
Kohayakawa-Nagle-Rödl-Schacht conjecture for subdivisions

Hao Chen Yupeng Lin Jie Ma

Abstract

In this paper, we study the well-known Kohayakawa-Nagle-Rödl-Schacht (KNRS) con-

jecture, with a specific focus on graph subdivisions. The KNRS conjecture asserts that for

any graph H, locally dense graphs contain asymptotically at least the number of copies of

H found in a random graph with the same edge density. We prove the following results

about k-subdivisions of graphs (obtained by replacing edges with paths of length k + 1).

• If H satisfies the KNRS conjecture, then its (2k− 1)-subdivision satisfies Sidorenko’s

conjecture, extending a prior result of Conlon, Kim, Lee and Lee;

• IfH satisfies the KNRS conjecture, then its 2k-subdivision satisfies a constant-fraction

version of the KNRS conjecture;

• If H is regular and satisfies the KNRS conjecture, then its 2k-subdivision also satisfies

the KNRS conjecture.

These findings imply that all balanced subdivisions of cliques satisfy the KNRS conjecture,

improving upon a recent result of Bradač, Sudakov and Wigerson. Our work provides new

insights into this pivotal conjecture in extremal graph theory.

1 Introduction

Let H and G be two graphs. A graph homomorphism from H to G is a map f : V (H) →
V (G) such that f(u)f(v) ∈ E(G) whenever uv ∈ E(H). The homomorphism density t(H,G)

denotes the probability that a random map from V (H) to V (G) forms a graph homomorphism.

Throughout this paper, the k-subdivision of H, denoted by H(k), is obtained by replacing each

edge uv of H with an internally disjoint path of length k + 1 between u and v.

1.1 Background

One of the most fundamental problems in Combinatorics is to accurately estimate the occur-

rence of a specific combinatorial substructure. In this paper, we delve into the problem of

counting the occurrences of a fixed subgraph in graphs with a given number of vertices and
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edges. In this direction, a well-known conjecture by Sidorenko [13] states that for any bipartite

graph H, the random graph minimizes t(H,G) among all graphs G with a fixed edge density.

Conjecture 1.1 (Sidorenko’s conjecture [13]). For every bipartite graph H, it holds that

t(H,G) ≥ t(K2, G)|E(H)| for every graph G.

If a bipartite graph H satisfies this conjecture, then we say H is Sidorenko. Despite being

proven for various specific bipartite graphs, Sidorenko’s conjecture remains widely open (see

e.g., [2, 3, 4] for some recent advancements in this conjecture). The smallest open case of

Sidorenko’s conjecture is K5,5 \ C10, a 3-regular bipartite graph on 10 vertices.

If H is non-bipartite, then the aforementioned inequality cannot hold in general. This is

because we can take counterexamples G to be any bipartite graph, resulting in t(H,G) = 0

while t(K2, G) > 0. It is natural to wonder if, by adding some extra condition on the host

graph G, Conjecture 1.1 could be extended to general graphs. Kohayakawa, Nagle, Rödl

and Schacht [7] speculate that the only barrier for a given non-bipartite graph H to satisfy

Sidorenko’s conjecture is the presence of a large sparse vertex subset within the host graph G.

Following [7], an n-vertex graph G is called (ρ, d)-dense if any subset X of at least ρn vertices

of G contains at least d
2 |X|2 edges. We also call these graphs locally dense. Kohayakawa et

al. [7] posed a question which is now widely recognized as a conjecture.

Conjecture 1.2 (Kohayakawa, Nagle, Rödl and Schacht [7]). For every graph H and all reals

d, ε > 0, there exist a ρ = ρ(d,H, ε) > 0 such that t(H,G) ≥ (1 − ε) · d|E(H)| holds for every

sufficiently large (ρ, d)-dense graph G.

We say a graph H is KNRS if H satisfies Conjecture 1.2. Observe that any bipartite graph

satisfying Conjecture 1.1 evidently satisfies Conjecture 1.2, i.e., any Sidorenko graph is KNRS.

On the other hand, only very few non-bipartite graphs are known to be KNRS. These known

examples include all complete multipartite graphs [7], all odd cycles [12], unicycle graphs [10],

all graphs obtained from a cycle by adding a chord [10], as well as graphs obtained by gluing

complete multipartite graphs or odd cycles in a tree-like way [10].

Very recently, Bradač, Sudakov and Wigderson [1] proved that graphs constructed from

smaller KNRS graphs by certain symmetric gluing operations are KNRS. Furthermore, Bradač,

Sudakov and Wigderson [1] also explored a more restricted version of Conjecture 1.2 by im-

posing an “almost regular” condition on the host graph. An n-vertex graph G is called

(ρ, d)-nearly-regular if the degrees of all but at most ρn vertices of G fall within the range

[(d− ρ)n, (d+ ρ)n]. Bradač et al. made the following conjecture.

