(v)) =

2m−∑

i∈I di + (k − 1)d(v) − nk + k. Putting the above together, we finish the proof.
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Lastly, we would like to give a outline of the proof of Theorem 1.3 (the proof of Theorem 1.5
can be proved by a similar approach). The proof is inspired by the work of Füredi [6, 7]. There are
several new ingredients as well. The first ingredient comes from Lemma 4.1, which roughly says that
one only needs to consider C4-free graphs with very large minimum degree. Another ingredient is
the deficiency f(·) in Definition 3.1.3 Under this definition, we have f(V (G)) = O(rq) and we can
maximize the benefits of this estimate. Putting these ingredients together with the technical tool
Lemma 3.3, we prove in Lemma 4.2 that the size of S+ (i.e., the number of vertices whose degree
exceeds q+ 1) can be bounded from above by O(r2). This will eventually lead to a contradiction by
assigning appropriate weights to the edges between the sets Sq+1 and S.

4 Proof of Theorem 1.3

We first show that restricted to the range of integers considered in Theorem 1.3, one may always
assume that there exists some extremal graph with large minimum degree.4

Lemma 4.1. Let q, r be integers satisfying 1 ≤ r ≤ 0.3q. Assume that ex(q2 + q + 1 − r, C4) ≥
1
2q(q + 1)2 − αrq, where 0.2 ≤ α ≤ 1. Then there exists an integer r0 ∈ [r, 3r] such that

ex(q2 + q + 1− r0, C4) ≥
1

2
q(q + 1)2 − αr0q

and

ex(q2 + q + 1− r0, C4)− ex(q2 + q − r0, C4) ≥ 0.2q.

In particular, the latter inequality shows that the minimum degree of any extremal graph on q2 + q+
1− r0 vertices is at least 0.2q.

Proof. Suppose for a contradiction that there does not exist such an integer r0 ∈ [r, 3r]. So we have
ex(q2 + q + 1− r, C4)− ex(q2 + q − r, C4) < 0.2q. Let s be the largest integer in [r+ 1, 3r] such that

ex(q2 + q + 1− x,C4)− ex(q2 + q − x,C4) < 0.2q holds for all integers x ∈ [r, s − 1]. (5)

Then either (i) s = 3r or (ii) ex(q2 + q + 1− s, C4)− ex(q2 + q − s, C4) ≥ 0.2q. Summing up (5) for
all integers x ∈ [r, s − 1], we obtain

ex(q2 + q + 1− s, C4) > ex(q2 + q + 1− r, C4)− 0.2(s − r)q ≥ 1

2
q(q + 1)2 − αrq − 0.2(s − r)q. (6)

As α ≥ 0.2, we see ex(q2 + q+1− s, C4) ≥ 1
2q(q+1)2 −αsq. If (ii) occurs, then s would be a desired

integer. So (i) occurs, i.e., s = 3r. Since q ≥ 4 and α ≤ 1 ≤ r, we have 3
4sq− 1

2(q+1)−αrq−0.2(s−
r)q = q · (1.85r − αr − 1/2 − 1/q) > 0. This inequality together with (6) give that

ex(q2 + q + 1− s, C4) >
1

2
(q + 1)(q2 + q + 1)− 3

4
sq. (7)

Let h(x) = x
4 (1 +

√
4x− 3). By (1), we see that ex(n,C4) ≤ h(n) holds for all n. Note that

h(q2 + q + 1) = 1
2(q + 1)(q2 + q + 1) and h′(x) = 1+

√
4x−3
4 + x

2
√
4x−3

> 3
4

√
x for x ≥ 1. So

3In literature where certain circumstances apply, the deficiency of a vertex v is defined by max{q + 1− d(v), 0}.
4Throughout the rest of the paper, a graph G is called an extremal graph if it is C4-free and has the maximum

number ex(|V (G)|, C4) of edges.
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h(n + 1) − h(n) ≥ h′(n) > 3
4

√
n ≥ 3

4q holds for every integer n ≥ q2 + q + 1 − s ≥ q2, where
s = 3r ≤ 0.9q. Adding up the above inequality for all integers n in [q2 + q + 1− s, q2 + q], we have

h(q2 + q + 1− s) < h(q2 + q + 1)− 3

4
q · s = 1

2
(q + 1)(q2 + q + 1)− 3

4
sq < ex(q2 + q + 1− s, C4),

where the last inequality is from (7). Clearly, this contradicts the bound ex(n,C4) ≤ h(n). This
final contradiction shows that the desired r0 ∈ [r, 3r] indeed exists, completing the proof.

