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Negligible obstructions and Turán exponents

Tao Jiang∗ Zilin Jiang† Jie Ma‡

Abstract

We show that for every rational number r ∈ (1, 2) of the form 2 − a/b, where a, b ∈ N+

satisfy ⌊a/b⌋3 ≤ a ≤ b/(⌊b/a⌋ + 1) + 1, there exists a graph Fr such that the Turán number

ex(n, Fr) = Θ(nr). Our result in particular generates infinitely many new Turán exponents. As

a byproduct, we formulate a framework that is taking shape in recent work on the Bukh–Conlon

conjecture.

1 Introduction

Given a family F of graphs, the Turán number ex(n,F) is defined to be the maximum number

of edges in a graph on n vertices that contains no graph from the family F as a subgraph. The

classical Erdős–Stone–Simonovits theorem shows that arguably the most interesting problems about

Turán numbers, known as the degenerate extremal graph problems, are to determine the order of

magnitude of ex(n,F) when F contains a bipartite graph. The following conjecture attributed to

Erdős and Simonovits is central to Degenerate Extremal Graph Theory (see [15, Conjecture 1.6]).

Conjecture 1 (Rational Exponents Conjecture). For every finite family F of graphs, if F contains

a bipartite graph, then there exists a rational r ∈ [1, 2) and a positive constant c such that ex(n,F) =

cnr + o(nr).

Recently Bukh and Conlon made a breakthrough on the inverse problem [15, Conjecture 2.37].

Theorem 2 (Bukh and Conlon [3]). For every rational number r ∈ (1, 2), there exists a finite

family of graphs Fr such that ex(n,Fr) = Θ(nr).
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Figure 1: Ts,t,s′ with roots in black.

Motivated by another outstanding problem of Erdős and Simonovits (see [9, Section III] and

[10, Problem 8]), subsequent work has been focused on the following conjecture, which aims to

narrow the family Fr in Theorem 2 down to a single graph.

Conjecture 3 (Realizability of Rational Exponents). For every rational number r ∈ (1, 2), there

exists a bipartite graph Fr such that ex(n, Fr) = Θ(nr).1

It is believed that the graph Fr in Conjecture 3 could be taken from a specific yet rich family

of graphs, for which we give the following definitions.

Definition 4. A rooted graph is a graph F equipped with a subset R(F ) of vertices, which we refer

to as roots. We define the pth power of F , denoted F p, by taking the disjoint union of p copies of

F , and then identifying each root in R(F ), reducing multiple edges (if any) between the roots.

Definition 5. Given a rooted graph F , we define the density ρF of F to be e(F )
v(F )−|R(F )| , where v(F )

and e(F ) denote the number of vertices and respectively edges of F . We say that a rooted graph

F is balanced if ρF > 1, and for every subset S of V (F ) \R(F ), the number of edges in F with at

least one endpoint in S is at least ρF |S| .

Indeed the following result on Turán numbers, which follows immediately from [3, Lemma 1.2],

establishes the lower bound in Conjecture 3 for some power of a balanced rooted tree.

Lemma 6. For every balanced rooted tree F , there exists p ∈ N+ such that ex(n, F p) = Ω(n2−1/ρF ).2

It is conjectured in [3] that the lower bound in Lemma 6 can be matched up to a constant

factor.

Conjecture 7 (The Bukh–Conlon Conjecture). For every balanced rooted tree F and every p ∈ N+,

ex(n, F p) = O(n2−1/ρF ).

1Erdős and Simonovits asked a much stronger question: for every rational number r ∈ (1, 2), find a bipartite graph

Fr such that ex(n, Fr) = cnr + o(nr) for some positive constant c.
2A rooted tree is simply a rooted graph that is also a tree, not to be confused with a tree having a designated

vertex.
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Figure 2: Balanced rooted trees, where s, t, t′ refer to vertices, except t in Qs,t.

Given the fact that every rational number bigger than 1 indeed appears as the density of some

balanced rooted tree (see [3, Lemma 1.3]), Lemma 6 and Conjecture 7 would imply Conjecture 3.

Our main result establishes Conjecture 7 for certain balanced rooted trees Ts,t,s′ defined in

Figure 1.

Theorem 8. For every s, t ∈ N+ and s′ ∈ N, assume t ≥ s3 − 1 when s − s′ ≥ 2. If the

rooted tree F := Ts,t,s′ is balanced, then for every p ∈ N+, ex(n, F p) = O(n2−1/ρF ), where ρF =

(st+ t+ s′)/(t+ 1).

It is not hard to characterize the parameters s, t, s′ for which Ts,t,s′ is balanced.

Proposition 9. For every s, t ∈ N+ and s′ ∈ N, the rooted tree F = Ts,t,s′ is balanced if and only

if ρF ≥ max(s, s′) and ρF > 1, or equivalently s′ − 1 ≤ s ≤ t+ s′ and (t, s′) 6= (1, 0).

Prior to our work, Conjecture 7 has been verified for the balanced rooted trees in Figure 2: the

K
(0)
s and Pt cases are classical results due to Kővári, Sós and Turán [22], and respectively Faudree

and Simonovits [12]; Qs,1 and S2,1,0 are due to Jiang, Ma and Yepremyan [17]; Qs,t and T4,7 are due

to Kang, Kim and Liu [21]; K
(1)
s and Ss,t,0 are due to Conlon, Janzer and Lee [5]; K

(2)
s and K

(3)
s

are due to Jiang and Qiu [18]; K
(t)
s is due to Janzer [16]; and Ss,t,t′ for all t′ ≤ t is very recently

settled by Jiang and Qiu [19].

These recent attacks on the Bukh–Conlon conjecture are full of interesting and promising tech-

niques. In this paper, inspired by these previous attempts, we formulate an underlying framework

that centers around a notion which we call negligible obstructions (Definitions 15 and 16). In this

context, we develop a lemma (Lemma 17), which we call the negligibility lemma. To our best

knowledge, ideas in our formulation of the framework can be traced back to the work of Conlon

and Lee [6], and can be spotted throughout later work by various authors.

To establish an instance of the Bukh–Conlon conjecture, the negligibility lemma naturally leads

to a two-step strategy: the identification of obstructions and the certification of their negligibility.

By no means we claim that this strategy reduces the difficulty of Conjecture 7. Nevertheless we

propose this strategy in hopes that it will bring us one step closer to pinning down a handful of

essentially different techniques in this area, akin to the theory of flag algebras [23].
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We illustrate the above two steps with the proof of Theorem 8. In contrast with all the previous

work which has the inductive flavor of certifying negligibility of larger obstructions by that of

the smaller, our implementation of the second step has a distinctive inductive pattern, which is

elaborated at the end of Section 2. We point out that although Theorem 8 can be seen as an

extension of [21, Section 3] which dealt with Qs,t, our approach is quite different.

Turning to realizability of rational exponents, our main result Theorem 8 gives realizability of

the following rational exponents.

Corollary 10. For every rational number r ∈ (1, 2) of the form 2− a/b, where a, b ∈ N+, if

⌊b/a⌋3 ≤ a ≤ b/(⌊b/a⌋ + 1) + 1, (1)

then there exists a bipartite graph Fr such that ex(n, Fr) = Θ(nr).

Proof. In case a = 1, the assumption that r > 1 and (1) would contradict each other. Hereafter we

assume that a ≥ 2. Now take s = ⌊b/a⌋, t = a− 1 and s′ = b− (a− 1)(⌊b/a⌋ + 1). Set T = Ts,t,s′.

One can easily check that s, t ∈ N+, ρT = (st + t + s′)/(t + 1) = b/a and so ρT > 1, ρT ≥ s and

s′ ≤ b − (a − 1)b/a = ρT . Observe that (1) is equivalent to t ≥ s3 − 1 and s′ ≥ 0. In view of

Proposition 9, T is balanced. The corollary follows from Lemma 6 and Theorem 8 immediately.