Conjecture 1.3 (Bradač, Sudakov and Wigderson [1], see Conjecture 1.8). For every graph

H and all real d, ε > 0, there exists a ρ = ρ(d,H, ε) > 0 such that t(H,G) ≥ (1 − ε) · d|E(H)|

holds for every sufficiently large (ρ, d)-dense (ρ, d)-nearly-regular graph G.
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Following the notation in [1] we say a graphH is regular-KNRS ifH satisfies Conjecture 1.3.

By employing the theory of positive semidefinite matrices, Bradač, Sudakov and Wigderson

([1], Theorem 1.9) verified the following graphs that exhibit the regular-KNRS property:

(a) the ℓ-subdivision of any regular-KNRS graph for any integer ℓ ≥ 1,

(b) all graphs obtained from a regular-KNRS graph by gluing forests to its vertices,

(c) all generalized theta graphs, and

(d) the graph with vertex set Z6 and edge set {(i, i+ 1) : 1 ≤ i ≤ 6} ∪ {(1, 5), (2, 4)}.1

As pointed out by the authors of [1], item (a) implies that all balanced subdivisions of cliques

are regular-KNRS. In an earlier but related result, Conlon, Kim, Lee and Lee [2] showed that

if a graph H is KNRS, then the 1-subdivision of H is Sidorenko.

1.2 Weakly-KNRS

Before presenting our results, we introduce a novel property that serves as an intermediate

concept between the KNRS property and the regular-KNRS property.

Definition 1 (Weakly-KNRS graphs). A graph H is weakly-KNRS, if there exists some con-

stant cH ∈ (0, 1] such that for every real d > 0, there exists a ρ = ρ(d,H) > 0 such that

t(H,G) ≥ cH · d|E(H)| holds for every sufficiently large (ρ, d)-dense graph G.

It is obvious that if a graph H is KNRS, then H is weakly-KNRS. On the other hand, by

utilizing the so-called tensor power trick, one can demonstrate that if H is weakly-KNRS, then

H is regular-KNRS. This can be formally derived from the following equivalent formulation

of Proposition 4.10 of [1]: For any graph H, if there exists an absolute constant c > 0 such

that for every real d > 0, there exists a ρ = ρ(d,H, c) > 0 satisfying t(H,G) ≥ c · d|E(H)|

for every sufficiently large (ρ, d)-dense (ρ, d)-nearly-regular graph G, then the same inequality

holds with c = 1.

We refer to Figure 1 for an illustration of the relationship between Sidorenko graphs, KNRS

graphs, weakly-KNRS graphs, and regular-KNRS graphs.

Figure 1: An illustration among families of graphs

1This is the smallest open case of Conjecture 1.2 (see [10] for more discussions).
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1.3 Our results

In this paper, we mainly investigate the above conjectures for subdivisions of graphs. For a

comprehensive comparison with our findings, we recall two aforementioned results:

• Bradač et al. [1] proved that if H is regular-KNRS, then H(ℓ) is also regular-KNRS;

• Conlon et al. [2] proved that if H is KNRS, then its 1-subdivision H(1) is Sidorenko.

Note that repeatedly applying the above result of Conlon et al. [2], it can be inferred easily

that for any k ≥ 1, if H is KNRS, then its (2k − 1)-subdivision H(2k−1) is Sidorenko.

Now, we proceed to present our first result. Assuming that H satisfies the KNRS property,

we strengthen the above result of Bradač et al. [1], and extend the result of Conlon et al. [2]

from (2k − 1)-subdivisions to ℓ-subdivisions for all odd integers ℓ.

Theorem 1.4. Let k ≥ 1 be integers. If a graph H is KNRS, the following statements hold:

(a) the (2k − 1)-subdivision H(2k−1) is Sidorenko, and

(b) the 2k-subdivision H(2k) is weakly-KNRS.

We would like to point out that from the proof of this result, it can be shown that every

balanced subdivision of a weakly-KNRS graph is also weakly-KNRS.

Our second result establishes that if one imposes an additional condition that H is a regular

graph, then its 2k-subdivision H(2k) becomes KNRS.

Theorem 1.5. Let k ≥ 1 be integers. If a graph H is KNRS and regular, then its 2k-subdivision

H(2k) is also KNRS.

It is important to highlight the notable distinction between this result and item (a) of

Theorem 1.9 in [1]. In the former, we impose the regular condition on the graph H, whereas

in item (a), the (almost) regular condition applies to the host graph G.

Using both Theorems 1.4 and 1.5, we can readily derive the following corollary.

Corollary 1.6. If a graph H is KNRS and regular, then all balanced subdivisions of H are

KNRS. In particular, all balanced subdivisions of cliques are KNRS.

This improves a recent result of Bradač, Sudakov and Wigderson [1], stating that all bal-

anced subdivisions of cliques are regular-KNRS.