Recall Definition 3.1. In the next lemma we show that in C4-free graphs with large minimum
degree and sufficiently many edges, the size of S+ can be bounded from above.

Lemma 4.2. Let q be a sufficiently large integer and r be an integer satisfying 0 ≤ r ≤ 0.033q. Let

G be a C4-free graph on q2 + q + 2− r vertices, with at least 1
2q(q + 1)2 − rq edges and of minimum

degree at least 0.2q. Then |S+| ≤ −f(S+) ≤ 4r2 + 16r + 18.

Proof. First we claim that for every vertex v, |N(v)∩S+| ≤ 3r+8. Suppose not. Let k = 3r+9. Then
there exist vertices v and vi’s for i ∈ [k] such that every vi ∈ N(v)∩S+. Let di be the degree of vi and
let s =

∑

i∈[k] di. Since s−k =
∑

i∈[k] |N(vi)\{v}| ≤ n−1, we have k(q+2) ≤ s ≤ n−1+k ≤ q2+2q.

Let n = q2 + q + 2− r and m0 =
1
2q(q + 1)2 − rq. By the proof of Appendix A, we get

F (q, r, s) := 2(n− k)

(

n− s+ k − 1

2

)

− 2(n − k)2
(2m0−s+(k−1)0.2q−nk+k

n−k

2

)

< 0. (8)

Since e(G) ≥ m0 and d(v) ≥ 0.2q, using Lemma 3.3, we can derive that

0 >
F (q, r, s)

2(n− k)
≥

(

n− s+ k − 1

2

)

− (n − k)

( 2e(G)−s+(k−1)d(v)−nk+k
n−k

2

)

≥ 0,

a contradiction. This proves the claim that |N(v) ∩ S+| ≤ 3r + 8 holds for every vertex v.
Next we consider the deficiency. Let u ∈ S+. Clearly f(u) ≤ −1. By Lemma 3.2, we have

f(N(u)) ≥ qd(u)− n+ 1 = −qf(u) + r − 1 ≥ (q − 1)(−f(u)). (9)

Now define a weight function w on the edges uv with u ∈ S+ and v ∈ S by assigning w(uv) =
f(v). Let us count the total weight W of these edges. Every vertex u ∈ S+ contributes at least
f(N(u) ∩ S) ≥ f(N(u)), so we can use (9) to obtain that

W ≥
∑

u∈S+

f(N(u)) ≥ (q − 1)
∑

u∈S+

(−f(u)) = (q − 1)(−f(S+)).

On the other hand, by the above claim, each vertex v ∈ S has at most 3r + 8 neighbors in S+, so it
contributes at most 3r + 8 times of its deficiency. Putting them together, we have

(q − 1)(−f(S+)) ≤ W ≤
∑

v∈S
(3r + 8)f(v) = (3r + 8)f(S).

By the definition of f , we get f(S) + f(S+) = f(V (G)) = n(q + 1) − 2e(G) ≤ (q2 + q + 2 − r)(q +
1)− (q(q + 1)2 − 2rq) = (r + 2)q − r + 2. Therefore, we can derive

(q − 1)(−f(S+)) ≤ (3r + 8)f(S) ≤ (3r + 8)
(

(r + 2)q − r + 2− f(S+)
)

.

6



Further rearranging this inequality gives that

−f(S+) ≤ (3r + 8)
(

(r + 2)q − r + 2
)

q − 3r − 9
≤ (3r + 8)(r + 2)(q + 1)

0.9(q + 1)
≤ 4r2 + 16r + 18,

where the last two inequalities hold because 0 ≤ r ≤ 0.033q and q is large. This finishes the proof.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let q, r be sufficiently large integers satisfying r ≤ 0.01q. Suppose for a
contradiction that ex(q2 + q + 1− r, C4) ≥ 1

2q(q + 1)2 − αrq, where α = 0.92. By Lemma 4.1, there
exists some integer r0 with r ≤ r0 ≤ 3r ≤ 0.03q such that any extremal graph G on q2 + q + 1− r0
vertices has at least 1