As far as we know, all the rationals in (1, 2) for which Conjecture 3 has been verified can be

derived from Lemma 6 and the existing instances of Conjecture 7. For convenience, we say a

fraction b/a is a Bukh–Conlon density if there exists a balanced rooted tree F such that ρF = b/a

and ex(n, F p) = O(n2−1/ρF ) for every p ∈ N+. Kang, Kim and Liu observed in [21, Lemma 4.3]

that a graph densification operation due to Erdős and Simonovits [11] can be used to generate more

Bukh–Conlon densities: whenever b/a is a Bukh–Conlon density, so is m+ b/a for every m ∈ N.

It appears reasonable to restrict our attention to the fractions b/a of the form m + s/a where

m ∈ N+, for fixed s, a ∈ N with s < a. The results listed in Figure 2 yield Bukh–Conlon densities

m + s/a for every m ∈ N+ whenever s⌈(a − 1)/(s + 1)⌉ ≤ a − 1.3 For many choices of (s, a), for

example (4, 7), (5, 8) or (7, 10), it was not known whether m + s/a is a Bukh–Conlon density for

any m ∈ N+. For comparison, the family of fractions b/a given by (1) generates the Bukh–Conlon

densities m + s/a for all m ≥ a − s − 1 whenever a − 1 − 3
√
a ≤ s ≤ a − 1. In particular, our

result gives new Bukh–Conlon densities of the form m + 5/8 and m + 7/10 as long as m ≥ 2.

Unfortunately our result does not give any Bukh–Conlon densities of the form m+4/7. In view of

the above discussion, we propose the following weaker conjecture about Bukh–Conlon densities.

Conjecture 11. For every s, a ∈ N with s < a, there exists m ∈ N+ such that m + s/a is a

Bukh–Conlon density.

3Combining [21, Lemma 4.3] with the results listed in Figure 2 (essentially with the one on Ss,t,t′), we know that

m+ s/(st+ t′ + 1) is a Bukh–Conlon density for m, s ∈ N+ and t, t′ ∈ N with t′ ≤ t. For m+ s/a to be a fraction of

such form, one needs st+ 1 ≤ a ≤ st+ t+ 1 for some t ∈ N, or equivalently s⌈(a− 1)/(s+ 1)⌉ ≤ a− 1.
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We point out that one would settle the above conjecture if one could remove the technical

condition t ≥ s3 − 1 when s− s′ ≥ 2 in Theorem 8.

The rest of the paper is organized as follows. In Section 2 we flesh out the aforementioned

framework, and use it to prove Theorem 8. In Section 3 we prove the negligibility lemma that

connects negligible obstructions with the Bukh–Conlon conjecture. In Sections 4 and 5 we certify

the negligibility of two different obstructions needed for the proof of Theorem 8.

2 Negligible obstruction family

Throughout the rest of the paper, when we view a tree F as a rooted tree, by default the root set

R(F ) of F consists exactly of the leaves of F . We use V (G) and E(G) to denote the vertex set and

the edge set of G respectively.

To motivate the relevant concepts, it is instructive to think about finding a copy of F p in an n-

vertex d-regular graph G, where F is a tree and d = ω(n1−1/ρF ). We mostly talk about embeddings

rather than subgraphs.

Definition 12 (Embedding). Given a tree F and a graph G, denote Inj(F,G) the set of embeddings

from F to G, that is, the set of injections η : V (F ) → V (G) such that η(e) ∈ E(G) for every

e ∈ E(F ). For a subset U of R(F ) and an injection σ : U → V (G), denote the set of embeddings

from F to G relativized to σ by

Inj(F,G;σ) = {η ∈ Inj(F,G) : η(u) = σ(u) for every u ∈ U}.

When we write these operators (and the ones coming later) in lowercase, we refer to their cardinal-

ities, for example, inj(F,G) = |Inj(F,G)| and inj(F,G;σ) = |Inj(F,G;σ)|.

Remark. We encourage the readers who are accustomed to counting subgraphs to think interchange-

ably the embedding counting inj(F,G) and the corresponding subgraph counting of F in G, as they

only differ by a multiplicative factor depending only on F . We choose embeddings over subgraphs

based on the pragmatic reason that it is more succinct to write in the language of embeddings when

counting relativized to some injection σ.

Note that inj(F,G) ≥ Ω(nde(F )) as one can embed F into G one vertex at a time. Because

nde(F ) = ω(n1+e(F )(1−1/ρF )) = ω(n1+e(F )−v(F )+|R(F )|) = ω(n|R(F )|), by the pigeonhole principle,

there exists σ : R(F ) → V (G) such that inj(F,G;σ) = ω(1). Ideally the images of V (F ) \ R(F )

under some p embeddings in Inj(F,G;σ) are pairwise (vertex) disjoint, and thus such p embeddings

would give us a copy of F p in G. To that end, we define the following notion.

Definition 13 (Ample embedding). Given a tree F and a graph G, for η ∈ Inj(F,G), we say η is C-

ample if there exist η1, . . . , ηC ∈ Inj(F,G) such that ηi and η are identical on R(F ), and the images

of V (F ) \ R(F ) under η1, . . . , ηC are pairwise disjoint. Given C ∈ N, denote AmpC(F,G) the set

5
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Figure 3: After adding U to the root set of T3,4,2, the resulting rooted graph contains K1,4 as a

rooted subgraph.

of C-ample embeddings from F to G. For a subset U of R(F ) and an injection σ : U → V (G), the

relativized version of AmpC(F,G), denoted by AmpC(F,G;σ), is just AmpC(F,G) ∩ Inj(F,G;σ).

However it could happen that many embeddings in Inj(F,G;σ) map a nonempty subset of

V (F )\R(F ) in the same way, thus preventing us from finding a p-ample embedding in Inj(F,G;σ).

These possible obstructions are encapsulated in the following definitions.

Definition 14 (Rooted subgraph). Given two rooted graphs F1 and F2, we say that F2 contains

F1 as a rooted subgraph if there exists an embedding η from F1 to F2 such that for every v ∈ V (F1),

η(v) ∈ R(F2) if and only if v ∈ R(F1).

Definition 15 (Obstruction family). Given a tree F , a family F0 of trees is an obstruction family

for F if every member of F0 is isomorphic to a subtree of F that is not a single edge, and moreover

for every nonempty proper subset U of V (F )\R(F ), after adding U to the root set of F , the resulting

rooted graph contains a member of F0 as a rooted subgraph. (See Figure 3 and Proposition 18 for

a concrete example of an obstruction family.)

The following definition quantifies the conditions on the obstruction family for F that ensure

the existence of a p-ample embedding of F in G.

Definition 16 (Negligible obstruction). Given two trees F0 and F , we say that F0 is negligible for

F if for every p ∈ N+ and ε > 0 there exist c0 > 0 and C0 ∈ N such that the following holds. For

every c > c0 and every n-vertex graph G with n ≥ n0(c), if every vertex in G has degree between

d and Kd, where d = cnα, K = 54/α and α = 1 − 1/ρF , and moreover ampp(F,G) = 0, then

ampC0
(F0, G) ≤ εnde(F0). An obstruction family for F is negligible if every member of the family

is negligible for F .

Remark. As we shall see later in Sections 4 and 5, when certifying the negligibility of an obstruction

family, the concrete form of K is unimportant as long as it depends only on F . However, since

we only need that specific K for Lemma 17 to work, we state it explicitly to avoid introducing an

additional universal quantifier in Definition 16.

We wrap up the above discussion in the following lemma, and we postpone its proof to Section 3.

Lemma 17 (Negligibility lemma). Given a tree F , if there exists an negligible obstruction family

F0 for F , then ex(n, F p) = O(n2−1/ρF ) for every p ∈ N+.
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Figure 4: Vertex partition of Ts,t,s′ .