This paper is organized as follows. In Section 2, we provide necessary notations and some

auxiliary lemmas. In Section 3, we present the proofs of Theorems 1.4 and 1.5. Finally, in

Section 4, we conclude with some remarks.
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2 Preliminaries

In this section, we introduce terminologies and prepare some auxiliary lemmas used throughout

the paper. We start with some basic notions of graphs. Let G be a graph. The vertex set of

G is denoted by V (G) and the edge set of G is denoted by E(G). Let v(G) and e(G) be the

number of vertices and edges of G, respectively. Let k be a positive integer. The path with k

edges is denoted by Pk and the complete graph with k vertices is denoted by Kk.

In line with current trends and for the sake of notational convenience, the subsequent

section presents essential analytic terminologies needed in this paper. All integrations in this

paper are taken with respect to the Lebesgue measure and when we use the notion of measure

we always mean the Lebesgue measure on Rn. Let A be a measurable set of Rn. We write |A|
for the measure of A. If |A| = 0, then we call A a zero-measure set. For a measurable function

f : [0, 1] → R, the L1 norm ||f ||1 of f is defined by ||f ||1 :=
∫
[0,1] |f(x)|dx.

2.1 Graph limits

In this paper, we work within the framework of graph limits, drawing upon the language and

concepts associated with this field. (For a comprehensive introduction to graph limits, we refer

readers to [11].) A kernel is a measurable function U : [0, 1]2 → R satisfying U(x, y) = U(y, x)

for all x, y ∈ [0, 1]. A graphon is a kernel W : [0, 1]2 → [0, 1]. Roughly speaking, a graphon can

be regarded as the limit of regularity partitions that approximate large graphs. Consequently,

numerative graphic parameters can be naturally extended to quantities defined on graphons.

As a graphon analogy of the vertex degree in a graph, the degree function of x ∈ [0, 1] in a

graphon W is defined as

degW (x) :=

∫
[0,1]

W (x, y)dy.

If degW (x) = d for all x ∈ [0, 1] except for a zero-measure subset X ⊆ [0, 1], then we say that

W is d-regular. The homomorphism density of a graph H in a graphon W is defined as

t(H,W ) :=

∫
[0,1]v(H)

∏
ij∈E(H)

U(xi, xj)
∏

v∈V (H)

dxv.

Specially, we call t(K2,W ) the density of the graphon W . Now we can restate Sidorenko’s

conjecture in the language of graph limits (see e.g. [11], Chapter 7 for details).

Conjecture 2.1 (Sidorenko’s conjecture, graphon form). Let H be a bipartite graph. Then

t(H,W ) ≥ t(K2,W )e(H) holds for any graphon W .

It can be shown that any graph H satisfies Conjecture 1.1 if and only if H satisfies Con-

jecture 2.1. The next lemma shows that Sidorenko’s conjecture can be further reduced to the

case when the host graphon is regular.
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Lemma 2.2 ([5], Theorem 8.2). Let H be a bipartite graph. Then H is Sidorenko if and only

if t(H,W ) ≥ de(H) holds for every d ∈ [0, 1] and every d-regular graphon W .

We now formalize the definition of locally dense graphs in the language of graph limits, as

outlined in [1].

Definition 2. A graphon W on [0, 1]2 is called d-locally dense if for every measurable set

S ⊆ [0, 1], we have that
∫
S×S W (x, y)dxdy ≥ d|S|2.

The next lemma, which is proved in [1], translates the statement of Conjecture 1.2 from

locally dense graphs to locally dense graphons.

Lemma 2.3 ([1], Lemma 2.6). Let H be a graph. Then H is KNRS if and only if t(H,W ) ≥
de(H) holds for every d and every d-locally dense graphon W .

The next lemma follows directly from the proof of the above lemma, which we omit here.

Lemma 2.4. Let H be a graph. Then H is weakly-KNRS if and only if there exists some

constant cH ∈ (0, 1] such that t(H,W ) ≥ cH · de(H) holds for every d and every d-locally dense

graphon W .

2.2 The restricting graphon on measurable closed sets

To establish the graphon analogy of a subgraph in a graph, we require the following notion,

which can be found in [8, 9] for further details. Fix a graphon W and a measurable closed

subset A ⊆ [0, 1] with |A| > 0. Let 1A be the indicator function of A, i.e., 1A(x) = 1 if x ∈ A

and 1A(x) = 0 otherwise. Let F : [0, |A|] → [0, 1] be the measurable function defined as

F (z) := {t ∈ [0, 1] :

∫
[0,t]

1A(x)dx = z}. (1)

Then we have F (z) ∈ A for any z ∈ [0, |A|], and
∫
B 1A(x)dx = |F−1(B)| holds for every

measurable subset B ⊆ [0, 1]. Define the graphon W [A] by setting

W [A](x, y) := W (F (x · |A|), F (y · |A|))

for all (x, y) ∈ [0, 1]2. We call W [A] the restricting graphon of W on A. Observe that

t(H,W [A]) =
1

|A|v(H)