2q(q + 1)2 − αr0q edges and minimum degree at least 0.2q.
Let n = q2 + q + 1− r0. By the definition of deficiency,

f(V (G)) = (q + 1)n − 2e(G) ≤ (q + 1)(q2 + q + 1− r0)− (q(q + 1)2 − 2αr0q)

= (2α− 1)r0q − r0 + q + 1 ≤ (2α− 1)r0q + q

Applying Lemma 4.2 to G, we have |S+| ≤ −f(S+) ≤ 4(r0 + 1)2 + 16(r0 + 1) + 18 = 4r20 +O(q). So

|S| ≤ f(S) = f(V (G)) − f(S+) ≤ (2α− 1)r0q + 4r20 +O(q). (10)

We also have

|Sq+1| = (q2 + q + 1− r0)− |S+| − |S| ≥
(

1− (2α − 1)
r0
q

− 8
r20
q2

)

q2 +O(q). (11)

For any vertex u ∈ Sq+1, by Lemma 3.2 we can derive

f(N(u)) ≥ qd(u)− n+ 1 ≥ q(q + 1)− (q2 + q + 1− r0) + 1 = r0.

Now define a weight function w on the edges uv with u ∈ Sq+1 and v ∈ S by assigning w(uv) =
f(v). Let W be the total weight of these edges. Every vertex u ∈ Sq+1 contributes at least f(N(u)∩
S) ≥ f(N(u)) to W , while each vertex v ∈ S contributes at most f(v)d(v) ≤ f(v)q. Thus

|Sq+1|r0 ≤
∑

u∈Sq+1

f(N(u)) ≤ W ≤
∑

v∈S
f(v)q ≤ f(S)q. (12)

Using (10) and (11), we have that

f(S)q − |Sq+1|r0 ≤
(

(2α− 1)r0q + 4r20
)

q −
(

1− (2α− 1)
r0
q

− 8
r20
q2

)

r0q
2 +O(q2)

=

(

8
r20
q2

+ (2α+ 3)
r0
q

+ 2α − 2

)

r0q
2 + o(r0q

2),

where r0 ≥ r is sufficiently large. Recall that α = 0.92 and r0 ≤ 0.03q. We see F ( r0q ) = 8
r20
q2 + (2α+

3) r0q +2α− 2 is a quadratic function on r0
q with a negative axis of symmetry. So F ( r0q ) ≤ F (0.03) =

−0.0076 < 0. Therefore f(S)q−|Sq+1|r0 ≤ (F ( r0q )+ o(1)) · r0q2 < 0, which contradicts to (12). This
completes the proof of Theorem 1.3.
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We would like to remark that the above proof can be modified to show: for any ǫ > 0,

ex(q2 + q + 1− r, C4) ≤
1

2
q(q + 1)2 − (1− ǫ)rq (13)

holds whenever r/q = O(ǫ) and r = Ω(1/ǫ).
To conclude this section, we now prove Corollary 1.4 using the above inequality.

Proof of Corollary 1.4. Let ǫ > 0 be any real. Let q be a prime power and r be an integer such
that r = O(ǫq) and r = Ω(1/ǫ). By results of [1, 5, 6, 7], there exists some extremal graph G on
q2 + q + 1 vertices with 1

2q(q + 1)2 edges, which has exactly q + 1 vertices of degree q and all other
vertices of degree q + 1. Deleting any r vertices of degree q in G, one can obtain a C4-free graph on
q2 + q + 1− r vertices with at least 1

2q(q + 1)2 − rq edges. This together with (13) show that

1

2
q(q + 1)2 − rq ≤ ex(q2 + q + 1− r, C4) ≤

1

2
q(q + 1)2 − (1− ǫ)rq,

proving the corollary.

5 Proof of Theorem 1.5

Let q be a sufficiently large integer. We first prove that for any integer r ∈ [1, 0.3q], it holds that

ex(q2 + q + 1 + r, C4) ≤
1

2
(q2 + q + 1 + r)(q + 1). (14)

Suppose for a contradiction that there exists some integer r ∈ [1, 0.3q] satisfying ex(q2+q+1+r, C4) >
1
2(q

2 + q + 1 + r)(q + 1). Let G be an extremal graph on q2 + q + 1 + r vertices. We will complete
the proof of (14) by deriving a contradiction that e(G) = 1

2(q
2 + q + 1 + r)(q + 1).