The negligibility lemma provides us a two-step strategy to establish Conjecture 7 for a balanced

rooted tree F : first identifying an obstruction family F0 for F , and second certifying the negligibility

of F0. Although in the first step there might be multiple obstruction families for F , heuristically

speaking it makes more sense to choose F0 that is minimal under inclusion, because certifying the

negligibility of a member of F0 in the second step is where all the heavy lifting happens.

Coming back to the tree Ts,t,s′ defined in Figure 1, we choose the following obstruction family

which is indeed minimal under inclusion.

Proposition 18. The family {K1,s+1} ∪ {Ts,t−i,s′+i : 1 ≤ i ≤ s − s′} is an obstruction family for

Ts,t,s′.

Proof. Let F = Ts,t,s′, and let U be a nonempty proper subset of P ∪ Q, where P = P (F ) and

Q = Q(F ) are vertex subsets of V (F ) defined as in Figure 4. Let F+ be the rooted graph after

adding U to the root set R(F ) of F . If U contains the vertex in P , then it is easy to see that, F+

contains K1,s+1 as a rooted subgraph. Otherwise U ⊆ Q. In this case, F+ contains Ts,t−i,s′+i as a

rooted subgraph, where i = |U |. Finally notice that when s′ + i ≥ s+ 1, Ts,t−i,s′+i contains K1,s+1

as a rooted subgraph, and so does F+ (see Figure 3 for an example).

Theorem 8 follows immediately from the next theorem which certifies the negligibility of the

obstruction family defined in Proposition 18 whenever Ts,t,s′ is balanced.

Theorem 19. For s, t ∈ N+ and s′ ∈ N, suppose that T := Ts,t,s′ is balanced. When s − s′ ≥ 2,

assume in addition that

t ≥
(
1− s′

s+1

)
k
(
k − 1

s

)
(s+ 2− k) + 1

s , for every k ∈ {2, . . . , s − s′}. (2)

For every p ∈ N+ and ε > 0, there exists c0 > 0 such that the following holds. For every c > c0 and

every n-vertex graph G with n ≥ n0(c), if every vertex in G has degree between d and Kd, where

d = cnα, K = 54/α and α = 1− 1/ρT , and moreover ampp(T,G) = 0, then

(a) ampC∗
(K1,s+1, G) ≤ εnde(K1,s+1), where C∗ = v(T p

s,t,s+1); and

(b) ampCi
(Fi, G) ≤ εnde(Fi), where Ci = pv(T )i and Fi = Ts,t−i,s′+i, for 1 ≤ i ≤ s− s′.

7



Proof of Theorem 8. Suppose that T := Ts,t,s′ is balanced. When s ≤ s′, the obstruction family

for T consists of a single K1,s+1, which by Theorem 19(a) is negligible for T . When s− s′ = 1, in

view of Theorem 19, the obstruction family F0 defined in Proposition 18 is also negligible. When

s − s′ ≥ 2, F0 is only negligible provided (2). One can check that t ≥ s3 − 1 ensures that (2)

holds. Indeed, the right hand side of (2) is at most k2(s + 2 − k) + 1/s, which, by the inequality

of arithmetic and geometric means, is at most (2(s + 2)/3)3/2 + 1/s, which is at most s3 − 1 for

s ≥ 3. One can check directly in the s = 2 case that the right hand side of (2) is at most 7. In any

case, it then follows from Lemma 17 that ex(n, T p) = O(n2−1/ρF ) for all p.

Our proof of Theorem 19 is inductive in nature. In Section 4 we first establish the negligibility of

K1,s+1 in Theorem 19(a). In Section 5 we deduce the negligibility of Fi in Theorem 19(b) from that

of K1,s+1 and Fi−1. The inductive pattern here is counterintuitive in the sense that the negligibility

of Fi, which is a subgraph of Fi−1, comes after that of Fi−1.

3 Proof of the negligibility lemma

In Section 2, we analyze the special case where the graph G is regular. In the context of degenerate

extremal graph theory, it is indeed standard to assume that G is almost regular. This idea due

to Erdős and Simonovits first appeared in [11]. We shall use the following variant (see also [20,

Proposition 2.7] for a similar result).

Lemma 20 (Theorem 12 of Bukh and Jiang [4], only in arXiv version). For every c > 0 and

α ∈ (0, 1], there exists ñ0 ∈ N such that the following holds. Every ñ-vertex graph with ñ ≥ ñ0 and

at least (6c/α)ñ1+α edges contains an n-vertex subgraph G with n ≥ (6c/α)ñα/2 such that every

vertex in G has degree between cnα and Kcnα, where K = 54/α.

We now formalize the discussion in Section 2 on finding a copy of F p in G.

Definition 21 (Extension). Given two trees F1, F2 and a graph G, for η1 ∈ Inj(F1, G) and η2 ∈
Inj(F2, G), we say η2 extends η1 if η1 = η2 ◦η12 for some embedding η12 ∈ Inj(F1, F2). Given C ∈ N,

denote

ExtC(F1, F2, G) = {η ∈ Inj(F2, G) : η extends η1 for some η1 ∈ AmpC(F1, G)}.

Proof of Lemma 17. Suppose that F is a tree, p ∈ N+ and F0 is a negligible obstruction family for F .

Let c > 0 be a constant to be determined later. We would like prove that ex(ñ, F p) < (6/α)cñ1+α

for all ñ ≥ ñ0(c), where α = 1− 1/ρF . By Lemma 20, it suffices to prove that every n-vertex graph

G with n ≥ n0(c), if every vertex in G has degree between cnα and Kcnα, where K = 54/α, then

G contains F p as a subgraph.

Suppose that G is an n-vertex graph with n ≥ n0(c) whose degrees are between d and Kd,

where d = cnα. For the sake of contradiction, we assume that ampp(F,G) = 0. With hindsight,

8



take

ε =
K−e(F )

3
∑

F0∈F0
inj(F0, F )

.

Unwinding Definition 16, we obtain for every F0 ∈ F0 two constants cF0 > 0 and CF0 ∈ N. If we

had chosen c ≥ max{cF0 : F0 ∈ F0}, then for every F0 ∈ F0, ampCF0
(F0, G) ≤ εnde(F0), and in

particular, ampC0
(F0, G) ≤ εnde(F0), where C0 = max({CF0 : F0 ∈ F0} ∪ {p}).

Consider the embeddings in

I := Inj(F,G) \
⋃

F0∈F0

ExtC0(F0, F,G). (3)

Clearly inj(F,G) ≥ (1− o(1))nde(F ), and moreover for every F0 ∈ F0,

extC0(F0, F,G) ≤ inj(F0, F ) ampC0
(F,G)(Kd)e(F )−e(F0) ≤ ε inj(F0, F )Ke(F )nde(F ).

We can estimate the cardinality of I by

|I| ≥ (1− o(1)) nde(F ) − ε
∑

F0∈F0

inj(F0, F )Ke(F )nde(F ) = (2/3 − o(1))nde(F ),

and so |I| ≥ nde(F )/2 = ce(F )n|R(F )|/2 if we had chosen n0(c) large enough.

By the pigeonhole principle, the cardinality of Iσ := I ∩ Inj(F,G;σ) is at least ce(F )/2 for some

σ : R(F ) → V (G). For every U ⊆ V (F ) \R(F ) and every injection τ : U → V (G), set

Iσ(τ) = {η ∈ Iσ : η(u) = τ(u) for every u ∈ U}.

Claim. For every U ⊆ V (F ) \R(F ) and τ : U → V (G),

|Iσ(τ)| ≤ (C0v(F )2)v(F )−|R(F )|−|U |.

Proof of Claim. We prove by backward induction on |U |. Clearly |Iσ(τ)| ≤ 1 when the domain U

of τ equals V (F ) \R(F ). Suppose U is a proper subset of V (F ) \R(F ). Recall from Definition 15

that after adding U to the root set of F , the resulting rooted graph contains a rooted subgraph F0

that is isomorphic to a member of F0. Notice that U0 := V (F0) \R(F0) is nonempty because F0 is

not a single edge.