∫
[0,1]v(H)

∏
ij∈E(H)

W (xi, xj)
∏

v∈V (H)

1A(xv)dxv (2)

holds for every graph H and every measurable closed set A ⊆ [0, 1] with |A| > 0. Moreover, it

implies

t(H,W ) ≥ |A|v(H)t(H,W [A]). (3)
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In the remaining of this subsection, we aim to prove Lemma 2.6 that if W is d-locally dense,

then the restricting graphon of W on any measurable closed subset is also d-locally dense. To

show this, we need some more notion. Given a measurable closed set A ⊆ [0, 1], define the

function F (·) by (1). For any measurable subset B′ in [0, 1], define the subset

B = {y ∈ [0, 1] : y = F (x · |A|) for some x ∈ B′}. (4)

By the definition of F , we see that B is a measurable subset of A and moreover, |F−1(B)| =∫
B 1A(x)dx = |B|. It then follows that |B′| = |F−1(B)|

|A| = |B|
|A| . Before proving Lemma 2.6, we

need the coming result, whose proof can be found in Appendix A.

Lemma 2.5. Given a graphon W and measurable subsets A,B,B′ as above, if A is closed,

then it holds that ∫
B′×B′

W [A](x, y)dxdy =
1

|A|2

∫
B×B

W (x, y)dxdy.

Now we are ready to present the main result of this subsection.

Lemma 2.6. If W is a d-locally dense graphon, then for any measurable closed set A ⊆ [0, 1],

the restricting graphon W [A] is also d-locally dense.

Proof. The case when A is a zero-measure set is trivial, so we may assume that |A| > 0. Let

B′ be any measurable subset in [0, 1] and define the subset B ⊆ A by (4). Using Lemma 2.5,∫
B′×B′

W [A](x, y)dxdy =
1

|A|2

∫
B×B

W (x, y)dxdy ≥ d|B|2

|A|2
= d|B′|2, (5)

where the inequality holds because W is d-locally dense and the last equality follows from the

fact |B′| = |B|
|A| . This implies that W [A] is d-locally dense.

2.3 Reiher’s inequality

The following lemma proved by Reiher [12] has been proven to be extremely useful when

considering Conjecture 1.2.

Lemma 2.7 (Reiher’s inequality [12], Lemma 2.1). Let G be a (ρ, d)-dense graph with n

vertices. Let f : V (G) → [0, 1] be a function satisfying that
∑

v∈V (G) f(v) ≥ ρn. Then

∑
xy∈E(G)

f(x)f(y) ≥ d

2

 ∑
x∈V (G)

f(x)

2

− n.

We need following lemmas from [1], which extend Reiher’s lemma to the context of graphons.

Lemma 2.8 ([1], Lemma 2.8). Let W be a d-locally dense graphon. Then for every bounded

measurable function f : [0, 1] → [0,∞), we have∫
[0,1]2

f(x)W (x, y)f(y)dxdy ≥ d

(∫
[0,1]

f(x)dx

)2

= d||f ||21.
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Lemma 2.9 ([1], Lemma 2.10). Let W be a d-locally dense graphon. Let ω : [0, 1] → [0,∞) be

a bounded measurable function. If H is a KNRS graph, then∫
[0,1]v(H)

∏
v∈V (H)

ω(xv)
∏

uv∈E(H)

W (xu, xv)
∏

v∈V (H)

dxv ≥ ||ω||v(H)
1 de(H).

3 The proofs

We devote this section to the proofs of Theorems 1.4 and 1.5. First we define several key

notions that will be frequently utilized throughout this section. Let W be a graphon and let

s ≥ 1 be an integer. We define the functions WPs : [0, 1] → [0, 1] as

WPs(x) : =

∫
[0,1]s

W (x, x1)W (x1, x2)...W (xs−1, xs)
s∏

i=1

dxi.

and Ws : [0, 1]
2 → [0, 1] as

Ws(x, y) : =

∫
[0,1]s−1

W (x, x1)W (x1, x2)...W (xs−2, xs−1)W (xs−1, y)
s−1∏
i=1

dxi.

It is evident that Ws is a graphon. We remark that it holds∫
[0,1]

Ws(x, y)dy = WPs(x). (6)

The following result is useful when computing the homomorphism density of subdivisions.

Lemma 3.1. Let W be a graphon and H(s) be the s-subdivision of a graph H. Then it holds

t(H(s),W ) = t(H,Ws+1).

Proof. It follows from the definition of H(s) and Ws(x, y) that

t(H(s),W ) =

∫
[0,1]v(H)

∏
ij∈E(H)

(∫
[0,1]s

W (xi, y1)
s−1∏
k=1

W (yk, yk+1)W (ys, xj)
s∏

m=1

dym

) ∏
v∈V (H)

dxv,

which equals
∫
[0,1]v(H)

∏
ij∈E(H)Ws+1(xi, xj)

∏
v∈V (H) dxv = t(H,Ws+1), as desired.