To see this, we first claim that every vertex v in G with degree d(v) ≥ 0.7q satisfies |N(v)∩S+| <
0.55q. Suppose not. Let k = 0.55q. Then there exist vertices v and vi’s for i ∈ [k] such that every
vi ∈ N(v)∩S+. Let n = q2+ q+1+ r and s =

∑

i∈[k] di. Since
∑

i∈[k](di−1) =
∑

i∈[k] |N(vi)\{v}| ≤
n− 1, we know k(q + 2) ≤ s ≤ n− 1 + k ≤ q2 + 2q. Let m0 =

1
2n(q + 1) so that e(G) ≥ m0. By the

calculations in Appendix B, we get

G(q, r, s) := 2(n − k)

(

n− s+ k − 1

2

)

− 2(n − k)2
(2m0−s+(k−1)0.7q−nk+k

n−k

2

)

< 0. (15)

Note that d(v) ≥ 0.7q and e(G) ≥ m0. We can use Lemma 3.3 to derive that

0 >
G(q, r, s)

2(n − k)
≥

(

n− s+ k − 1

2

)

− (n− k)

(2e(G)−s+(k−1)d(v)−nk+k
n−k

2

)

≥ 0,

a contradiction. So indeed, |N(v) ∩ S+| < 0.55q holds for any vertex v with d(v) ≥ 0.7q in G.
Now consider the deficiency of vertices. Any u ∈ S+ has f(u) ≤ −1. By Lemma 3.2, we have

f(N(u)) ≥ qd(u)− n+ 1 = q(q + 1− f(u))− (q2 + q + 1 + r) + 1

= −f(u)q − r ≥ (−f(u)) · (q − r).
(16)
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Define a weight function w on the edges uv with u ∈ S+ and v ∈ S by assigning w(uv) = f(v).
Let W be the total weight of these edges. As every vertex u ∈ S+ contributes at least f(N(u)∩S) ≥
f(N(u)), from (16) we can get that

W ≥
∑

u∈S+

f(N(u)) ≥ (q − r)
∑

u∈S+

(−f(u)) = (q − r)(−f(S+)).

On the other hand, as we know |N(v) ∩ S+| < 0.55q for vertices v with d(v) ≥ 0.7q, we see that in
fact every vertex v ∈ S has at most 0.7q − 1 neighbors in S+. So it contributes at most 0.7q − 1
times of its deficiency. Putting the above together, we get

(q − r)(−f(S+)) ≤ W ≤
∑

v∈S
((0.7q − 1)f(v)) = (0.7q − 1)f(S).

As 1 ≤ r ≤ 0.3q, this implies that
− f(S+) ≤ f(S), (17)

where the equality holds if and only if −f(S+) = f(S) = 0. By the definition of f , we have
f(S) + f(S+) = f(V (G)) = n(q + 1)− 2e(G) ≤ 0. That is, f(S) ≤ −f(S+). In view of (17), we can
then derive −f(S+) = f(S) = 0, which says that S = S+ = ∅. This also says that all vertices in G
have degree q + 1, so e(G) = 1

2n(q + 1) = 1
2(q

2 + q + 1 + r)(q + 1). However, this contradicts our
assumption on the choice of G, thus completing the proof of (14).

It remains to consider when 0.3q < r ≤ 0.6q. In fact for any n ∈ I+q , by (1) that ex(n,C4) ≤
n
4 (1 +

√
4n− 3), we see that the minimum degree of any n-vertex extremal graph is at most q + 1.

So it follows that ex(n,C4) ≤ ex(n − 1, C4) + (q + 1) for any n ∈ I+q . Then for 0.3q < r ≤ 0.6q, we
can derive that

ex(q2 + q+1+ r, C4) ≤ ex(q2 + q+1+0.3q, C4) + (r− 0.3q)(q +1) ≤ 1

2
(q2 + q+1+2r− 0.3)(q+1),

where the last inequality follows by (14). This finishes the proof of Theorem 1.5.

6 Concluding remarks

This paper mainly concerns upper bounds of the extremal number ex(n,C4). We prove that the
upper bound estimations in Theorems 1.3 and 1.5 hold for a positive proportion of integers in I−q
and I+q−1, respectively. We actually speculate that the upper bound of Theorem 1.3 and the restricted
form of Theorem 1.5 for r ≤ 0.3q (i.e., the line 2 and the line 3 in Figure 1) hold for all but o(q)
integers in I−q ∪I+q−1. This would be one step closer to the precise value of ex(n,C4) and in particular,
would imply that the real ǫ in Theorem 1.2 can be chosen to be any positive real less than 1/4 for a
positive density of integers n.