Let I ′σ(τ) be a maximal subset of Iσ(τ) such that the images of U0 under the embeddings in

I ′σ(τ) are pairwise disjoint, and let V0 be the union of these images. Since Iσ(τ) ⊆ I and I defined

by (3) contains no extension of any C0-ample embedding from F0 to G, we bound |I ′σ(τ)| < C0,

which implies that |V0| < C0|U0|. For each u ∈ U0 and v ∈ V0, by the inductive hypothesis

|Iσ(τuv)| < (C0v(F )2)v(F )−|R(F )|−|U |−1,

9



where τuv : U ∪ {u} → V (G) extends τ by mapping u to v additionally. The maximality of I ′σ(τ)

means that for every η ∈ Iσ(τ) there is u ∈ U0 such that η(u) ∈ V0, and so η ∈ Iσ(τuv) for some

v ∈ V0. Therefore

|Iσ(τ)| ≤
∑

u∈U0,v∈V0

|Iσ(τuv)| < |U0||V0|(C0v(F )2)v(F )−|R(F )|−|U |−1,

which implies the inductive step as |U0| < v(F ) and |V0| < C0|U0|.
The same argument works for the last inductive step where U = ∅ because there is no p-ample

embedding from F to G, and C0 ≥ p. ⊡

In particular, Iσ = Iσ(τ) when the domain of τ is empty, and so |Iσ| ≤ (C0v(F )2)v(F )−|R(F )|,

which would yield a contradiction if we had chosen c > (2(C0v(F )2)v(F )−|R(F )|)1/e(F ).

4 Ample embeddings of stars

The negligibility of K1,s+1 for Ts,t,s′ is established directly through the following technical lemma.

Lemma 22. For s, t ∈ N+ and s′ ∈ N, set s0 = max(s′, 1), F0 = K1,s0 , F1 = K1,s+1 and

T = Ts,t,s′. For every p ∈ N+ and ε > 0, there exists c0 > 0 such that for every n-vertex graph G,

if ampp(T,G) = 0 and inj(F0, G) ≥ c0n
s0, then ampC1

(F1, G) ≤ ε inj(F1, G), where C1 = v(T p
s,t,s0).

Our proof of Lemma 22 follows the outline of [5, Lemma 5.3]. Over there the conclusion, in

our language, is that for every ε > 0 there exists C1 ∈ N such that ampC1
(F1, G) ≤ ε inj(F1, G).

One can work out the quantitative dependency ε = Θ(C1−s
1 ) from their argument. Although

this dependency alone is enough for the negligibility of K1,s+1, it becomes inadequate when we

iteratively apply this bound later in Section 5. To decouple ε from C1 in Lemma 22, we need the

following classical result in degenerate extremal hypergraph theory.

Theorem 23 (Erdős [8]). For every r-partite r-uniform hypergraph H there exists ε > 0 so that

ex(n,H) = O(nr−ε).4

Proof of Lemma 22. Let C1 ∈ N be at least v(T p
s,t,s0). Suppose that G is an n-vertex graph with

ampp(T,G) = 0 and inj(F0, G) ≥ c0n
s0 , where c0 is to be chosen. As we only deal with embeddings

to G in the following proof, we omit G in Inj(·, G),Amp·(·, G) and Amp·(·, G; ·).
Recall s0 = max(s′, 1). Clearly G contains no F p as a subgraph, where F = Ts,t,s0 . Let U0

denote an arbitrary vertex subset of size s0 in G, and denote NG(U0) the common neighborhood

of U0 in G. Let H be the (s+ 1)-uniform hypergraph on V (G) given by

H = {η(R(F1)) : η ∈ AmpC1
(F1)}.

4Given an r-uniform hypergraph H , the Turán number ex(n,H) is the maximum number of hyperedges in an

r-uniform hypergraph on n vertices that contains no H as a subhypergraph.
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The strategy is to use
∑

U0
e(H[NG(U0)]) and

∑
U0

(|NG(U0)|
s+1

)
as intermediaries to connect

ampC1
(F1) and inj(F1), where H[NG(U0)] is the subhypergraph of H induced on NG(U0).

Claim 1. There exists n0 = n0(s, t, p, C1) ∈ N such that for every U0 with |NG(U0)| ≥ n0,

e(H[NG(U0)]) ≤
ε

4ss00

(|NG(U0)|
s+ 1

)
.

Proof of Claim 1. Recall the vertex partition V (F ) = P (F ) ∪Q(F ) ∪ S(F ) ∪ S′(F ) from Figure 4.

This partition induces the vertex partition V (F p) = P (F p) ∪Q(F p) ∪ S(F ) ∪ S′(F ), where P (F p)

denotes the union of the p disjoint copies of P (F ) in F p, and Q(F p) is defined similarly.

Let H0 be the (s+ 1)-uniform hypergraph on P (F p) ∪ S(F ) with each hyperedge given by the

s+ 1 neighbors of a vertex of Q(F p) in F p.

Observe that H[NG(U0)] never contains H0 as a subhypergraph. Suppose on the contrary that

there exists an embedding η from H0 to H[NG(U0)],
5 then we can embed F p in G by mapping

S′(F ) to U0, mapping P (F p)∪ S(F ) according to η, and embedding the vertices in Q(F p) greedily.

The last step of the embedding is possible because for every hyperedge e ∈ H0, η(e) = η′(R(F1))

for some η′ ∈ AmpC1
(F1), and more importantly C1 ≥ v(F p).

Since H0 is an (s+1)-partite hypergraph, the claim follows from Theorem 23 immediately. ⊡

We choose such n0 ∈ N in Claim 1 and require in addition that n0 ≥ s+1. For convenience, set

U = {U0 ⊆ V (G) : |U0| = s0, |NG(U0)| ≥ n0}.

Claim 2. The number of C1-ample embeddings from F1 to G satisfies

ampC1
(F1) ≤

ss00 (s+ 1)!

Cs0−1
1

∑

U0

e(H[NG(U0)]).

Proof of Claim 2. Let σ denote an arbitrary injection from R(F1) to V (G), and denote for short

a(σ) = ampC1
(F1;σ). Note that a(σ) has the dichotomy that either a(σ) = 0 or a(σ) ≥ C1 ≥ s0,

which implies that
(a(σ)

s0

)
≥ (a(σ)/s0)

s0 ≥ Cs0−1
1 a(σ)/ss00 in either case. Through counting the

disjoint union
⊔

U0
H[NG(U0)] in two ways, one can show that

(s+ 1)!
∑

U0

e(H[NG(U0)]) =
∑

σ

(
a(σ)

s0

)
≥ Cs0−1

1

ss00

∑

σ

a(σ) =
Cs0−1
1

ss00
ampC1

(F ),

which implies the desired inequality in the claim. ⊡

Claim 3. The number of embeddings from F1 to G satisfies

inj(F1) ≥
(s+ 1)!

2Cs0
1

∑

U0∈U

(|NG(U0)|
s+ 1

)
.

5Given two hypergraphs H1 and H2 of the same uniformity, an embedding from H1 to H2 is just an injection

η : V (H1) → V (H2) such that η(e) ∈ H2 for every e ∈ H1.
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Proof of Claim 3. We count in two ways the disjoint union
⊔

U0∈U
I(U0), where

I(U0) := {η ∈ Inj(F1) \AmpC1
(F1) : η(R(F1)) ⊆ NG(U0)}.

On the one hand, for a fixed U0 with |NG(U0)| ≥ n0, every subset of NG(U0) of size s + 1 that is

not an hyperedge of H[NG(U0)] gives rise to at least s0(s+1)! many η ∈ I(U0), and it follows form

Claim 1 that e(H[NG(U0)]) ≤ 1
2

(|NG(U0)|
s+1

)
. Thus we get

|I(U0)| ≥
s0(s + 1)!