We also need a classical result in real analysis, which can be found, for example, in [6].

Lemma 3.2. Let E be a measurable set. For every ε > 0, there exists a closed set F ⊆ E,

such that |E − F | < ε.

We are now ready to present the proof of Theorem 1.4.
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Proof of Theorem 1.4. We first prove the item (a) that if H is KNRS, then the (2k − 1)-

subdivision H(2k−1) of H is Sidorenko for any integer k ≥ 1. Note that by Lemma 2.2, it

suffices to consider any d-regular graphon W and prove t(H(2k−1),W ) ≥ de
(
H(2k−1)

)
.

Recall the definition of Wk. We first show that
∫
[0,1]Wk(x, y)dy = dk for every x ∈ [0, 1].

We prove this by induction on k. The base case k = 1 holds trivially because W1 = W is

d-regular. Now assume this holds for k − 1. For every x ∈ [0, 1], it holds that∫
[0,1]

Wk(x, y)dy =

∫
[0,1]k−1

W (x, x1)W (x1, x2)...W (xk−2, xk−1)

(∫
[0,1]

W (xk−1, y)dy

)
k−1∏
i=1

dxi

=d

∫
[0,1]k−1

W (x, x1)W (x1, x2)...W (xk−2, xk−1)

k−1∏
i=1

dxi

=d

∫
[0,1]

Wk−1(x, xk−1)dxk−1 = dk,

where the second equality holds as W is d-regular and the last equality follows by induction.

Next we claim that W2k(x, y) is d
2k-locally dense. For any measurable A ⊆ [0, 1], we have∫

A×A
W2k(x, y)dxdy =

∫
[0,1]

(∫
A×A

Wk(x, z)Wk(z, y)dxdy

)
dz =

∫
[0,1]

(∫
A
Wk(x, z)dx

)2

dz.

Then using Cauchy-Schwarz inequality, it follows that∫
[0,1]

(∫
A
Wk(x, z)dx

)2

dz ≥

(∫
[0,1]

∫
A
Wk(x, z)dxdz

)2

=

(∫
A

(∫
[0,1]

Wk(x, z)dz

)
dx

)2

.

Since
∫
[0,1]Wk(x, z)dz = dk for any x ∈ [0, 1], we get that

∫
A×AW2k(x, y)dxdy ≥

(∫
A dkdx

)2
=

d2k|A|2 holds for any measurable A ⊆ [0, 1]. Thus, W2k(x, y) is d
2k-locally dense.

Using Lemma 3.1 and the facts that H is KNRS and W2k is d2k-locally dense, we can

deduce that t(H(2k−1),W ) = t(H,W2k) ≥ (d2k)e(H) = d2k·e(H) = de
(
H(2k−1)

)
for any d-regular

graphon W . By Lemma 2.2, this shows that H(2k−1) is Sidorenko, proving the item (a).

Next we prove the item (b) that if H is KNRS, then the 2k-subdivision H(2k) of H is

weakly-KNRS for any integer k ≥ 1. Consider any d ∈ (0, 1) and any d-locally dense graphon

W . We first show that there is a large locally dense measurable closed subset with respect to

W2k+1.

Claim (⋆). For every ε > 0, there exists a measurable closed subset Fε ⊆ [0, 1] with |Fε| ≥
1
2 + ϕ(ε) such that the restricting graphon W2k+1[Fε] is

d2k+1

22k
-locally dense, where ϕ(·) is a

function such that ϕ(ε) → 0 when ε → 0.

Proof of Claim (⋆). Let D = {x ∈ [0, 1] : WPk
(x) ≥ (d2)

k} and D̄ := [0, 1] \D be the comple-

ment of D in [0, 1]. By Lemma 3.2, for every ε > 0, there exist closed sets Fε and Eε such

that Fε ⊆ D and Eε ⊆ D̄ with |D − Fε| < ε and |D̄ − Eε| < ε. We will proceed to show that

9



the closed subset Fε is the desired subset. First we demonstrate that |Fε| ≥ 1
2 + ϕ(ε) for some

function ϕ(·) such that ϕ(ε) → 0 when ε → 0. Note that |D̄| = 1− |D|. By the definition, we

have that ∫
D̄
WPk

(x)dx <

(
d

2

)k

· (1− |D|). (7)

On the other hand, it holds that∫
D̄
WPk

(x)dx ≥
∫
D̄k+1

∏
ij∈E(Pk)

W (xi, xj)
∏

v∈V (Pk)

dxv

≥
∫
Ek+1

ε

∏
ij∈E(Pk)

W (xi, xj)
∏

v∈V (Pk)

dxv

= t(Pk,W [Eε]) · |Eε|k+1.