The proof of Theorem 1.3 indicates that it would be very helpful for estimating the extremal
number if the high minimum degree condition can be provided. However, we tend to believe that
this approach does not work in general (we plan to explore this and related topics in a coming paper).
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kind suggestions.
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[8] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems,
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Appendices

A. Justification of the inequality (8)

Here we present a detailed proof for the inequality (8). Note that n = q2 + q + 2 − r, k = 9 + 3r,
m0 =

1
2q(q + 1)2 − rq, k(q + 2) ≤ s ≤ q2 + 2q and 0 ≤ r ≤ 0.03q. Also we have

F (q, r, s) = (n− s+ k − 1)(n − s+ k − 2)(n − k)

− (2m0 − s+ (k − 1)0.2q − nk + k)(2m0 − s+ (k − 1)0.2q − nk − n+ 2k).
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It suffices to show that under the conditions, namely, q is sufficiently large, k(q + 2) ≤ s ≤ q2 + 2q
and 0 ≤ r ≤ 0.03q, the maximum value Fmax of F (q, r, s) is less than 0. For fixed q and r, F is a
quadratic function with variable s. The coefficients of s2 and s are q2 + q− 4r− 8 and −2q4 − 2q3 +
q2(−2r − 22) + q(−4.8r − 18.8) + 22r2 + 120r + 122, respectively. So the axis of symmetry is

−2q4 − 2q3 − 2q2r + o(q3)

−2(q2 + q − 4r − 8)
= q2 + o(q2).

Since k(q + 2) ≤ s ≤ q2 + 2q, we have

Fmax = F (q, r, k(q + 2)) = q4(−0.2r − 0.2) + q3(6.6r2 + 50.6r + 104)

+ q2(−18r3 − 180.76r2 − 633.32r − 729.56) + q(−51.6r3 − 487r2 − 1567.2r − 1630.8)

− 9r4 − 76r3 − 243r2 − 656r − 1044 = q4(−0.2r − 0.2) + 6.6q3r2 − 18q2r3 + o(q4(r + 1))

= r(−0.2q4 + 6.6q3r − 18q2r2)− 0.2q4 + o(q4(r + 1)).

In the range 0 ≤ r ≤ 0.03q, we have −0.2q4+6.6q3r−18q2r2 ≤ −0.01q4, implying that Fmax < 0.

B. Justification of the inequality (15)

Recall that here we have n = q2 + q + 1+ r, k = 0.55q and m0 =
1
2n(q + 1). Moreover, 1 ≤ r ≤ 0.3q

and k(q + 2) ≤ s ≤ q2 + 2q. The function G(q, r, s) can be rewrote as the following

G(q, r, s) = (n− s+ k − 1)(n − s+ k − 2)(n − k)

− (2m0 − s+ (k − 1)0.7q − nk + k)(2m0 − s+ (k − 1)0.7q − nk − n+ 2k).

Similar to Appendix A, it suffices to show that the maximum value Gmax of G(q, r, s) is less than
zero, subject to the restrictions that 1 ≤ r ≤ 0.3q and k(q + 2) ≤ s ≤ q2 + 2q.

For fixed q and r, G is a quadratic function with the variable s. The coefficients of s2 and s are
q2 + 0.45q + r and −2q4 − 3.1q3 − (4r − 0.275)q2 − (3.1r + 0.5)q − 2r2 + 2, respectively. So the axis
of symmetry is

2q4 + 3.1q3 + 4q2r + o(q3)

2(q2 + 0.45q + r)
= q2 + o(q2).

Since k(q + 2) ≤ s ≤ q2 + 2q, we have

Gmax = G(q, r, k(q + 2)) = −0.210375q5 + (0.6975r − 0.206475)q4 + (0.5535r − 0.342125)q3

+ (1.6975r2 − 0.205r − 0.685)q2 + (0.9r2 − 0.2r − 0.2)q + r3 − r ≤ −0.21q5 + 0.698rq4 + o(q5).

As 1 ≤ r ≤ 0.3q, we get −0.21q5 + 0.698rq4 ≤ −0.0006q5. Therefore, we have Gmax < 0 and thus
complete the proof.
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