2

(|NG(U0)|
s+ 1

)
, for every U0 ∈ U .

On the other hand, for every η ∈ Inj(F1) \ AmpC1
(F1), there are at most

(C1

s0

)
many U0 such that

η(R(F1)) ⊆ NG(U0), hence

inj(F1) ≥ inj(F1)− ampC1
(F1) ≥

1(
C1
s0

)
∑

U0

|I(U0)| ≥
s0!

Cs0
1

∑

U0

|I(U0)|,

which implies the desired inequality in the claim. ⊡

A simple double counting argument shows that

inj(F0) = s0!
∑

U0

|NG(U0)|.

Recall the assumption that inj(F0) ≥ c0n
s0 . Thus the average N̄ of |NG(U0)| satisfies

N̄ =
inj(F0)

s0!
(n
s0

) ≥ c0.

We can choose c0 > 0 large enough so that
( N̄
s+1

)
≥ (1 + 4ss00 C1/ε)

( n0

s+1

)
. By Jensen’s inequality,

we have ∑

U0

(|NG(U0)|
s+ 1

)
≥
(
n

s0

)(
N̄

s+ 1

)
≥ (1 + 4ss00 C1/ε)

∑

U0 6∈U

(|NG(U0)|
s+ 1

)
,

which implies that
∑

U0 6∈U

(|NG(U0)|
s+ 1

)
≤ ε

4ss00 C1

∑

U0∈U

(|NG(U0)|
s+ 1

)
.

Applying Claim 2 and then Claim 1, we get

Cs0−1
1

ss00 (s+ 1)!
ampC1

(F1) ≤
∑

U0

e(H[NG(U0)])

≤
∑

U0 6∈U

(|NG(U0)|
s+ 1

)
+

ε

4ss00 C1

∑

U0∈U

(|NG(U0)|
s+ 1

)
≤ ε

2ss00 C1

∑

U0∈U

(|NG(U0)|
s+ 1

)
,

which implies

ampC1
(F1) ≤

(s + 1)!ε

2Cs0
1

∑

U0∈U

(|NG(U0)|
s+ 1

)
.

Comparing it with Claim 3, we get the desired inequality in Lemma 22.
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Proof of Theorem 19(a). For s, t ∈ N+ and s′ ∈ N, set s0 = max(s′, 1), and T = Ts,t,s′. Since T is

balanced, by Proposition 9, s0 ≤ s+ 1 and ρT ≥ s0, the latter of which implies that 1 + s0α ≥ s0,

where α = 1− 1/ρT .

Let p ∈ N+, C∗ = v(T p
s,t,s+1) ≥ v(T p

s,t,s0) and ε > 0, and let c0 > 0 be a constant to be

determined later. Suppose that c > c0 and G is an n-vertex graph with n ≥ n0(c) whose degrees

are between d and Kd, where d = cnα and K = 54/α, and moreover ampp(T,G) = 0. Clearly,

inj(K1,s+1, G) ≤ n(Kd)s. We apply Lemma 22 and obtain c1 > 0 so that if inj(K1,s0 , G) ≥ c1n
s0

then

ampC∗
(K1,s+1, G) ≤ ε inj(K1,s+1, G) ≤ εn(Kd)s+1 = εKs+1nde(K1,s+1).

Since 1 + s0α ≥ s0, we have

inj(K1,s0 , G) ≥ (1− o(1))nds0 = (1− o(1))cs0n1+s0α ≥ (1− o(1))cs0ns0 .

Thus the condition inj(K1,s0 , G) ≥ c1n
s0 can be met by choosing c0 = c

1/s0
1 and n0(c) sufficiently

large.

5 Ample embeddings of subtrees

5.1 Preliminary propositions

For the proof of Theorem 19(b), we need the classical sunflower lemma due to Erdős and Rado [7]

and its immediate consequence for sequences (see [2] for the recent breakthrough on the sunflower

conjecture and related background).

Definition 24 (Sequential sunflower). Suppose that W ⊆ V k is a system of sequences. A sub-

set S of W is a sequential sunflower with kernel I ( [k] if for every pair of distinct sequences

(s1, . . . , sk), (s
′
1, . . . , s

′
k) ∈ S, the subsequences (si)i∈I and (s′i)i∈I are equal, but the sets {si : i 6∈ I}

and {s′i : i 6∈ I} are disjoint.

Proposition 25. Fix k,C ∈ N+. Suppose that W ⊆ V k is a system of sequences such that each

sequence in W consists of k distinct elements. If W contains no sequential sunflower of size C,

then |W | < (k!)2(k!C − 1)k.

Proof. Consider the system F of subsets of V defined by

F = {{s1, . . . , sk} : (s1, . . . , sk) ∈ W}.

Clearly |W | ≤ k!|F |. We claim that F contains no sunflower of size k!C. Recall that a sunflower

is a collection of sets whose pairwise intersection is constant. Assuming the claim, the classical

sunflower lemma precisely states that |F | < k!(k!C − 1)k, which implies the desired inequality.

Suppose on the contrary that E ⊆ F is a sunflower of size k!C with kernel K. Consider the
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subsystem of sequences W0 = {(s1, . . . , sk) ∈ W : {s1, . . . , sk} ∈ E}. Clearly |W0| ≥ k!C. By the

pigeonhole principle, there exist a set W1 ⊆ W0 of size C and I ( [k] such that for every s ∈ W1,

{si : i ∈ I} = K and (si)i∈I is a constant subsequence. As E is a sunflower, one can check that W1

is a sequential sunflower of size C, which is a contradiction.

We also need the following classical theorem due to Kővári, Sós and Turán [22] on the Zarankiewicz

problem.

Proposition 26. Fix s, t ∈ N+. Suppose that H is a bipartite graph with two parts U and W such

that every vertex in W has degree at least s. If H contains no complete bipartite subgraph with s

vertices in U and t vertices in W , then e(H) ≤ K|U ||W |1−1/s, where K = s s
√
(t− 1)/s!.

The following result is a generalization of a result due to Füredi [14]. Our proof of the general-

ization follows the proof of Füredi’s result by Alon, Krivelevich, and Sudakov [1] using dependent

random choice (see [13] for a survey on dependent random choice). We denote dG(v) the degree of

a vertex v in G.

Proposition 27. Fix k, r ∈ N+ such that k < r. Suppose that F is a bipartite graph with parts

U0,W0 such that every vertex in W0 has degree at most r in F . For every bipartite graph G with

parts U,W , if there is no embedding η ∈ Inj(F,G) such that η(U0) ⊆ U and η(W0) ⊆ W , then

∑

u∈U

dG(u)
k ≤

(
K1|U |k +K2|W |k

)
|U |1−k/r,

where K1 = |W0|k/(r!)k/r and K2 = (|U0| − 1)k/r.

Proof. Assume for the sake of contradiction that
∑

u∈U

d(u)k > (r!)−k/r|W0|k|U |k+1−k/r + (|U0| − 1)k/r|U |1−k/r|W |k.

Pick a subset W1 ⊆ W of size r uniformly at random with repetition. Set U(W1) ⊆ U to be the

common neighborhood of W1 in G, and let X denote the cardinality of U(W1). By linearity of

expectation and Hölder’s inequality,

E[X] =
∑

u∈U

(
d(u)

|W |

)r

≥
(∑

u∈U d(u)k
)r/k

|U |r/k−1|W |r

>
(r!)−1|W0|r|U |r+r/k−1 + (|U0| − 1)|U |r/k−1|W |r

|U |r/k−1|W |r
≥ |U |r

r!

( |W0|
|W |

)r

+ |U0| − 1.

Let Y denote the random variable counting the number of subsets S ⊆ U(W1) of size r with fewer

than |W0| common neighbors in G. For a given such S, the probability that it is a subset of U(W1)

is less than (|W0|/|W |)r. Since there are at most
(|U |

r

)
subsets S of size r, it follows that

E[Y ] <

(|U |
r

)( |W0|
|W |

)r

≤ |U |r
r!