(8)

where the last equality follows from (2). Using the well-known fact that every path Pk is

Sidorenko and by Lemma 2.6 that the restricting graphon W [Eε] is d-locally dense, we have

t(Pk,W [Eε]) ≥ t(K2,W [Eε])
k ≥ dk. (9)

Combining with inequalities (7), (8), (9) and |Ā| − |Eε| < ε, we deduce that(
d

2

)k

(1− |A|) > dk · |Eε|k+1 ≥ dk · (1− |D| − ε)k+1,

which implies that |D| ≥ 1
2+φ(ε), where φ(·) is some function such that φ(ε) → 0 when ε → 0.

Note that by Lemma 3.2, we have that |D| − |Fε| < ε, which implies that |Fε| > |D| − ε ≥
1
2 + φ(ε)− ε. Let ϕ(ε) be φ(ε)− ε. Then we have done.

It remains to show that W2k+1[Fε] is
d2k+1

22k
-locally dense. Let F be defined by setting the

measurable closed set A = Fε in (1). Consider any measurable B′ ⊆ [0, 1] and define B by (4).

Then B ⊆ Fε and |B′| = |B|
|Fε| . By Lemma 2.5,∫

B′×B′
W2k+1[Fε](x, y)dxdy =

1

|Fε|2

∫
B×B

W2k+1(x, y)dxdy. (10)

Since W is d-locally dense, by setting f(z) =
∫
B Wk(x, z)dx, it follows from Lemma 2.8 that∫

B×B
W2k+1(x, y)dxdy =

∫
[0,1]×[0,1]

W (z, w)

(∫
B
Wk(x, z)dx

)(∫
B
Wk(y, w)dy

)
dzdw

=

∫
[0,1]×[0,1]

W (z, w)f(z)f(w)dzdw ≥ d||f ||21.
(11)

Moreover, we can deduce that

||f ||21 =

(∫
B

(∫
[0,1]

Wk(x, z)dz

)
dx

)2

=

(∫
B
WPk

(x)dx

)2

≥ |B|2 · (d/2)2k, (12)
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where the last inequality follows from the fact that B ⊆ Fε ⊆ A and the definition of A. Recall

that |B′| = |B|
|Fε| . Combining (10) with (11) and (12), we obtain that∫

B′×B′
W2k+1[Fε](x, y)dxdy ≥ d2k+1

22k
|B|2

|Fε|2
=

d2k+1

22k
|B′|2

holds for any measurable subset B′ ⊆ [0, 1]. This shows that W2k+1[Fε] is indeed
d2k+1

22k
-locally

dense, completing the proof of Claim (⋆).

Since H is KNRS and W2k+1[Fε] is
d2k+1

22k
-locally dense, by Lemma 3.1 and (3) we have

t(H(2k),W ) = t(H,W2k+1) ≥ |Fε|v(H)t(H,W2k+1[Fε]) ≥ (1/2 + ϕ(ε))v(H) ·

(
d(2k+1)

22k

)e(H)

.

holds for every d-locally dense graphon W and every ε > 0. By letting ε → 0, we have that

t(H(2k),W ) ≥ cH · d(2k+1)e(H) = cH · de
(
H(2k)

)
,

where cH = (12)
v(H)+2ke(H) is an absolute constant. By Lemma 2.4, H(2k) is weakly-KNRS,

finishing the proof of Theorem 1.4.

In the rest of this section, we prove Theorem 1.5.

Proof of Theorem 1.5. Consider a graph H which is KNRS and regular, say every vertex

v ∈ V (H) has degree ∆ ≥ 1. We want to show that the 2k-subdivision H(2k) of H is KNRS for

any integer k ≥ 1. Let d ∈ (0, 1) and let W be any d-locally dense graphon. By Lemma 2.3, it

suffices for us to prove that t(H(2k),W ) ≥ d(2k+1)e(H), where e(H(2k)) = (2k + 1)e(H).

We proceed to prove a series of claims. The first claim asserts that the set consisting of

x ∈ [0, 1] with WPk
(x) = 0 must be a zero-measure set.

Claim 1. For integers k ≥ 1, let Bk = {x ∈ [0, 1] : WPk
(x) = 0}. Then it holds that |Bk| = 0.

Proof. Suppose for a contradiction that |Bk| > 0. Then by Lemma 3.2, for ε > 0, there exists

a close set E ⊆ Bk with |E| > 0 and |Bk − E| < ε. We can estimate as follows:∫
Bk

WPk
(x)dx ≥

∫
Bk

k+1

∏
ij∈E(Pk)

W (xi, xj)
∏

v∈V (Pk)

dxv

≥
∫
Ek+1

∏
ij∈E(Pk)

W (xi, xj)
∏

v∈V (Pk)

dxv

= |E|k+1 · t(Pk,W [E]) ≥ |E|k+1 · t(K2,W [E])k ≥ |E|k+1 · dk > 0,

where the first equality follows from (2), the second inequality holds because Pk is Sidorenko,

and the last inequality can be deduced by Lemma 2.6 that W [E] is d-locally dense. On the

other hand, by the definition of Bk it holds that
∫
Bk

WPk
(x)dx = 0, a contradiction.
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We define the function W ′
2k+1(x, y) : [0, 1]2 → [0, 1] as follows: if WPk

(x)WPk
(y) = 0 for

x, y ∈ [0, 1], define W ′
2k+1(x, y) = 0; otherwise WPk

(x)WPk
(y) > 0, define

W ′
2k+1(x, y) :=

W2k+1(x, y)

WPk
(x)WPk

(y)
.

Claim 2. W ′
2k+1 is a graphon.

Proof. It is obvious thatW ′
2k+1 is measurable, W ′

2k+1(x, y) = W ′
2k+1(y, x), andW ′

2k+1(x, y) ≥ 0

for all x, y ∈ [0, 1]. Thus, it remains to prove that W ′
2k+1(x, y) ≤ 1. Note that for x, y ∈ [0, 1]

with WPk
(x)WPk

(y) = 0, we have W ′
2k+1(x, y) = 0. Otherwise, it holds that

W ′
2k+1(x, y) =

W2k+1(x, y)

WPk
(x)WPk

(y)
=

∫
[0,1]2 Wk(x, z)W (z, w)Wk(y, w)dzdw

WPk
(x)WPk

(y)

≤

∫
[0,1]2 Wk(x, z)Wk(y, w)dzdw

WPk
(x)WPk

(y)
= 1,

where the last inequality follows from (6). So indeed W ′
2k+1 is a graphon.

Next we define an auxiliary function Uk(x, y) : [0, 1]
2 → [0,∞) as follows: if WPk

(x) = 0

for x ∈ [0, 1], then for any y ∈ [0, 1] we define Uk(x, y) = 0; otherwise we define

Uk(x, y) :=
Wk(x, y)

WPk
(x)

.

Let Bk be the subset defined in Claim 1. For any A ⊆ [0, 1], let Âk be the subset A \ Bk. By

Claim 1, Bk is a zero-measure set, which yields that |Âk| = |A| and thus∫
A×A

W ′
2k+1(x, y)dx =

∫
Âk×Âk

W ′
2k+1(x, y)dx. (13)

For any x ∈ Âk, it holds that WPk
(x) > 0 and thus

∫
[0,1]

Wk(x,z)
WPk

(x) dz = 1. Hence, we have∫
[0,1]

(∫
Âk

Uk(x, y)dx

)
dz =

∫
[0,1]

(∫
Âk

Wk(x, z)

WPk
(x)

dx

)
dz

=

∫
Âk

(∫
[0,1]

Wk(x, z)

WPk
(x)

dz

)
dx =

∫
Âk

1dx = |Âk| = |A|.
(14)

Claim 3. The graphon W ′
2k+1 is d-locally dense.

Proof. For any measurable subset A ⊆ [0, 1], we again use Âk to represent the subset of A

12



consisting of all x ∈ A with WPk
(x) > 0. Using (13), we obtain that∫

A×A
W ′

2k+1(x, y)dxdy =

∫
Âk×Âk

W ′
2k+1(x, y)dxdy

=

∫
Âk×Âk

W2k+1(x, y)

WPk
(x)WPk

(y)
dxdy

=

∫
Âk×Âk

(∫
[0,1]2

Wk(x, z)W (z, w)Wk(w, y)

WPk
(x)WPk

(y)
dzdw

)
dxdy

=

∫
[0,1]2

W (z, w)

(∫
Âk

Wk(x, z)

WPk
(x)

dx

)(∫
Âk

Wk(w, y)

WPk
(y)

dy

)
dzdw

=

∫
[0,1]2

W (z, w)

(∫
Âk

Uk(x, z)dx

)(∫
Âk

Uk(y, w)dy

)
dzdw.

Applying Lemma 2.8 with f(z) :=
∫
Âk

Uk(x, z)dx, we deduce that∫
A×A

W ′
2k+1(x, y)dxdy =

∫
[0,1]2

W (z, w)f(z)f(w)dzdw ≥ d||f ||21

= d

(∫
[0,1]

(∫
Âk

Uk(x, z)dx

)
dz

)2

= d|A|2,

where the last equality holds by (14). This yields that W ′
2k+1 is a d-locally dense graphon.

By Claim 1, we have W2k+1(x, y) = W ′
2k+1(x, y)WPk

(x)WPk
(y) for all (x, y) ∈ [0, 1]2 except

for a zero-measure set. Hence, since H is ∆-regular, we can obtain that

t(H(2k),W ) = t(H,W2k+1) =

∫
[0,1]v(H)

∏
ij∈E(H)

W2k+1(xi, xj)
∏

v∈V (H)

dxv

=

∫
[0,1]v(H)

∏
ij∈E(H)

W ′
2k+1(xi, xj)

∏
v∈V (H)

(WPk
(xv))

∆
∏

v∈V (H)

dxv.