( |W0|
|W |

)r

.
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Figure 5: F0, F1 and F2.

By linearity of expectation,

E[X − Y ] >
|U |r
r!

( |W0|
|W |

)r

+ |U0| − 1− |U |r
r!

( |W0|
|W |

)r

= |U0| − 1.

Hence there exists a choice of W1 for which X − Y ≥ |U0|. Delete one vertex from each subset S

of U(W1) of size r with fewer than m common neighbors. We let U ′ be the remaining subset of

U(W1). The set U
′ ⊆ U has at least |U0| vertices, and every subset of U ′ of size r has at least |W0|

common neighbors. One can then greedily find an embedding η ∈ Inj(F,G) such that η(U0) ⊆ U ′

and η(W0) ⊆ W .

5.2 Proof of Theorem 19(b)

We inductively deduce the negligibility of Fi by that of Fi−1, where Fi = Ts,t−i,s′+i. In each

inductive step, we also need to set aside the embeddings from Fi to G that extend the ample

embeddings from K1,s+1 to G which were already dealt with in Lemma 22. Recall ExtC(F1, F2, G)

from Definition 21, and that extC(F1, F2, G) denotes its cardinality.

Lemma 28. Fix s, t, p, k ∈ N+ and s′ ∈ N such that s′ < s, k ≤ s and k < t. Set Fi = Ts,t−i,s′+i

and Ci = pv(F0)
i, for 0 ≤ i ≤ k, and set F−

k = Ts,t−k,s′ and α = 1 − 1/ρF0 . When k = 1, assume

that α ≥ 1− 1/s; and when k ≥ 2, assume that

t ≥
(
1− s′

s+1

)
k
(
k − 1

s

)
(s+ 2− k) + 1

s (4)

For every c > 1, C∗ ∈ N and n-vertex graph G, if every vertex in G has degree between d and Kd,

where d = cnα and K = 54/α, and moreover ampC0
(F0, G) = 0, then

ampCk
(Fk, G)− extC∗(K1,s+1, Fk, G)

≤ (K∗ + o(1))

(
1
c inj(F

−
k , G)dk + 1

cnd
e(Fk) +

k−1∑

i=1

ds(i−k) ampCi
(Fi, G)

)
,

where K∗ = K∗(C∗, s, t, p, k,K) is a positive constant.
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Proof. As we mostly deal with embeddings to G, we omit G in Inj(·, G), Amp(·, G) and Ext(·, ·, G)

and their relativized versions.

Let v0, v1, . . . , vk be defined for F0, . . . , Fk as in Figure 5, and let Si be the set of roots which

are adjacent to vi for i ∈ [k]. We view Fi as a subtree of Fi−1 induced on V (Fi−1) \ Si. Let σ

denote an arbitrary injection from R(Fk) \ {v1, . . . , vk} to V (G), and set

Ãσ = AmpCk
(Fk;σ) and Ĩ×σ = ExtC∗(K1,s+1, Fk) ∩ Inj(Fk;σ).

For short, denote ~v := (v1, . . . , vk) and η(~v) := (η(v1), . . . , η(vk)) for every η ∈ Inj(Fk). Let H̃σ

be the bipartite graph with two parts

Ũσ = {η(v0) : η ∈ Ãσ} and W̃σ = {η(~v) : η ∈ Ãσ}

whose edge set is given by

H̃σ = {(η(v0), η(~v)) : η ∈ Ãσ}.

Claim 1. The size of Ãσ is bounded by that of H̃σ as follows:

|Ãσ| ≤ Ct−k
∗ |H̃σ|+ |I×σ |.

Proof of Claim 1. In view of the definition of I×σ , Ãσ \ I×σ contains no extension of any C∗-ample

embedding from K1,s+1 to G. Therefore for every edge (u, ~w) in H̃σ, there are at most Ct−k
∗ many

η ∈ Ãσ \ I×σ with (η(v0), η(~v)) = (u, ~w). ⊡

Sample a subset Uσ of Ũσ of size m0 chosen uniformly at random, where m0 will be chosen later.

We denote Hσ the bipartite subgraph Hσ of H̃σ induced on Uσ ∪ W̃σ, and we partition Hσ into H−
σ

and H+
σ , where H−

σ consists of edges (u, ~w) in Hσ such that the degree of ~w is at most sk in Hσ,

and H+
σ is the complement of H−

σ in Hσ. We estimate the number of edges in H−
σ and H+

σ in the

following two claims respectively.

Claim 2. For every σ, the number of edges in H−
σ satisfies

(1− o(1))dsk|H−
σ | ≤ K0n

sk +

k−1∑

i=1

Kid
si|{η ∈ AmpCi

(Fi;σ) : η(v0) ∈ Uσ}|,

where K0 = sk(k!)2(k!Ck−1 − 1)k, and Ki =
(k
i

)
Ksi for i ∈ [k − 1].

Proof of Claim 2. For every edge (u, ~w) in H−
σ , we choose some η ∈ Ãσ with (u, ~w) = (η(v0), η(~v)),

and then this chosen η gives rise to (1 − o(1))dsk many η′ ∈ Inj(F0;σ) such that η′ ⊇ η and

(u, ~w) = (η′(v0), η
′(~v)). We collect these η′ in Bσ ⊆ Inj(F0;σ) after going through all edges (u, ~w)

in H−
σ . Note that

(1− o(1))dsk|H−
σ | ≤ |Bσ|, (5)
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and Bσ has the distinctness property in the sense that

no two distinct embeddings in Bσ are identical on {v0, v1, . . . , vk} ∪ S1 ∪ · · · ∪ Sk. (6)

Let σ′ denote an arbitrary injection from R(F0) to V (G) such that σ′ ⊇ σ, and define Bσ′ =

Bσ ∩ Inj(F0;σ
′). We claim that, for every I ( [k], the cardinality of

BI
σ′ := {η′ ∈ Bσ′ : there exist η′ = η′1, η

′
2, . . . , η

′
Ci

∈ Bσ′ such that

η′1(~v), . . . , η
′
Ci
(~v) form a sequential sunflower of size Ci whose kernel is I}.

satisfies ∑

σ′

|BI
σ′ | ≤ (Kd)si|{η ∈ AmpCi

(Fi;σ) : η(v0) ∈ Uσ}|, where i = |I|. (7)

Indeed, without loss of generality, we may assume that I = [k]\[k−i] for some i ∈ {0, . . . , k−1}.
By the definition of BI

σ′ , for every η′ ∈ BI
σ′ , there exist η′ = η′1, η

′
2, . . . , η

′
Ci

∈ Bσ′ such that

η′1(~v), . . . , η
′
Ci
(~v) form a sequential sunflower of size Ci whose kernel I ( [k] is of size i. For every

j ∈ [Ci], let ηj be the restriction of η′j to V (Fi). Unwinding the definition of a sequential sunflower,

we know that η1, . . . , ηCi
are identical on {vk−i+1, . . . , vk}, and moreover the images of {v1, . . . , vk−i}

under η1, . . . , ηCi
are disjoint. Since η′j ∈ Bσ′ ⊆ Bσ, according to our choice of Bσ, we know that

that (ηj(v0), ηj(~v)) ∈ H−
σ , and so the restriction of ηj to V (Fk) is a Ck-ample embedding from

Fk to G. Using the assumption that Ck = pv(F0)
k ≥ Civ(Fi), one can show that η1, . . . , ηCi

are

Ci-ample embeddings from Fi to G.

To sum up, for every η′ ∈ BI
σ′ we find η ∈ AmpCi

(Fi;σ) such that η′ ⊇ η, (η(v0), η(~v)) ∈ H−
σ

and in particular η(v0) ∈ Uσ. By the distinctness property (6) of Bσ, we know that a different

η′ ∈ BI
σ′ ⊆ Bσ gives a different such η. However we might find the same η when σ′ starts to vary.