From Claim 3, we have that W ′
2k+1 is d-locally dense. Now applying Lemma 2.9 with ω(x) =

(WPk
(x))∆ for x ∈ [0, 1], we can derive that

t(H(2k),W ) =

∫
[0,1]v(H)

∏
ij∈E(H)

W ′
2k+1(xi, xj)

∏
v∈V (H)

ω(xv)
∏

v∈V (H)

dxv

≥ de(H)

(∫
[0,1]

ω(x)dx

)v(H)

≥ de(H)

(∫
[0,1]

WPk
(x)dx

)∆·v(H)

,

(15)

where the last inequality follows from Jensen’s inequality applied to the function x 7→ x∆,

where ∆ ≥ 1. Finally, using the facts that Pk is Sidorenko and W is d-locally dense, we have∫
[0,1]

WPk
(x)dx = t(Pk,W ) ≥ t(K2,W )k ≥ dk. (16)
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Combining (15) with(16) and using the fact that 2e(H) = ∆ · v(H), we obtain that

t(H(2k),W ) ≥ de(H)+k∆v(H) = d(2k+1)e(H)

holds for any d-locally dense graphon W . By Lemma 2.3, we prove that H(2k) is KNRS.

4 Concluding remarks

We prove that if H is a KNRS graph, then its odd-subdivisions H(2k−1) are Sidorenko, and

its even-subdivisions H(2k) are weakly-KNRS. Despite our suspicion that all H(2k) are in

fact KNRS graphs, we are unable to significantly improve the leading coefficient cH in the

proof of Theorem 1.4. We remark that the usual tensor power trick does not work here (for

a counterexample, see Proposition 5.1 in [1]). However, it is worth noting that this indeed

holds true when we assume the additional condition that H is regular, as demonstrated in

Theorem 1.5.

If both Conjecture 1.2 and Conjecture 1.3 are proven true, the equivalence of KNRS graphs,

weakly-KNRS graphs, and regular-KNRS graphs becomes evident. However, since both con-

jectures pose significant challenges, it would be interesting to explore alternative approaches

(such as employing deductive reasoning) to investigate the equivalence between these con-

cepts, independent of Conjecture 1.2 and Conjecture 1.3. One intriguing question arises: Is it

true that all weakly-KNRS graphs are KNRS graphs? This question arises particularly in the

context of even-subdivisions of a KNRS graph, as discussed in the preceding paragraph.
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A Proof of Lemma 2.5

We restate Lemma 2.5 as follows.

Lemma A.1. Let W be any graphon and let A,B′ be measurable subsets in [0, 1] with |A| > 0.

Define the subset B by (4). If A is closed, then it holds that∫
B′×B′

W [A](x, y)dxdy =
1

|A|2

∫
B×B

W (x, y)dxdy.

Proof. For graphonsW and U , the Hadamard product ofW and U is defined byW
⊙

U(x, y) =

W (x, y) · U(x, y). Note that W
⊙

U is also a graphon.

By the definition of B, we have that 1B′(x) = 1B(F (x · |A|)) for all x ∈ [0, 1]. We define a

new graphon U as U(x, y) = 1B(x)1B(y) for (x, y) ∈ [0, 1]2. Then

U [A](x, y) = U(F (x · |A|), F (y · |A|)) = 1B(F (x · |A|))1B(F (y · |A|)) = 1B′(x)1B′(y) (17)

and

W [A](x, y) · U [A](x, y) = W
(
F (x · |A|), F (y · |A|)

)
· U
(
F (x · |A|), F (y · |A|)

)
= (W

⊙
U)(F (x · |A|), F (y · |A|)) = (W

⊙
U)[A](x, y)

(18)
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hold for all (x, y) ∈ [0, 1]2. Combining with (17) and (18), it follows that∫
B′×B′

W [A](x, y)dxdy =

∫
[0,1]2

W [A](x, y)1B′(x)1B′(y)dxdy

=

∫
[0,1]2

W [A](x, y) · U [A](x, y)dxdy = t
(
K2, (W

⊙
U)[A]

)
.

Using (2) and the fact B ⊆ A, we derive that t(K2, (W
⊙

U)[A]) is equal to

1

|A|2

∫
[0,1]2

(W
⊙

U)(x, y)1A(x)1A(y)dxdy =
1

|A|2

∫
[0,1]2

W (x, y)U(x, y)1A(x)1A(y)dxdy

=
1

|A|2

∫
[0,1]2

W (x, y)1B(x)1B(y)dxdy =
1

|A|2

∫
B×B

W (x, y)dxdy.

Combining these facts, we get
∫
B′×B′ W [A](x, y)dxdy = 1

|A|2
∫
B×B W (x, y)dxdy, as desired.
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