Because for every η′ ∈ ⋃σ′ BI
σ′ and every j ∈ I the restriction of η′ to {vj} ∪ Sj is an embedding

from K1,s to G, the same η can be found for at most (Kd)si times, which implies (7).

Finally we estimate the cardinality of

I×σ′ := Bσ′ \
⋃

I([k]

BI
σ′

by that of W := {η′(~v) : η′ ∈ I×σ′}. For every sequence ~w ∈ W , as the degree of ~w is at most

sk in Hσ, together with the distinctness property (6) of Bσ, we know that |I×σ | ≤ sk|W |. By

the definitions of I×σ′ and BI
σ′ , one can check that W contains no sequential sunflower of size

max(C0, . . . , Ck−1) = Ck−1. Thus Proposition 25 implies |I×σ′ | ≤ sk|W | ≤ K0, and so

|Bσ′ | ≤ K0 +
∑

I([k]

|BI
σ′ |.

Because the total number of σ′ : R(F0) → V (G), such that σ′ ⊇ σ, is at most nsk, summing the

last inequality over all σ′, together with (5), yields

(1− o(1))dsk|H−
σ | ≤ |Bσ| ≤ K0n

sk +
∑

σ′

∑

I([k]

|BI
σ′ |,
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which implies the desired inequality in view of (7) and the assumption that ampC0
(F0) = 0. ⊡

Claim 3. For every σ, the number of edges in H+
σ satisfies

|H+
σ | ≤





Kkm0n
1−1/s if k = 1;

Kk

(
m

(sk−1)(1− k−1
s+1

)

0 m0d
k−1 +m

sk+ s(k−1)
s+1

0

)
otherwise,

where Kk = Kk(s, t, p, k,K) is a positive constant.

Proof of Claim 3. Let U0 denote an arbitrary vertex subset of Uσ of size sk in Hσ, and denote

Nσ(U0) ⊆ W̃σ the common neighborhood of U0 in H+
σ . Let W (U0) be the k-uniform hypergraph

defined by

W (U0) = {{w1, . . . , wk} : (w1, . . . , wk) ∈ Nσ(U0)}.

We observe that W (U0) contains no matching of size C0 = p. Indeed, let U0 = U0,1 ∪ · · · ∪U0,k

be an arbitrary fixed partition of U0 into k subsets each of size s. Notice that every hyperedge

{w1, . . . , wk} in W (U0) gives rise to η′ ∈ Inj(F0;σ) such that η′(vi) = wi for i ∈ [k], η′(Si) = U0,i,

and the restriction of η′ to V (Fk) is a Ck-ample embedding from Fk to G. If W (U0) contains a

matching of size p, then one can find a p-ample embedding of F0, which is a contradiction. Now

we treat the k = 1 case and the k ≥ 2 case separately.

Case 1: k = 1. In this case, W (U0) is a 1-uniform hypergraph, and it contains less than p vertices

for every U0. Therefore H+
σ contains no complete bipartite subgraph with s vertices in Uσ and p

vertices in W̃σ. Proposition 26 shows that |H+
σ | ≤ Kk|Uσ||W̃σ|1−1/s, where Kk = s s

√
(p− 1)/s!,

which implies the desired inequality in view of the fact that |W̃σ| ≤ n.

Case 2: k ≥ 2. Using the assumption that dH+
σ
(~w) > sk for every ~w ∈ W̃σ, a simple double

counting argument shows that

∑

U0

|Nσ(U0)| =
∑

~w∈W̃σ

(
dH+

σ
(~w)

sk

)
≥
∑

~w∈W̃σ

dH+
σ
(~w) = |H+

σ |,

which, together with the fact that |W (U0)| ≥ |Nσ(U0)|/(k!), implies that

|H+
σ | ≤ k!

∑

U0

|W (U0)|.

For convenience, denote N(U0) the vertex set of the k-uniform hypergraph W (U0). As W (U0)

contains no matching of size p, clearly we have

|W (U0)| ≤ k(p− 1)|N(U0)|k−1.
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It suffices to estimate
∑

U0
|N(U0)|k−1. Clearly |N(U0)| ≤ Kd, and so

∑
U0
|N(U0)|k−1 ≤

msk
0 (Kd)k−1, which gives the following weaker bound on |H+

σ |,

|H+
σ | ≤ Kkm

sk
0 dk−1. (8)

To to get a better estimate on
∑

U0
|N(U0)|k−1, we squeeze a bit more out of the assumption that

G contains no F p
0 as a subgraph by iteratively applying Proposition 27.

Let V (W̃σ) ⊆ V (G) be the set of vertices that ever appear in any sequence in W̃σ. For every

subset of U ⊆ Uσ, we denote N ′
G(U) the set of vertices in V (W̃σ) that are adjacent to every vertex

in U in the graph G. Notice that N(U0) ⊆ N ′
G(U0) for every U0. We prove inductively for every

i ∈ N+ that

∑

U⊆Uσ : |U |=i

|N ′
G(U)|k−1 ≤ Ki−1

max

i!

(
m

(i−1)(1− k−1
s+1 )

0 m0(Kd)k−1 + (i− 1)m
i+

(k−1)s
s+1

0

)
, (9)

where Kmax = v(T p
s,t,0)

k−1, and in particular

∑

U0

|N(U0)|k−1 ≤ Ksk−1
max

(sk)!

(
m

(sk−1)(1− k−1
s+1 )

0 m0(Kd)k−1 + (sk − 1)m
sk+ (k−1)s

s+1

0

)
,

which implies the desired inequality in Claim 3. The base case i = 1 is evident as the maximum

degree of G is at most Kd. For the inductive step, consider an arbitrary U ⊆ Uσ of size i− 1 and

denote u an arbitrary vertex in Uσ\U . Clearly |N ′
G(U∪{u})| = dG(U)(u), whereG(U) is the bipartite

subgraph of G induced on Uσ and N ′
G(U). Observe that there is no embedding η ∈ Inj(Ts,t,0, G(U))

such that η(R(T p
s,t,0)) ⊆ Uσ, because otherwise one can extend η ∈ Inj(Ts,t,0, G(U)) to η′ ∈ Inj(F p

0 )

such that η′ and σ are identical on S′(F p
0 ) = S′(F0) (see Figure 4 for the definitions of S′(F0) and

Q(F0)). As every vertex in Q(T p
s,t,0) has degree s+ 1, and |Uσ| = m0, Proposition 27 shows that

∑

u∈Uσ\U

|N ′
G(U ∪ {u})|k−1 =

∑

u∈Uσ\U

dG(U)(u)
k−1 ≤ Kmax(m

k−1
0 + |N ′

G(U)|k−1)m
1− k−1

s+1

0 .

Let U ′ denote an arbitrary subset of Uσ of size i. Summing the above inequality over all U ⊆ Uσ

of size i− 1, we obtain from the inductive hypothesis that

∑

U ′

|N ′
G(U

′)|k−1 ≤ i−1
∑

U

Kmax

(
m

k− k−1
s+1

0 +m
1− k−1

s+1

0 |N ′
G(U)|k−1

)

≤ Kmax

i!
m

i+
(k−1)s
s+1

0 +
Kmax

i
m

1− k−1
s+1

0

∑

U

|N ′
G(U)|k−1

≤ Kmaxm
i+

(k−1)s
s+1

0

i!
+

Ki−1
max

i!

(
m

(i−1)(1− k−1
s+1 )

0 m0(Kd)k−1 + (i− 2)m
i+ (k−1)(s−1)

s+1

0

)
,

which implies (9) after checking that i+ (k−1)s
s+1 ≥ i+ (k−1)(s−1)

s+1 . This finishes the proof of Claim 3. ⊡
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Now we assemble Claims 1 to 3 together. We first treat the k ≥ 2 case, and we take m0 =

⌊n(s−(s+1)α)k⌋. As s′ < s, one can check that ρF0 < s + 1, and so α < s/(s + 1), which implies

s− (s+ 1)α > 0, hence m0 = ω(1). We claim that the condition (4) on t implies that

m
(sk−1)(1− k−1

s+1 )
0 ≤ nα and m

sk+
s(k−1)
s+1

0 ≤ m0n
αdk−1. (10)

Indeed, using α = 1− 1/ρF0 = (st+ s′ − 1)/(st + t+ s′), one can check that (4) is equivalent to

(s− (s+ 1)α)k(sk − 1)
(
1− k−1

s+1

)
≤ α,

which implies the first inequality in (10). To check that the second inequality follows from the

first inequality in (10), in view of the fact that nαdk−1 ≥ nkα as d = cnα and c > 1, it suffices to

check that (sk − 1)(1 − (k − 1)/(s + 1)) ≥ (sk + s(k − 1)/(s + 1) − 1)/k, which is equivalent to

sk(k − 1)(s − k + 1) + (k − 1)2 ≥ 0, which clearly holds.

Using (10), we can simplify Claim 3 to |H+
σ | ≤ 2Kkm0n

αdk−1. Combining this with Claim 2,

we obtain that for every σ that

(1− o(1))|Hσ| ≤ (1− o(1))|H−
σ |+ |H+

σ |

≤ K0n
skd−sk +

k−1∑

i=1

Kid
s(i−k)|{η ∈ AmpCi

(Fi;σ) : η(v0) ∈ Uσ}|+ 2Kkm0n
αdk−1.

Recall that Uσ is a subset of Ũσ of size m0 chosen uniformly at random, and Hσ is the bipartite

subgraph of H̃σ induced on Uσ ∪ W̃σ. Observe that the expectation of |Hσ| is m0|H̃σ|/|Ũσ|, and
the expectation of |{η ∈ AmpCi

(Fi;σ) : η(v0) ∈ Uσ}| is m0 ampCi
(Fi;σ)/|Ũσ|. Thus taking the

expectation of the above inequality, and then multiplying both sides by |Ũσ|/m0, gives

(1− o(1))|H̃σ| ≤ K0|Ũσ|m−1
0 nskd−sk +

k−1∑

i=1

Kid
s(i−k) ampCi

(Fi;σ) + 2Kk|Ũσ|nαdk−1. (11)

In case |Ũσ| < m0, we simply bound

|H̃σ| ≤ m0(Kd)k ≤ n(s−(s+1)α)k(Kd)k. (12)

Since every u ∈ Ũσ corresponds to η ∈ Inj(F−
k ;σ) such that η(v0) = u, where F−

k is the

subgraph of Fk induced on V (Fk) \ {v1, . . . , vk}, clearly we have |Ũσ| ≤ inj(F−
k ;σ). Using d = cnα,

one can routinely check that m−1
0 nskd−sk and nαdk−1 in (11) are at most (1 + o(1))dk/c, and that

n(s−(s+1)α)kdk in (12) is at most n1−(|R(Fk)−k|)de(Fk)/c. Therefore Claim 1 and (11) and (12) imply

|Ãσ| ≤ (1 + o(1))K∗

(
1
c inj(F

−
k ;σ)dk + 1

cn
1−(|R(Fk)|−k)de(Fk) +

k−1∑

i=1

ds(i−k) ampCi
(Fi;σ)

)
+ |I×σ |,
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where K∗ = K∗(C∗, s, t, p, k,K) is a positive constant. Summing the last inequality over all injec-

tions σ : R(Fk) \ {v1, . . . , vk} → V (G) yields that ampCk
(Fk)− extC∗(K1,s+1, Fk) is at most

(1 + o(1))K∗

(
1
c inj(F

−
k )dk + 1

cnd
e(Fk) +

k−1∑

i=1

ds(i−k) ampCi
(Fi)

)
.

Finally for the k = 1 case, we simply take m0 = |Ũσ|, in other words, Uσ = Ũσ. Notice that

every vertex ~w ∈ W̃σ has degree at least Ck in H̃σ because ~w = η(~v) for some Ck-ample . Therefore

H̃σ = H+
σ . By Claims 1 and 3 and the assumption that 1− 1/s ≤ α, we can similarly get that

ampCk
(Fk)− extC∗(K1,s+1, Fk) ≤ K∗ inj(F

−
1 )n1−1/s ≤ K∗ inj(F

−
1 )dk/c,

where K∗ = K∗(C∗, s, t, k, p) is a positive constant. This finishes the proof of Lemma 28.

Remark. If we use in the proof of Lemma 28 the weaker bound (8) on |H+
σ | instead, we would need

to impose a condition on t that is more restricted than (4).

Proof of Theorem 19(b). Assume that s − s′ ≥ 1. Denote Fk = Ts,t−i,s′+i for 0 ≤ k ≤ s − s′. In

particular, F0 = Ts,t,s′. Let p ∈ N+ and C∗ = v(T p
s,t,s+1). Set Ck = pv(F0)

i for k ≤ s − s′. Let

c0 ≥ 1/ε be the constant to be chosen. Suppose that c > c0 and G is an n-vertex graph with

n ≥ n0(c) such that every vertex in G has degree between d and Kd, where d = cnα and K = 54/α,

and moreover ampC0
(F0, G) = 0. We break into two cases.

Case 1: k = 1. Let c0 be at least the constant already obtained from Theorem 19(a). By the

choice of c0, we know that ampC∗
(K1,s+1, G) ≤ εnde(K1,s+1). Since F0 is balanced, by Proposition 9,

ρF0 ≥ s, which implies that 1− 1/s ≤ α, where α = 1− 1/ρF0 . By Lemma 28, we obtain

ampCk
(Fk, G) ≤ (1 + o(1))K∗

(
1
c inj(F

−
k , G)dk + 1

cnd
e(Fk)

)
+ extC∗(K1,s+1, Fk, G),

whereK∗ = K∗(s, t, p) is a positive constant. As 1/c < ε, inj(F−
k , G) ≤ n(Kd)e(F

−
k
) ≤ n(Kd)e(Fk)−k,

and extC∗(K1,s+1, Fk, G) ≤ inj(K1,s+1, Fk) ampC∗
(K1,s+1, G)(Kd)e(Fi)−e(K1,s+1), we estimate

ampCk
(Fk, G) ≤

(
(ε+ o(1))K∗(K

e(Fk) + 1) + ε inj(K1,s+1, Fk)K
e(Fk)

)
nde(Fk),

which implies the desired inequality in Theorem 19(b).

Case 2: 2 ≤ k ≤ s−s′. By induction, let c0 be such that ampCi
(Fi, G) ≤ εnde(Fi) for i < k. Note

that the assumption (2) in Theorem 19 ensures the condition (4) in Lemma 28. By Lemma 28, we

similarly obtain that

ampCk
(Fk, G) ≤

(
(ε+ o(1))K∗(K

e(Fk) + k) + ε inj(K1,s+1, Fk)
)
nde(Fk),

where K∗ = K∗(s, t, p) is a positive constant.
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[7] P. Erdős and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc.,

35:85–90, 1960.
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[22] Tamás Kővári, Vera T. Sós, and Pál Turán. On a problem of K. Zarankiewicz. Colloq. Math.,

3:50–57, 1954.

[23] Alexander A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–1282, 2007.

23

https://arxiv.org/abs/1306.5167
http://arxiv.org/abs/1906.04084
https://arxiv.org/abs/1806.02838
http://arxiv.org/abs/1908.02385
http://arxiv.org/abs/1905.08994
https://arxiv.org/abs/1811.06916

	1 Introduction
	2 Negligible obstruction family
	3 Proof of the negligibility lemma
	4 Ample embeddings of stars
	5 Ample embeddings of subtrees
	5.1 Preliminary propositions
	5.2 Proof of Theorem 19(b)


